ISSN 2079-0023 (print), ISSN 2410-2857 (online)

UDC 004.9:510.635
0. CHEREDNICHENKO, K. V. MELNYK, S. V. KIRKIN, D. V. SOKOLOV, O. M. MATVEIEV

DEVELOPMENT OF AGENT-ORIENTED SOFTWARE COMPONENTS TO RETRIEVE THE
MARKETING INFORMATION FROM THE WEB

The article is devoted to researching the processes of extracting marketing information from the Web space. Conclusions are drawn on the need to
introduce an information marketing system into modern business activities. A decision has been taken to develop software for the collection and
analysis of marketing information. Identified and analyzed the main problems of collecting marketing information in the Web space. External systems
for extracting and processing marketing information from the Web space were considered. During the analysis of the subject area, functional and non-
functional requirements for the software being developed were formulated. Requirements for the selection of technologies for the development of an
information system were defined. The analysis of software development technologies is carried out and the approach to the development of a software
component is chosen. Such approaches to software development as: object-oriented programming, service-oriented architecture, component-oriented
programming, agent-oriented programming were analyzed. A decision has been made to use the agent three-tier architecture in software development.
The most commonly used programming languages in programming systems were: Java, KIF, KQML, AgentSpeak, April, TeleScript, Tcl / Tk, Oz.
Analyzed such popular agent platforms and their functions as: JADE, Cougaar, ZEUS, Jason. For the development of software, the JADE platform was
chosen, its classes, methods and interfaces were examined. The advantages and peculiarities of the SOLID principle are analyzed. In detail, the levels
of the CLEAN architecture are examined. And also explained the possibilities of software implementation of this architecture. A software architecture
was developed for the data collection system. In accordance with the requirements, a selection of software development tools has been made. It was
decided to use the programming language Java, Spring Framework, GoF design pattern, the template Dependency Injection, SOLID and CLEAN
architectural principles. A software component was developed for marketing information gathering systems, which allows to optimize this process.
The limitations and ways to improve the software system are analyzed.

Keywords: architecture, JADE, marketing data, CLEAN, agent, program system, Java

O. 0. YEPE/THIYEHKO, K. B. MEJIBHHUK, C. B. KIPKIH, /]. B. COKOJIOB, O. M. MATBEEB
PO3POBKA ATEHTHO-OPIEHTOBAHUX KOMIIOHEHTIB TIPOI'PAMHOI'O 3ABE3IIEYEHHSA
JIJIsI BAWJTYYEHHSA MAPKETUHIOBOI IHOOPMAIIIL 3 WEB

CTaTTi0O MPUCBSAYCHO NUTAHHSIM [OCTI/DKEHHS MPOLECIB BIJIydEHHsS MapKeTHHroBoi iH¢opmarii 3 Web-npocropy. 3po06ieHO BHCHOBKH PO
HEOOXiHICTh BBEIEHHS iH(QOpPMamiiiHOI MapKeTHHrOBOi CHCTEMH B CydacHy IiANPHEMHHIBKY MisUIbHICTh. IIpHIHATO pilIeHHS HPO pPO3pOOKY
NIPOrPaMHOro 3a0e3lmedeHHs Uil 300py Ta aHalily MapKeTHHroBoi iH¢opMmarii. BusBieHo Ta npoaHaTi30BaHO OCHOBHI IpoOieMH 300py
MapKeTHHroBoI iHpopmariii y Web-tipoctopi. Byan po3risHyTi 30BHILIHI CHCTEMH 1O BHIYYCHHIO Ta 00pOOIi MapKeTHHroBoi iHpopmarii 3 Web-
npocropy. B xoxi ananizy mpeamerHoi o6nacti Oymu chopmynboBaHi GyHKIIOHATBHI 1 HEQYHKIIOHATBHI BHMOTH [0 PO3POOIIOEMOTrO IIPOrPaMHOr0
3a0esneueHHs. Bynyu BH3HaueHi BUMOTH 0 BUOOpPY TEXHOJIOTIH M po3poOky iHpopManiiiHoi cuctemu. IIpoBeneHo aHaii3 TEXHOJOTIH po3poOKH
MPOrpaMHOro 3abe3nedeHHs] Ta 00paHo MiAXix 10 PO3pOOKH MPOrpaMHOro KOMIIOHeHTa. Byiau mpoaHamizoBaHi Taki MIAXOOH IO PO3POOKU
[IPOrpaMHOro 3a0es3nedeHHs sK: 00 €KTHO-OPIEHTOBaHE IPOrpaMyBaHHsS, CEPBIC-Opi€HTOBaHA ApXITEKTypa, KOMIIOHCHTHO-Opi€HTOBaHE
[POrpaMyBaHHs, areHTHO-OPIEHTOBAaHE MpOrpaMyBaHHs. [IpHHHATO pILIEHHS PO BUKOPHUCTAHHS arcHTHOI TPHPIBHEBOI apXiTEKTypH B po3poOri
MpOrpamMHOro 3abe3nedeHns. bymu po3risiHyTi HAWOLTBII YacTO BUKOPUCTOBYBAHI B areHTHHX CHCTeMax MOBH mporpamyBanus: Java, KIF, KQML,
AgentSpeak, April, TeleScript, Tcl/Tk, Oz. [IpoananizoBaHo Taki momyJsipHi arenTHi mwiatGopmi i ix ¢yukuii sik: JADE, Cougaar, ZEUS, Jason. [s
PO3poOKH IporpaMHoro 3abesnedeHHs Oyma obpana miatdopma JADE, posrmsHyTi 11 kiacw, Meroau i iHtepdeiicu. IIpoananizoBaHo mepeBaru ta
ocobmuBocti npuninuny SOLID. B geramsx posrsHyti piBHi apxitektypu CLEAN. A Takox 3po0jeHi MOSICHEHHS MOXJIMBOCTEW IMPOrpamMHOL
peanizauii wiei apxitektypu. Byma pospoOneHa mporpamHa apXiTekTypa Ui cHCTeMH 3i 300py naHuX. BianoBigHo o BUMOr 3po0ieHui BHOIp
IHCTPYMEHTIB PO3pOOKH HPOTrpaMHOro MpoxykTy. IIpuitHATO pillleHHs Mpo BHKOPHCTaHHS MOBH HporpamysaHHs Java, Spring Framework, GoF
naTepHy npoekTyBaHHs, mabnony Dependency Injection, SOLID i CLEAN apxiTeKTypHUX NpHHIMIIB. ByB po3po0ieHuii mporpaMHuii KOMIIOHEHT
JUIs cuCTeM 300py MapKeTHHroBoi iH(opMarii, 110 J03BOJSE€ ONTUMI3yBaTH Lieid mpouec. [IpoaHani3oBaHO OOMEXEHHS 1 HIIAXM MOJIMIIEHHS
MIPOrPaMHOI CHCTEMH
Kuarouosi ciioBa: apxitektypa, JADE, mapkerunrosi mani, CLEAN, arent, mporpamna crictema, Java

O. I0. YEPE/THUYEHKO, K. B. MEJIbHHK, C. B. KHPKHH, B. B. COKOJIOB, A. H. MATBEEB
PABPABOTKA ATEHTHO-OPUEHTUPOBAHHBIX KOMIIOHEHTOB ITPOI'PAMMHOTI'O
OBECHEYEHUS /151 U3BJEYEHUS MAPKETUHI OBOI MTH®OPMAIIUA U3 WEB

CTaThsl TIOCBAIIEHA BOMPOCAM MCCIIEIOBAHMS MPONECCOB M3BIICUCHHS MapKeTHHroBol mH(popMarmyu u3 Web-mpoctpancTsa. CuenaHbl BBIBOABI O
HeoOXOAMMOCTH BBEJICHNS! MH(POPMAIMOHHOW MapKETHHTOBOH CHCTEMBI B COBPEMEHHYIO IIPENPUHAMATENBCKYIO eaTeNbHOCTE. [IprHATO penenne o
pa3paboTke MporpaMMHOro obdecneyeHus Jisi cOopa 1 aHalli3a MapKeTUHIOBOI nH(popMaliy. BhIsIBICHB! M TPOaHATN3UPOBAHBI OCHOBHBIE TPOOJIEMBI
cbopa MapkeTnHroBoit nHdopmarmu B Web-mpoctpanctse. Bbum paccMOTpeHBI BHEIIHHE CHCTEMBI 110 M3BICYEHHIO U 00paboTKe MapKeTHHIOBOIL
nadopmamyn w3 Web-npoctpanctBa. B xone aHamusa npenMeTHOH obnacTH ObUIH cHOPMYIHPOBaHBI (yHKIMOHANBHEIE M He(yHKIMOHAIBHEIC
TpeOOBaHUS K pa3pabaThiBAEMOMY MpPOrpaMMHOMY oOecredyeHHI0. bpuin ompesieneHbl TpeOOBaHUS K BBIOOPY TEXHOJOTWE i pa3paboTKH
nH(pOpMaIMOHHOH cucteMbl. [IpoBefieH aHaIM3 TEXHOJOTMI pPa3pabOTKM MPOTrpaMMHOTO OOecIeueHHss W BHIOpaH TOAXOA K paspaboTke
IIPOrPaMMHOT0 KOMIIOHEHTA. BBl NpoaHaIm3upoBaHbl TaKKE TTOAXOB! K pa3paboTKe MPOrpaMMHOT0 00ecIIeueH s KaK: 00beKTHO-OPUEHTHPOBAHHOE
IPOrpaMMHUPOBAHHE, CEPBUC-OPHEHTHPOBAHHASI ApXUTEKTypa, KOMIIOHEHTHO-OPHEHTHPOBAHHOE IIPOTPAMMHUPOBAHHE, AreHTHO-OPHEHTUPOBAHHOE
nporpaMMupoBanue. [IpuHATO penreHre 00 HMCIIONB30BAaHUM arCHTHOW TPEXYPOBHEBOW apXUTEKTYPhl B pa3pabOTKe IMPOrpaMMHOIO 0OECICUeHHs.
bbu paccMOTpeHBI HanboJee YacTO WCIONb3yeMble B areHTHBIX CHCTeMax s3bIkM mporpamvupoBanus: Java, KIF, KQML, AgentSpeak, April,
TeleScript, Tcl/Tk, Oz. IIpoaHanu3upoBaHbl TakWe MOMYJSIpHBIE areHTHBIE TaTdopmbel U ux ¢yHkiuu kak: JADE, Cougaar, ZEUS, Jason. [{ns
pa3paboTKH MporpaMMHOro obecriedeHus Obuta BeiOpana matgopma JADE, paccMoTpeHs! ee Kiacchl, MeTosl U nHTepdeiickl. [Ipoanami3npoBansl
npenumymiectBa 1 ocobeHHoctn npuaimna SOLID. B peramsx paccmortpensl ypoBHum apxutektypsl CLEAN. A Takxke cienaHbl IOSCHEHUS
BO3MOKHOCTEH MPOTrpaMMHOM peai3alliy 3TOi apXUTeKTypbl. bbuta pa3spaborana mporpaMMHasi apXUTEKTypa JJIs CUCTEMBI 1Mo cOOpy JaHHBIX. B
COOTBETCTBUM C TPEOOBAHMSIMH MPOM3BENEH BHIOOP MHCTPYMEHTOB Pa3pabOTKM MPOrpaMMHOrO mpopaykra. IIpuHATO pemieHne 00 MCIONBb30BaHHUH
A3bIKa TporpammupoBanus Java, Spring Framework, GoF mnarrepHa mnpoektmpoBanums, mabmona Dependency Injection, SOLID n CLEAN
apXUTEKTYypHBIX NPHUHLUIOB. beul pa3paboTaH HpPOrpaMMHBI KOMIOHEHT UL CHCTeM cOOopa MapKeTHHIOBOH HH(OpPMANUH, MTO3BOJISIOMINH

© O. Cherednichenko, K. V. Melnyk, S. V. Kirkin, D. V. Sokolov, O. M. Matveiev, 2018

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 37

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

ONTHMHU3UPOBATH 3TOT Tpouecc. [I[poaHann3upoBaHbl OrPaHHYCHHUSI U MYTH YIy4LICHHS TPOIrPAMMHOM CHCTEMBI.
Kuarouesble ciioBa: apxurektypa, JADE, mapkerunrossie qanusie, CLEAN, arenT, nporpamMmmuas cucrema, Java

Introduction. Successful functioning of any
company in the market environment can only be ensured
only when accurate, complete and reliable information is
available. Exactly such information help companies to
determine the consumers™ attitude towards the product and
company, constantly monitor the environment, coordinate
the strategy and evaluate the activity, increase the level of
advertising work, support in the taken decisions, confirm
their own commercial intuition, and increase the activity
efficiency [1].

Information systems in one form or another have
been used extensively and for a long time now to support
marketing activities at enterprises. Nevertheless, the study
of the structure and functionality of marketing information
systems remains very relevant in connection with the
rapid development of information technologies [2].

The external marketing information systems were
considered in this work. This marketing systems class
designed for regular collection of relevant information.
The system of external information is focused on sources
and methodical methods, by means of which it is possible
to receive information about events and situations from
the external marketing environment. The collection of
external information involves the accumulation of various
structured data:

e about the situation in different markets,
especially those where the enterprise works or is going to
work;

o forces that operate on the market (existing and
potential competitors, consumers, contact audiences, etc.);

e state and trends of the development of macro-
factors.

The result of this work is the development of
components of the system for collecting, completing,
checking the relevance and storage of marketing
information about smartphones in real time.

Problem statement. = Nowadays, marketing
information is of great value. In addition, this value is
constantly growing. On the one hand, such growth is due
to the transition from local marketing, limited by the state
boundaries, to global. On the other hand, with the
development of markets and the improvement of

Electronic trading platferm-

technologies, consumers get all the great opportunities in
choosing the most satisfying their needs products and
services. Modern information technologies help to solve
these problems [3, 4].

The ultimate goal of the project is to develop a
system for collecting smartphone models from the trading
platform that are in high demand (top selling). The
following requirements have to be taken into account:

e functionality should not depend on the trading
platform;

o the assessment of sales takes place on the basis
of the information available on the site of the trading
platform;

o the system should have the ability to adapt, study
or ability to select the algorithm for determining the top.

Figures 1-2 depict a functional requirements diagram
in the IDEF-0 notation (context level diagram and its
decomposition respectively).

It is known that the Web is a great repository of
information and services of any direction and purpose. At
the same time, such a feature hurts Web technologies.

Electronic Query

trading execution CfliL‘jtee I'rv
platform date
v v l

Search of the most

Sample of the best-
popular smartphones |- -

selling goods

A0
'Yy x
Agent Searching Sk DB
platform i

systems ‘

Fig. 1. IDEFO context level diagram of the functional
requirements

If you need to find the exact information, a large
amount of time is spent for searching and viewing of a
large number of Web-pages. Thus, the purpose of this
work is to optimize the search of marketing information,
by developing a software component for the system of
marketing information collecting.

Query
filter
Request Query
. Generated execution
generation query (URL) date
AO1 v
A
Data collection
AQ2 -
i Device Sampling the
Searchi infi i
se:srtcer:]nss informatian most popular | sample of the best-
Sk_DB goods selling goods
A3
Agant platferm I

Fig. 2. IDEFO decomposed diagram of the functional requirements

Bicnux Hayionanvrozo mexuniunoeo ynisepcumemy «XI11». Cepia: Cucmemnuii

38

ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

If you need to find the exact information, a large
amount of time is spent for searching and viewing of a
large number of Web-pages. Thus, the purpose of this
work is to optimize the search of marketing information,
by developing a software component for the system of
marketing information collecting.

Determine of software development technology.
During the process of subject area analysis, functional
requirements and limitations of the software system were
selected. Consequently, the system requirements for the
information system include the following ones:
the ability to transfer;
scalability;
the ability to be modified;
reliability;
efficiency.

The above requirements determine the choice of
technologies for information system implementation.
Among the possible options were analyzed object-oriented
(OOP), service-oriented (SOA), component-oriented
(COP) and agent-oriented (AOP) programming paradigms
(table 1).

It is proposed to use agent architecture when
designing in this work. The agent is defined as a computer
program that can reasonably act on behalf of the user
(another program) to perform the task. Agents, like
people, work together so that their aggregate can combine
efforts to achieve the goal. As the agent platform (Agent
Environment) is usually understood a set of application
programming interfaces (API), which provides creation,
life cycle, messaging, communication and access to

information and agents knowledge bases [5]. Agent
platform is assigned functions of the agent environment.

It is worth noting that there are currently no
programming languages or development tools that fully
meet the needs for agents building. Such a system would
have to meet such requirements: ensuring the migration of
code to various platforms, availability on many platforms,
support for network interaction, multithreading and other
[6]. Most commonly in agent technologies used: universal
programming languages (Java); “knowledge-oriented”
languages, such as knowledge representation languages
(KIF); negotiation and knowledge sharing languages
(KQML, AgentSpeak, April), agent specifications
languages; specialized programming languages for agents
(TeleScript); scripting languages (Tcl/Tk); symbolic
languages and logical programming languages (Oz) [6].

Today, there are numerous research groups and
commercial entities that study agents technology and
implement various agents and agent platforms. Due to
various approaches to the research of the agent’s
technology there was necessary to establish a unified
standardization organization, the fund of intellectual
physical agents.

There are many toolkits for designing MAC, and the
most popular among them are agent platforms. The main
functions of the agent platform are:

e an environment for the existence and interaction
of agents;

e implement certain standards to ensure
interoperability and compatibility with other platforms.

Table 2 shows the comparative characteristics of the
most well-known agent platforms.

Table 1 — Comparison of implementation technologies

Selection criterion OO0P SOA COP AOP
Main unit Object Service Component Agent
Degree of autonomy Within its state due | Not autonomous Partial autonomy Complete autonomy and control of its
to encapsulation own actions according to its purpose
Flexibility of | Some degree of | Passive before the | Some degree of | Reactivity and proactivity
behavior reactivity call reactivity
Interaction with the | Limited Limited Ability to transfer Mobility, transferability
environment possibilities possibilities
Interaction with other | Mechanisms RPC, | Mechanisms Mechanisms of | Communication on the basis of FIPA
software components | RMI SOAP meta-object messaging
protocols
Suitability for solving | Limited Limited Limited Due to the implementation of the
intellectual problems | possibilities possibilities possibilities model and the ability to study

Table 2 — Comparative characteristics of agent platforms

Comparison criterion JADE Cougaar ZEUS Jason

Programming language Java Java Visual code generators AgentSpeak

FIPA-compatibility + — + -

License for use Not required Not required Required Not required

Scope of application Distributed systems | Distributed systems | Basis for writing rules | Distributed systems
that consist of many | that consist of many | and scenarios that consist of many
components components components

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 39

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

To implement the information system, the JADE
platform is used. Architecture of the system platform
JADE is shown in figure 3. The main advantages of this
platform are the ability to integrate with other systems,
support FIPA-2000 specification and free distribution [7].
The environment consists of two main parts: the actual
FIPA-compatible agent platform and Java development
agents. The JADE environment is written in Java and
consists of Java library classes (packages) that provide
application developers with ready functionality fragments
and abstract interfaces. JADE comes with a suite of tools
that simplify administration and development [8].

Agent management system Control agent container

mterface
I
n
' 5
Acc OF ANS . n -
JE B /r.l_emm: Hardware
; 1 NS controls
2 1
c
e

COOL/CLIPS c

managemant

procass r
dezcripiton Q t <::>
e

E o W

[
 I—
vy
B R R e L

TR

Message manager Java RMI >

Fig. 3. Architecture of the agent platform JADE

The following main classes are used to create MAC:
Agent and Behavior. The Agent class is a common base
class for agents specified by the user. From the standpoint
of the developer, the JADE agent is a typical instance of
the Java class that extends the base class Agent. This
implies the inheritance of properties for the
implementation of the main interactions with the agent
platform (registration, configuration, remote management,
etc.) and the basic set of methods that can be called to
implement the agent’s behavior [8]. The agent’s
computing model is multitasking and parallel, in which
the task (or behavior) is performed simultaneously. Each
functionality and/or service provided by the agent must be
implemented as one or more behaviors. An internal
planner, hidden from the developer, automatically
manages the planning of behavior.

The developer determines the agent’s actions by
specifying its behavior. An agent is able to perform
several parallel tasks in response to various external
events. In order to be effective in managing the agent,
each JADE agent consists of a separate flow of execution
and all its tasks (intentions) must be implemented as
objects of the Behavior class [8]. The developer when
assigning a task to the agent must determine one or more
derived classes from the base class Behavior and add

some behavior to the list of its tasks. The Agent class
provides two methods: addBehaviour() and
removeBehavior(), which allow you to control the queue
of the agent’s tasks, namely add or remove behavior. The
handling of the agent can be added whenever necessary,
and not only within the Agent.setup() method. The
scheduler, implemented by the main class Agent and
"hidden" from the programmer, performs a cyclic
planning policy among all behaviors that are available in
execution queue. Behavior can be blocked, and the agent
expects to receive a message [9].

Features of software implementation of the
system. The Java programming language, Spring
Framework, GoF designing patterns, Dependency
Injection template, SOLID and CLEAN Architecture
principles [10, 11] were used to develop the software
system.

Spring Framework is an open source framework and
a container with support of inversion management for the
Java platform.

SOLID is an abbreviation of the first letters of the
five basic principles of object-oriented programming and
design proposed by Robert Martin:

1 The Single Responsibility Principle (SRP) is an
important principle of object-oriented programming,
which means that a class must be created to perform only
one task that it must completely encapsulate.
Consequently, all services in this class must be completely
subordinated to its implementation. The result of this
concept is that there is only one reason for changing the
class, which makes it much "healthier” [11].

2 The Open/Closed Principle (OCP) principle is an
important principle of object-oriented programming,
which means that "program entities, such as classes,
modules, functions, methods, etc. must be opened for
expansion and closed for changes"”. This means that they
can provide the ability to change their behavior without or
with minimal code changes [10].

3 Liskov Substitution Principle (LSP) in object
oriented programming is a special definition of a subtype
proposed by Barbara Liskov in a 1987 conference in a
report "Data abstraction and hierarchy.” In the article,
Liskov formulated the principle so: if S is a subtype of T,
then objects of type S without any changes of the desired
properties of this program can replace objects of type T in
the program [16].

4 Principle of interface separation. This principle is
similar to the principle of a single obligation. The
application of this principle consists in the division of too
"thick" interfaces into smaller and more specific ones, so
that their clients know only those methods that are
necessary for their work. As a result, when changing a
certain functionality, those classes that do not use it
should remain unchanged. That is, the implementation of
this principle helps the system remain flexible when
making changes to it and remain easy to refactor [12, 13].

5 Principle of dependencies inversion. The principle
is formulated as following:

o higher-level modules should not depend on
lower-level modules, both types of modules must depend
on abstractions;

Bicnux Hayionanvrozo mexuniunoeo ynisepcumemy «XI11». Cepia: Cucmemnuii
40 ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

e abstractions should not depend on the details of
the implementation, the details of the implementation
must depend on the abstractions.

The dependencies inversion principle solves the
problems of unsuccessful designing of programs [12].

On the basis of these principles, Robert Martin
presented "The Clean Architecture”, which consists of
dividing the system into 3 levels:

1 Data layer — the level of data in its pure form,
consisting of essences, which are the basic business rules
of the system (this level can be both object with methods,
and simple set of data structures and functions) [12]. The
data layer will include POJOs and get data from cloud or
local storage.

2 Domain layer — the level of the business logic of
the application that is responsible for the main
functionality of the system. Domain layer is responsible
for interaction between data and presentation layers by
means of interface and interactors. The objective is to
make the domain layer independent of anything, so the
business logic can be tested without any dependency to
external components. Behavior of the domain layer and
its” rules are related to a particular application [13].

3 Presentation layer — the level of the user interface,
the display of data, the custom events processing (this
level converts data from the previous level into a format
that is adapted to display. Presentation layer will include
normal activities and fragments, which will only handle
rendering views and will follow MVP pattern.

The main advantages of this approach are:

e independence from frameworks and specific
libraries;

e ease of testing — business rules can be tested
separately, without a user interface, databases, etc.;

e user interface independence — the display can be
changed without affecting other components of the
system, which reduces the chances of potential errors;

<<interfaca=>

1

1

:

| +uatiey)) : T
: ----- Plsseticepey: T) : void
1

1

1

1

1

o independence from the platform; business rules
do not know where they will be used, and not tied to the
features of a particular platform;

o database independence — the business logic of
the application is not tied to a specific database, which
makes it possible to change it at any time without
affecting other components of the system.

The last advantage can be realized with the help of
the template Repository. This approach is used to separate
the logic that receives data, and transforms it into entity
models for further work at the domain level. Dependency
Injection template is used to use pure architecture and
dependency inversion principle to ensure full control of
system components. The work of the framework that pro-
vides work for such pattern is described by an application
that, regardless of the execution, is executed within the
dependencies inversion container provided by the frame-
work. Some objects are still created in the usual way using
the programming language, but the rest is provided by the
container based on a predefined configuration. Thus, this
approach makes it possible to substitute the dependencies
of system objects using such container without the need of
changing of other system components. Current design is
component-independent platform and could be tested after
each integration is provided. [14].

During the development process, it was concluded
that the application of the micro-service architecture and
the individual modules creation of the system as inde-
pendent programs, the execution of which will be pro-
cessed by the agent platform, that is, the agent behavior
(Behavior) will contain the business logic of the individ-
ual component (service) of the system. Thus, with the help
of aspect-oriented programming, implementation of
methods and the processing of their results were provided
to agents that use the ACL messaging environment to
interact with the services. The system architecture with the
use of individual layers is shown in figures 4, 5.

<<intarfaces>

DataTransfarObjact

7 PromMap(map | Map<String, Object=) : veid

[+tahap() | Map<String, Objectt>

: Ceche

<<Intarfaca=

DataSourca
+daleta()
Po+upcatel)
+oatAllPhanes()
+insart()

[Covaoaabourca |

~~|firahase | FrahasaDatahase

Firabasa gurar

+gatCanfiel) | JsonObjact
+infializef) | Databasa

Fig. 4. Data layer

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii

auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

41

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

<=Inlariaca==
Parsar

<<Imarfaca==
ChildParser

+parsa(j
——"{"4+gatPaga() : String

sl : Blring) : woid
+galPamams() : Objeci]]
+salParame(params : Object]]] : vaid

~cumanilrl: String

-phana : PhanaCTO
+selCumantUdjcurrantld : String) : void
+raquest D uaToComant()
+gatPhana() : PhanaDTO
+selPhana{phane : PhoneDTa) : vaid

iy

1 &
EbayPhoneParsar :
-valuaExtracior : Map<5String, Extracior= EbayRequastParsar
-page : Slring
-params : Object]]
-axlracior : Exfracior

<=Inlariaca==
Extractor

+axtracliglamant : HimiElkamant)

<<In|.erliaoa>>
Saarchar

~wabCliant : WabCliani
: UriBuikdar

+pushUrl()

+gallifs() : LiskStrings

+raquest()

+galContant()

+galWebCliart() : WabCliant
+salvabClianifwabClianl : WabClianl) : woid

WabCliant
~wabCliarlConfig : WabCliamCarfig

+raquasi()

==ImMarfaca=:

Datafnalyzar
algandh : Algarthm

<<Inlarfaca:=

: +litlar{)
LirlBuilder

+gafFillared Data()
+aracule()
+gatAlgoryth() : Algorythm F-

~=aarchCaonfig : SearchCaonlig
-quanyParams : Map<Siring, Objacl>

+changeParameter(key : String, walue : Objact)
+buikiLi(} : String

Algorythm

: <<usaErE

SearchGonfig data : List<Phana>

| -domain : String
-pathParams : Lisl=<Sting=
-quanParams : Map<Siring, Objacl>

ExctractingConfig
-attributes : Map=String, String=

raracule()
+salParams(params : Object]])
+galDala(} : List<Phana>

+gatAttribules() : Map<String, String=
+salAfiribulas(atiibutas : Map<Sting, String=) : void

+gatlDomain) : String

+selDomainidomain : String) : vaid

+galPathParams() : List<Slring>
+selPalhParams{pathParams : List<Slring=) : vaid
+galQuaryParams() : Map<String, Objecl=
+ealQuanyParamsfquaryParams : Map<5tring, Objecl=) : vaid

+selDatajdata : List<Phones] : woid

Fig. 5. Domain layer

In the general diagram, we can see that the designed
system has 3 layers and 3 microservices, namely:

1 Data layer, which includes classes and data transfer
objects interfaces, classes of essence representation of the
non-relational database and a Repository design pattern,
which consists of two data sources — the cache of the
system and the non-relational database Google Firebase,
which works with cloud storage services. The data layer
contain workflow to manage data in datasource. To do
that it is used repository pattern to make CRUD functions
convenient and datasource-independent.

The simplest approach, especially with an existing
system, is to create a new repository implementation for
each business object needed to store or to retrieve data
from persistence layer.

2 The domain application layer consists of four
microservices:

e agent platform;

e (data seeker;

e (data analyzer;

e parser and data collector from web-pages.

Service “Agent platform” is responsible for system
business process execution within the body of individual
agents.

The “Data finder” service performs the process of
locating the required goods in the trading venues by
replacing the HTTP request parameters, configuration the
filters, and transitioning to the data delivery pages.

The “Parser” service analyze an HTML document
that is a response for HTTP request from a searcher and
collects the necessary data from the product description
page.

The “Data Analyzer” service is responsible for
analyzing the sample collected by the parser, based on
which the search parameters and stored products data will
be reformed.

3 The presentation layer logic will be implemented
on the client side of the system, namely on a mobile client
based on the Android operating system using the MVP
pattern (Model-View-Presenter). The connection between
servers and clients is implemented with the help of the
micro-service of the cloud-based storage Google Firebase
Firestore, to which requests are performed both by servers
and clients of the system. The layer was designed using
micro-service approach to create test-flow for each
component.

3 The presentation layer logic will be implemented
on the client side of the system, namely on a mobile client
based on the Android operating system using the MVP
pattern (Model-View-Presenter). The connection between
servers and clients is implemented with the help of the
micro-service of the cloud-based storage Google Firebase
Firestore, to which requests are performed both by servers
and clients of the system. The layer was designed using
micro-service approach to create test-flow for each
component.

Presentation layer has 4 separate components such
as:

e data searcher — a search can look for results
inside a static local source;

e data analyzer — uses Al algorithms to analyze
retrieved dataset and post the list of goods which have the
biggest proposal;

e (data extractor — uses JSOUP parsing component;

e agent platform — invokes main functional use-
case of each components in separate agent.

Due to the fact that the system has a clear
distribution on data representation layers and is distributed
to separate microservices — the testing processes are not
labor-consuming. System components obviously do not
depend on each other, the input data can be replaced by

Bicnux Hayionanvrozo mexuniunoeo ynisepcumemy «XI11». Cepia: Cucmemnuii

42

ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

mock objects or by test data for integrating and unit
testing.

Analysis and ways to improve the system. During
the process of developing and testing the system, it was
determined that the agent platform JADE has a list of
shortcomings. The main drawbacks are:

1 Contradictory to the SOLID principles, namely the
dependencies inversion principle, because the class Agent
— depends on the behavior contained in the agent.

2 Using of outdated flow interactions tools. For each
agent, a separate stream is created, which badly affects the
performance of the system, cause streaming methods use a
lot of resources.

3 Use of thread synchronization blocking algorithms.
Due to the fact that ACL services use blocking of agents
flows to provide reliable information transfer and maintain
the agents” status of performing parallel agents, it does not
provide the required increase of performance.

4 An outdated and awkward APl for agents
launching. To run a single agent, the JADE agent
environment uses the classes and the reflection package
methods. These operations require a lot of computing
power and do not have sufficient reliability.

From the above drawbacks, it was concluded that the
system needs to replace the JADE agent platform with a
more modern and accompanied agent platform.

Another way to improve the system is to implement
a common mechanism for collecting and retrieving
information on a separate trading platform using the own
domain-specified programming language (DSL). This
improvement can provide an increase in system scaling
and reduce the cost of implementation of a new trading
platform.

Conclusions. The introduction of a marketing
informative system into modern entrepreneurial activity is
an objective necessity determined by the essence of the
information society. As you know, today, and in the near
future, information is the main source of the formation of
the competitiveness of enterprises or organizations for
wealth in general. To stop the process of collecting and
processing the information means to risk of the existence
of a separate entity of the economic system, and therefore
to condemn the troubles all those who depend on it.

The main goal of this work was to develop software
for collecting and analyzing marketing information.
During the writing the paper, the main problems of
information gathering were identified and considered, an
analysis of existing approaches and components for
solving the problem was made.

During the process of studying the domain area, the
main functional and non-functional requirements for the
system under development were formed, and its reference
system architecture was chosen. The choice of tools is
justified in accordance with the requirements.

References

1. Mapkemuneosa ingopmayis. Mapkemuneose Oocnioocenns. URL:
http://pidruchniki.com/12640422/marketing/marketingova_informat
siya_marketingovi_doslidzhennya (mata 3Bepuenns 15.04.2018).

2. Kapsrin 10. O., Tumomenko 3. 1. Maprkemune npodykmy. URL:
http://tourlib.net/books_ukr/karyagin3-3.htm (mara 3BepHeHHs
15.04.2018).

10.

11.

12.

13.

14.

Mapremuncosa ingpopmayiina cucmema (MIC). URL:
http://pidruchniki.com/1628041460643/marketing/marketingova_inf
ormatsiyna_sistema_mis (nara 3sepaenHs 26.04.2018).

Cucmema 300py 306HiwHb0I Mapkemuneoeoi ingopmayii. URL:
http://stud.com.ua/49872/marketing/sistema_zboru_zovnishnoyi_ma
rketingovoyi_informatsiyi#41 (uara 3sepuenns 08.05.2018).

THowyrogi MOdACIUBOCI web-cucmenm. URL:
http://eprints.isofts.kiev.ua/331/1/05_andon.pdf (mata 3BepHeHHs
08.05.2018).

Memoouuni exaszieku: Inmenekmyanvhi acenmu. URL:

http://eir.zntu.edu.ua/bitstream/123456789/2178/1/subbotin_methodi
cal_instructions.pdf (nara 3sepuennst 08.05.2018).

Hocnioocenns — nociunux — mooeneti CEMAHMuKu — nepe2ogopie
iHmenekmyanrbHux azenmis 8 myavmuazenmuux cucmemax. URL:

http://science.donntu.edu.ua/ius/kirgaev/diss/indexu.htm (nara
3BepHeHHs 08.05.2018).

06 ’exmuo-opiecnmogane npocpamyeanns. Mosa Java. URL:
http://www.dut.edu.ua/uploads/I_1216_25218115.pdf (nata

3BepHeHHs 18.05.2018).

Tontap 10. M., Yepenniuenko O. lO., Suronenxko O. B.,
Boek M. A. Po3pobka posmnofinzeHoi cucremMu o0poOku Oi3Hec-
iHpopMalii 3 BHKOPHUCTaHHAM areHTHoro miaxony. Cucmemu
06pobku ingopmayii. Xapkis: XYIIC, 2016. Bum. 4. C. 137-142.
Cumonenko O. A., Cosa O. ‘., Pomaniok B. A., Ymaneup . JI.
AHani3 ICHYIOYMX areHTHHX iaThopM il NOOYAOBH CHCTEM
YIpaBIiHHS By31aMH MOOUIBHHX pagmiomepexx ximacy MANET.
Cucmemu 06pobku ingpopmayii. Xapkis: XVIIC, 2014. Ne 1 (117).
C. 200-203.

Spring Framework. URL: https://wikivisually.com/lang-
uk/wiki/spring_framework (zara 3sepuenns 18.05.2018).

Robert C. Martin. Clean Architecture: A Craftsman’s Guide to
Software Structure and Design. Prentice Hall, 2017. 432 p.

The Clean Architecture. URL: https://8thlight.com/blog/uncle-
bob/2012/08/13/the-clean-architecture.html ~ (mara 3BepHeHHs
18.05.2018).

Robert C. Martin. Summary of book "Clean Architecture". URL:
https://gist.github.com/ygrenzinger/14812a56b9221c9feca0b362151
8635b (mara 3Bepuenns 18.05.2018).

References (transliterated)

Marketyngova informatsiya. Marketynhove doslidzhennya
[Marketing information. Marketing research]. Available at:
http://pidruchniki.com/12640422/marketing/marketingova_informat
siya_marketingovi_doslidzhennya (accessed 15.04.2018).

Karyagin Y. O., Tymoshenko Z. |. Marketing produktu [Product
Marketing]. Awvailable at: http://tourlib.net/books_ukr/karyagin3-
3.htm (accessed 15.04.2018).

Marketyngova informatsiyna systema (MIS) [Marketing Information
System (MIS)]. Auvailable at:
http://pidruchniki.com/1628041460643/marketing/marketingova_inf
ormatsiyna_sistema_mis (accessed 26.04.2018).

Systema zboru zovnishnoyi marketynhovoyi informatsiyi [System of
collection of external marketing information]. Available at:
http://stud.com.ua/49872/marketing/sistema_zboru_zovnishnoyi_ma
rketingovoyi_informatsiyi#41 (accessed 08.05.2018).

Poshukovi mozhlyvosti web-cystem [Searching capabilities of web-

systems]. Auvailable at:
http://eprints.isofts.kiev.ua/331/1/05_andon.pdf (accessed
08.05.2018).

Metodychni vkazivky: Intelektualni agenty [Guidance: Intelligent
agents]. Available at:

http://eir.zntu.edu.ua/bitstream/123456789/2178/1/subbotin_methodi
cal_instructions.pdf (accessed 08.05.2018).

Doslidzhennya lohichnyh modeley semantyky perehovoriv
intelektualnyh ahentiv v multyahentnyh systemah [Research of
logical semantics negotiations models of intellectual agents in

multiagent systems]. Available at:
http://science.donntu.edu.ua/ius/kirgaev/diss/indexu.htm (accessed
08.05.2018).

Ob'yektno-oriyentovane prohramuvannya. Mova Java [Object
oriented programming. Java language]. Available at:
http://www.dut.edu.ua/uploads/I_1216_25218115.pdf (accessed
18.05.2018).

Hontar Y. M., Cherednichenko O. Y., Yanholenko O. V.,
Vovk M. A. Rozrobka rozpodilenoyi systemy obrobky biznes-

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 43

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

informatsiyi z vykorystannyam ahentnoho pidkhodu [Development 11. Spring Framework. Available at: https://wikivisually.com/lang-

of a distributed business information processing system using the uk/wiki/spring_framework (accessed 18.05.2018).

agent approach]. Systemy obrobky informatsiyi [Information 12. Robert C. Martin. Clean Architecture: A Craftsman's Guide to

processing systems]. Kharkiv, KhUPS Publ., 2016, issue 4, pp. 137— Software Structure and Design. Prentice Hall, 2017. 432 p.

142. 13. The Clean Architecture. Auvailable at:
10. Symonenko O. A,, Sova O .Y., Romanyuk V. A., Umanets’ Ya. L. https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-

Analiz isnuyuchykh ahentnykh platform dlya pobudovy system architecture.html (accessed 18.05.2018).

upravlinnya vuzlamy mobil'nykh radiomerezh klasu manet 14. Robert C. Martin. Summary of book "Clean Architecture". Available

[Analysis of the existing agent platforms for building management at:

systems mobile radio nodes class MANET] Systemy obrobky https://gist.github.com/ygrenzinger/14812a56b9221c9feca0b362151

informatsiyi Systemy obrobky informatsiyi [Information processing 8635b (accessed 18.05.2018).

systems]. Kharkiv, KhUPS Publ., 2014, no. 1 (117), pp. 200-203.
Received 23.05.2018

Bioomocmi npo asmopis | Ceedenust 06 asmopax | About the Authors

Yepeoniuenko Onvza IOpiiena (Yepeonuuenxo Onvea FOpvesna, Cherednichenko Olga Yuryevna) — kaumumar
TEeXHIYHUX HAyK, JOICHT, HamioHanpHWMI TeXHIYHWH yHiBepcHTeT «XapKiBCHKHU MOJITEXHIYHHUH 1HCTUTYT», NOLEHT
kadenpu Ilporpamuoi imkeHepii Ta iHQOpPMAaLiHMX TEXHOJOTIH ympaBmiHHA;, M. XapkiB, Ykpaima; ORCID:
https://orcid.org/0000-0002-9391-5220; e-mail: olha.cherednichenko@gmail.com

Menvnux Kapina Bonooumupisna (Menvnux Kapuna Braoumupoena, Melnyk Karina Vladimirovna) —
KaHIu/aT TeXHIYHUX HayK, HalioHanbHMi TeXHIYHUHA YHIBEpCUTET «XapKiBChKUI IOJIITEXHIYHUI IHCTUTYTY», CTapIluii
Bukianau kapeapu [Iporpamuoi imxeHepil Ta iHpopManiiHUX TEXHOIOTIH ynpasiiHHsi; M. XapkiB, Ykpaina; ORCID:
https://orcid.org/0000-0001-9642-5414; e-mail: karina.v.melnyk@gmail.com

Kipxin Cmanicnae Bacunvosuu (Kupxun Cmanucihae Bacunvesuu, Kirkin Stanislav Vasylevich) -
HamionaneHuii TexHiYHMA YHiBepcuTeT «XapKiBCHKHH MONITEXHIYHUN I1HCTUTYT», CTYICHT; M. XapkKiB, YKpaiHa;
ORCID: https://orcid.org/000-0002- 8721-4161; e-mail: skirkin@ukr.net

Coxonos /Imumpo Bimanvosuu (Coxonos /Imumpuii Bumanvesuu, Sokolov Dmitry Vitalevich) — HanionansHwuii
TEXHIYHUHA yHiBepcUTeT «XapKiBCBKAN TONITEXHIYHHA I1HCTUTYT», CTyAeHT; M. XapkiB, VYkpaina, ORCID:
https://orcid.org/0000-0003-4572-9500; e-mail: dimitreuzsokolov@gmail.com

Mamecee Onexcandp Muxonaiiosuu (Mameees Anexcandp Huxonaesuu, Matveev Alexander Nikolaevich) —
HanioHaneHuii TEeXHIYHMI yHIBEpCHTET «XapKiBCbKUHM MNONITEXHIYHMH IHCTHTYT», acmipaHT; M. XapkiB, YkKpaiHa,

ORCID: https://orcid.org/0000-0001-5907-3771; e-mail: matwey1970@gmail.com

Bicnux Hayionanvnozo mexuniunozco ynisepcumemy «XI1». Cepis: Cucmemnuii
44 ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

