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A FUZZY-BASED APPROACH TO AUTOMATED DEFECT IDENTIFICATION IN DISTRIBUTED
SOFTWARE SYSTEMS AND SOFTWARE PRODUCT LINES

An approach to the improvement of the efficiency of the bug tracking process in distributed software systems and software product lines via automated
identification of duplicate report groups and report groups collected from correlated bugs, combined with bug localization within a software product
line is considered. A brief overview of the problem of automated report collection and aggregation is made, several existing software tools and
solutions for report management and analysis are reviewed, and basic functionality of a typical report management system is identified. In addition to
this, a concept of a report correlation group is introduced and an automated crash report aggregation method based on the rules for comparison of crash
signatures, top frames, and frequent closed ordered sub-sets of frames of crash reports is proposed. To evaluate these rules, two separate fuzzy models
are built, the first one to calculate the output of the Frequent Closed Ordered Sub-Set Comparison rule, and the second one to interpret and combine
the output of all three rules and produce an integrated degree of crash report’s similarity to an existing report correlation group or to another report. A
prototype of a report management system with report aggregation capabilities is developed and tested using imported from the publicly available
Mozilla Crash Stats project report groups. During the experiment, a precision of 90% and a recall of 81% are achieved. Lastly, an approach to localize
the largest identified report groups and represented by them bugs within a concrete software product line based on an information basis consisting of a
feature model, a list of software components, and a mapping between features and components is proposed, conclusions are drawn, and goals for the
future work are outlined.

Keywords: crash reports, automated crash report collection and aggregation, bug localization, fuzzy logic, distributed software systems,
software product lines, Mozilla Crash Stats project, Socorro, report management system, bug tracking.

0. I. 3IHbKOBCBKHH, P. O. TAM3AEB, A. BOJIIH, M. B. TKAYYK

MIIXIJT 3 BAKOPUCTAHHSIM HEYITKOI JIOTTKH 1O ABTOMATHU30BAHOI JIEHTHU®IKAIIT
JE®EKTIB B PO3MOAIIEHNX IPOTPAMHUX CUCTEMAX TA JIHIMKAX ITPOrPAMHHX
MPOJYKTIB

Po3risiHyTO MiAXin [0 miaBHINEHHS e(EeKTHBHOCTI MPOLeCy BiACTEKEHHS MOMHIOK B PO3MOIICHHX MPOrPAMHUX CHCTEMax Ta JIiHIHKax MPOrpaMHUX
MPOIYKTIB HULIXOM aBTOMATH30BaHOI ieHTHdIKaLli Ay0ap0BaHUX TPYM 3BITIB Ta IPYI 3BITiB, 3i0paHHX 3 KOPEIbOBAHHX MMOMUIIOK, Y MOEAHAHHI 3
JIOKAJI3aIli€l0 TIOMIJIOK Cepell KOMIIOHEHTIB JIIHIHOK MPOTrpaMHHX NPOIYKTiB. 3po0JeHO KOPOTKHH OV MPOOJIeMH aBTOMAaTH30BaHOTrO 300py Ta
arperauii 3BiTiB, PO3IMSIHYTO KiJbKa iCHYIOUHMX IPOTrpaMHHUX 3acO0iB Ui aHAIi3y 3BiTiB, @ TAKOXK BH3HAYEHO OCHOBHI (PyHKIIOHATBHI MOMIHBOCTI
TUIIOBOI CHCTEMH YMPAaBIiHHA 3BiTamu. Kpim TOro, 3ampornoHOBaHO KOHIEMLII0 KOPENLSIIHHOI TPynH 3BITiB Ta HABEICHO aBTOMATH30BAaHHI METOX
arperanii 3BiTiB, sIKHil 0a3yeThcsl Ha IpaBHJIaX MOPIBHSHHS IMiANHCIB 3BIiTiB, BEpXHBOI (OPMH 3BITiB, Ta TpacyBaJbHHX CTEKiB 3BiTiB mpo 300i. s
OLIIHKHU LIUX MPaBHI OyIyIOThCS IBI OKpEeMi HEUiTKi MOAENi — mepiia st PO3paxyHKy pe3y IbTaTy MpaBiiia MOPIBHIHHS TPACYBaJIbHUX CTEKiB 3BITIB, a
Zpyra - Uil iHTepupeTanii Ta HOeAHAHHS Pe3yJIbTATIB yCiX TPhOX MPABHJI | CTBOPEHHS IHTEIPOBAHOTO CTYIICHS MOAIOHOCTI 3BiTY mpo 36iii 3 icHyI04Y010
KOPEILILIHHOI0 TPYIO0 3BITIB a0 iHIINM 3BiTOM. 32 JONOMOTrOI0 iMIOPTY TPyH 3BITiB 3 3araJbHOJOCTYIHOTO penosurtopito Mozilla, Tectyerscs
PO3po0bIICHNH IPOTOTUIT CHCTEMH yHpaBIIiHHA Ta arperauii 3BitiB. ITix yac excriepuMeHTy pocsraerbes TouHicth B 90% i moBHota B 81%. Hapemuri,
MIPOMOHYETHCS TMiAX1J 10 JIoKamizamii HaOIIbIMX 11eHTH()IKOBAaHUX TPy 3BIiTIB Ta MPEACTABICHUX HUMH MOMUIOK Y JIiHIHII NPOrpaMHUX HNPOIYKTIB
Ha OCHOBI iH(opMaIliitHOi 6a3m, 10 CKIanaeThes 3 QYHKIIOHAIBHOT MOJIENI, CITICKY MPOTPAMHIX KOMIIOHEHTIB Ta B3a€MO3B’sI3KiB MiX (QyHKIIiAMH Ta
KOMITOHEHTaMH, pOOJIATHCS BUCHOBKH Ta BU3HAYAIOTHCS LTI JJIsI HOAANBIIOI POOOTH.

Kuaiouosi ciioBa: 3BiTH mpo 300i, aBTOMaTH30BaHuii 36ip Ta arperaiis 3BiTiB, JoKamizamis 1eeKTiB, HeUiTKa JIOTiKa, PO3MOIieH] mporpamMHi
CHCTEMH, JIiHIIKM IPOrpaMHUX MPOJYKTiB, mpoekT Mozilla Crash Stats, Socorro, cicrema ynpapimiHHS 3BiTaMu, BiICTEKEHHS TTOMUIIOK.

A. H. SHHBKOBCKHH, P. A. TAM3AEB, A. FOJUIHH, H. B. TKAYYK

MOAX0/ C HCHOJb30BAHUEM HEUETKOM JIOTUKHU 1151 ABTOMATU3UPOBAHHOM
UAEHTUO®UKAIIAU JEPEKTOB B PACIIPEJAEJEHHBIX TIPOTPAMMHBIX CUCTEMAX
JUHEMAKAX IPOTPAMMHBIX ITPOAYKTOB

PaccMOTpeH MOAXO[ K TOBBIIICHHIO 3()()EKTHBHOCTU Tpoliecca OTCICKUBAHMS OLIMOOK B PACIPEENCHHBIX MPOrPAMMHBIX CHCTEMaX M JHMHEHKax
MPOrpaMMHBIX IMPOAYKTOB IIyTeM AaBTOMATU3HPOBAHHON MAEHTH(OHKAIMH TyONMPOBAHHBIX TPYHII OTYETOB H TIPYNI OTYETOB, COOPAHHBIX C
KOpPEINPOBAHHBIX OMMOOK, B COYETAHHUH C JIOKIH3AIMel OMMOOK cpeli KOMIIOHEHTOB JIMHEEK MPOTrpaMMHBIX NMPOAYKTOB. CrenaH KpaTkuid 0630p
mpo6aeMbl aBTOMATH3MPOBAHHOTO cOOpa M arperanud OTYETOB, PACCMOTPEHBI HECKOIBKO CYIIECTBYIOIIMX IPOTPAaMMHBIX CPEICTB Ul aHaIu3a
OTYETOB, a TAKXKe OINpe/eNeHbl OCHOBHBIC (DYHKIIMOHATIbHBIE BO3MOXKHOCTH THIIOBOH CHCTEMBI yHpaBleHHs oTdeTaMd. Kpome Toro, mpemnoieHa
KOHIIENIUS KOPPEIAIIHOHHON IPYIIBI OTYETOB M IPHUBEIEH aBTOMATH3UPOBAHHBII METO]] arperaryy OT4eTOB, OCHOBAHHBIN Ha MPaBUIIaX CPABHEHUS
MOJNUCced OTYETOB, BepXHEH (GOpMBI OTUETOB, U TPACCHPOBOYHBIX CTEKOB OTYETOB O COOsiX. J[/Isi OIIEHKM 3THX MpPaBHJ CTPOSTCS JIBE OTJENbHBIC
HeyeTKHe MOJENH - IepBas A pacueTa pes3yibTaTa NpaBUila CPABHEHHs TPACCUPOBOUHBIX CTEKOB OTYETOB, a BTOpas - A HHTEpPIpPETalMd U
COYCTAHUSI PE3YNIbTATOB BCEX TPEX MNPAaBWI M CO3JAaHMs HHTETPUPOBAHHOIO IIOKA3aTels CTENEHH CXOACTBAa OT4YETa O cOOe C CYIIECTBYIOIEH
KOPPEISIIMOHHON TPYNIOH OTYETOB MM MHBIM oT4eToM. C IMOMOINBIO HMMIOpPTa TPYNI OTYETOB € OOLIEAOCTYHmHOro penosutopuss Mozilla,
TeCTHpYyeTCsl pa3paOOTaHHBINA MPOTOTUII CHCTEMBI YNPABICHUS U arperaliy OT4eToB. Bo Bpems sKcliepHMeHTa JOCTHraeTcs TOYHOCTh B 90% u
nonHota B 81%. HakoHern, npemnaraercs MOAXOA K JIOKAJIHM3alMH KPYMHEHINNX WICHTH(QHUIMPOBAHHBIX IPYII OTYETOB M IPEICTABICHHBIX UMHU
omMOOK B JINHEHKE IPOrpaMMHBIX MPOAYKTOB Ha OCHOBE HH(OPMAIHMOHHON 6a3bl, cOCTOAmEeH 13 HYHKIHOHAIBHON MOJENH, CIIICKAa IPOrPaMMHBIX
KOMIIOHEHTOB U B3aHMOCBsI3el MeX Ty QyHKIUSIMHI U KOMIIOHEHTAMH, AENAl0TCS BEIBOIBI M OIPEAENISIOTCS e A JadbHenell paOoTsL.

KaroueBble cioBa: oTdeThl 0 c0OsIX, aBTOMATH3UPOBAHHBIA cOOp ¥ arperanus OTYETOB, JIOKaNHM3auus Ae(eKTOoB, HedeTKas JIOTHKa,
pacrpezeleHHble TPOrpaMMHBIE CHCTEMBI, JIMHEHKU MPOrpaMMHBIX IPOAYKTOB, poekT Mozilla Crash Stats, Socorro, cuctema ynpasieHus OTYETaMH,
OTCIIC)KUBAHHE OLMINOOK.

Introduction: Problem Actuality and Research  depending on the type, both the number of defects present
Goal. Software defects (also known as bugs or issues) in the system as well as the time it takes to detect them
occur in any type of software development process, and,  can vary greatly [1].
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While most bugs can be discovered via in-house
testing, there are always issues that will be detected only
in the production environment by customers and actual
users of the system. Since the amount of errors present in
the system is never precisely known, it is impossible to
accurately estimate the time and effort it will take to fix
them. In extreme cases, tracking down and fixing bugs can
take up as much as 80 % of project’s financial costs [1]. In
principle, it is impossible to guarantee that the program is
100 % correct. The general rule is that the larger and more
complex a system is, the higher is the number of bugs.

Bug reports are crucial to identifying and solving
problems in an efficient and robust manner. It has been
observed that the more detailed the bug reports are, the
faster developers will be able to fix the bug [2]. In many
cases upon encountering a bug or a crash, users are
expected to go to a dedicated forum and fill out a bug
reporting form where they provide all necessary
information and stack traces from their locally stored logs.
Stack traces, system information, steps to reproduce the
bug, user comments, and other information help
developers reproduce and fix reported bugs by tracking
their origin. However, not all users report bugs they’ve
encountered, and for many it is simply too bothersome to
manually provide the crucial technical information.

To ensure that developers get all necessary
information needed to effectively fix bugs, many modern
software products are shipped with embedded problem
reporting tools. These tools automatically record and
submit bug reports, with very little to no effort on the
user’s part. The most famous automated crash reporting
system is the Windows Error Reporting system by
Microsoft, which was found to be 5 times more efficient
in helping fix bugs than reports submitted manually by a
human [3].

However, embedded problem reporting tools are
difficult and costly to implement, and the amount of data
they collect can be challenging to analyze even for a small
project. For example, Mozilla on average receives 96
million crash reports per month; they outnumber bug
reports by more than 20,000: 1. Furthermore, 88.19 % of
crash reports and 24.7 % of bug reports submitted to
Mozilla are marked as duplicate [4].

Therefore, to make it easier to work with collected
crash reports, most problem reporting tools aggregate the
received reports according to a set of pre-defined rules.
Many approaches to aggregation of crash reports were
proposed, however, crash report aggregation in distributed
software systems remains a non-trivial task. This is mainly
because, depending on the usage scenario, a bug may
cause multiple failures and crashes in several different
modules at once, thus propagating its influence across the
system and making the root cause of the defect harder to
find.

A software product line (SPL) is a set of software-
intensive systems that share a common, managed set of
features satisfying the specific needs of a particular
market segment or mission and that are developed from a
common set of core assets in a prescribed way [5]. In
other words, an SPL is a family of related programs that
are differentiated by a unique combination of features,

which represent increments in functionality. There exist
many modeling languages for SPL design, among which
are FODA, FORM, FeatuRSEB, PLUSS, ODM and FAST
[6].

In addition to the main issues inherent to testing and
support of distributed software systems, SPLs present a
different challenge, wherein a bug in each type of SPL
components (core, configurable, and custom) needs to be
handled in its own way within the concrete product and
sometimes even the entire SPL. Furthermore, some reports
collected during testing may be caused not by an actual
bug in the code, but rather an incorrect configuration of
the product (i.e. illegal combination of features) or errors
inside the tests themselves. As such, this type of errors
should be identified and dealt with separately.

In this paper, a brief overview of existing tools and
solutions is given and, as no available product is found
satisfactory, a method for automated crash report
aggregation (ACRA) based on a combination of 3 simple
rules and fuzzy logic is proposed. Furthermore, an
approach to bug localization within an SPL is outlined.
The objective of this combined approach is to help
developers of distributed systems and SPLs to identify
bugs as well as their scope and origin in a more efficient
way.

Overview of existing approaches. Built-in crash
reporting tools usually collect large amounts of data,
which can be extremely helpful in identifying and
localizing software defects. As the number of submitted
reports grows, manual analysis of each bug report quickly
becomes inefficient and in most cases downright
impossible. However, even automated processing of large
volumes of data gathered by popular software products
oftentimes presents unigque challenges and harsh demands
on processing power, network bandwidth, and storage
facilities. While high demand for network bandwidth is
unlikely to ever be solved, many attempts have been made
to mitigate and reduce the impact of the other two issues.

There exist several strategies that are commonly
used to reduce the load associated with analysis of a large
amount of crash reports, namely:

- Biased sampling — with so many reports it isn’t
always possible to process or display all of them.
Companies like Mozilla only process a sample of 10 %
out of their 96 million monthly crash reports [4]. This
sample is randomized, but biased towards reports with
user-provided details;

- Removal of duplicates — once a report has been
identified as a duplicate of a previously submitted report,
it is deleted and a special counter for the number of times
the issue has been encountered is updated. Out of the 10
% sample Mozilla takes, using fuzzy matching techniques
88.19 % of reports [4] are classified as duplicate and are
subsequently reduced;

- Report aggregation according to contained stack
traces, failing method, or other technical information. This
is usually the last step that is primarily aimed at the
detection of the remaining correlated and duplicate
reports.

The combination of these 3 methods helps save time
and processing power for search, filter and other analytical
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functions, as well as greatly reduces the required storage
space. However, most of the existing solutions use
relatively simple and easy to implement algorithms, and
while such approach is fast and doesn’t require a lot of
processing power, much like Mozilla’s solution it usually
can’t find all correlations present in the data [7].

There are built-in and standalone tools for log
collection and analysis available for almost any
programming language and platform, some focusing
primarily on the collection and filtering aspect, while
others are better at report analysis and dynamic
aggregation. Fig. 1 summarizes the basic functionality
required by a typical automated report management
system. However, none of the tools we looked at
implement the full list.

For example, Graylog [8], an enterprise solution for
storing, accessing, and analyzing log data, allows for
convenient log and report storage, visual representation,
and search, but lacks in flexible aggregation. The tool has
very limited ability to detect related logs, provided they
aren’t clear duplicates. For more advanced aggregation
and clustering capabilities, users must install a plugin [9]
and write their own explicit rules, resulting in a poorly
generalized and constricted system with no ability to
implement complex clustering or aggregation logic.

Sentry [10], a tool for collecting JavaScript user logs,

exceeds in capturing an unprecedented level of
information about JavaScript execution and its
environment, but fails to provide a sufficiently

customizable and flexible aggregation framework, forcing
developers to implement workarounds in their code to
integrate and expand its functions beyond the default
feature set.

Both Android [11, 12] and iOS [13] platforms offer
built-in tools for error and performance log collection,
while their respective development environments and
online platforms provide a convenient way of accessing
all collected logs and viewing general statistics about the
published applications. Furthermore, advanced
functionality that is missing by default is oftentimes
provided by third-party solutions [14, 15].

The only product that appears to be handling the

issue of duplicate reports and correlated bugs in a
configurable and robust way is Crashlytics [15]. The
downside is that Crashlytics supports only mobile
development (both Android and iOS), and, just like all
other reviewed products, doesn’t have the necessary tools
to deal with SPL testing and support.

To summarize, while popular and efficient, the
reviewed solutions for issue collection offer little in the
way of intelligent report aggregation, most systems
relying solely on stack trace analysis. In contrast to this,
systems with complex aggregation and analysis
capabilities are rare and usually require a complicated
setup process and use of a separate tool for issue
collection and even storage. Furthermore, none of the
reviewed applications had the necessary tools and
flexibility for dealing with SPLs.

The aim and benefits of automated defect
identification. In most cases developers will prioritize
bugs that occur frequently for a large percent of their user
base. However, because a bug can lead to a variety of
crashes under different usage scenarios, multiple report
groups are sometimes related to the same bug, which
makes the evaluation of bug and crash severity harder. We
refer to a set of report groups related to the same bug as
duplicate report groups. Furthermore, there are cases when
an occurrence of one bug causes the other bug to occur.
This is known as correlated bugs, and in such cases both
bugs and every related to them report group needs to be
analyzed, evaluated, and used together to fix the issue. We
refer to all report groups pertaining to a bug as well as any
report groups collected from its correlated bugs as a report
correlation group (RCG). A schematic overview of an
RCG is presented in Fig. 2.

Crash reports usually contain method signature,
stack trace of the failing thread, crash time, information
about runtime environment, and optionally user comments
and attachments regarding the crash. These reports are
aggregated into RCGs according to their similarity. The
obtained groups are then ranked according to their report
counts (i.e. frequency of crash occurrence) and bug item
entries are created for the top RCGs.

Automated Report it syst|

9

H‘ Integration and Data Collection |

‘ Data Collection | Platform Support | Integration %%
‘ Core Data | PC | Library Import }—
‘ Extra Data | Mobile | DSL }_

Message Rerouting |—|
Import From Storage |—

‘ SPL Support | ITaam Management I Task Management

#“ i Report Analysi | ‘ReportManagemem

—{Custom User Extensions and Rules| |K:rash Report Management|

—{ Detection of Duplicate Reports |

Report Aggregation

Bug Report Management

Fig. 1. Basic functionality of automated report management systems
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Fig. 2. Report correlation group (RCG)

Identification of RCGs (and therefore duplicate crash
reports and correlated bugs) on the early stages of the
debugging process can help developers fix existing
corelated bugs together, as well as increase the overall
speed and efficiency of the debugging process. It has been
suggested that by analyzing and comparing a set of
correlated bug reports, it becomes easier to track the root
cause of the bug, especially in complex distributed
systems and SPLs [2].

Identification of RCGs and, subsequently, bugs they
represent can also help development teams to better
manage their resources. One such example could be
increasing the priority of correlated bugs or assigning
more experienced developers to fix them. Furthermore, as
crash reports are continuously submitted until the
underlying bug that causes crashes is fixed, by quickly
and efficiently eliminating the bug development teams can
reduce the amount of crash reports they receive and,
therefore, hardware and human demands associated with
crash report storage and processing.

A fuzzy-based integrated approach to automated
crash report aggregation (ACRA). To better identify
duplicated and correlated crash reports, first we need to
establish several definitions.

A stack trace is an ordered set of frames (F;), each
frame consisting of a method signature (methSign) and a
fully qualified file name (gFileName). F;=
methSign;|qFileName;, where i€ {l1..n} is the
position of frame F; in a stack trace of a total frame length
n. Usually all reports belonging to a report group will
have at least one identical frame. We refer to the top
frame common to all stack traces of a report group as the
top frame of the report group. The frames after it may be
identical or vary across the group, but the method
signature of the top frame is always used as part of the
report group signature. An example stack trace is shown
in Fig. 3.

Frame Module Signature Source ;op Frame
0 libmozglue.dylib| mozalloc_abort memory/mozalloc/mozalloc_abort.cpp:34

1 libmozglue.dylib| abort memory/mozalloc/mozalloc_abort.cpp:81

2 XUL std::panicking::rust_panic| src/libpanic _abort/lib.rs:59

Fig. 3. Example of Stack Trace from Firefox

A report group signature S may be represented as
S = P;|P,] ...|B,, where each element P; in turn consists
of < File >< Operator >< Method >< Parameter > <

Memory Location >. In a report group signature, at least
one P; should not be NULL. P; can’t be formed using only
the name of an operator, which depends on the
programming language and signature composition.
Furthermore, attributes like File, Operator, Method, and
Parameter can be NULL. For example, the Mozilla’s
report group signature for the above stack trace is
“mozalloc_abort | abort | core::option::expect failed”.

A contains relation between signature elements P of
a report group S = P;|P,] ...|P, is defined as if (filei =
filej) A {op;,meth;,param;} € {opj,methj,paramj},
then P; contains P;.

Building on top of this, a binary relation c on the set
of all RCG signatures S is defined as S, c Sy if VP2, i €
{1..n}, 3j € {1..m} | P? contains P{.

As the basis for the ACRA method we used 3 rules
suggested earlier by Shaohua Wang et al. [19], namely:

1. Crash Signature Comparison. Given two report
groups RG, and RGg with corresponding signatures Sy,
and Sz, RG, and RGg are correlated if S, < Sp or S
S,4. This is the least resource-demanding rule. It is aimed
at determining correlations by investigating the similarity
of report group signatures. An example of this rule is
signatures “nsDiskCacheStreamIO::FlushBufferToFile()”
and  “StrstrjnsDiskCacheStreamlO::FlushBufferToFile”,
which differ only slightly and, therefore, are correlated.

2. Top Frame Comparison. Given two report groups
RG, and RGy with top frames F# and FZ, RG, and RGg
are correlated if gFileName# = gFileName?. During
comparison of fully qualified file names (qFileName), all
file extensions are removed. This rule is aimed at a more
detailed analysis of stack traces, in this case their source
code paths. Much like the previous rule, it analyses and
compares only the top frame of stack traces.

3. Frequent Closed Ordered Sub-Set Comparison.
This rule is an extension of the previous rule, namely it is
aimed at analyzing fully qualified file names of all frames,
not just the top frame. A notion of relative support of the
rule is introduced, wherein relative support =
number of shared frames/total number of frames.
Only the identical and longest set of frames with the
relative support of greater or equal to 0.5 is called the
frequent closed ordered sub-set of frames. Furthermore,
the distance of the top frequent closed ordered frame to F,
is also considered during the final evaluation of the rules.

Wang et al. [16] evaluated each of these rules
separately, with report groups considered to be correlated
if at least one of the 3 rules provided a positive result. In
this paper, we propose a fuzzy-based integrated approach
to automated crash report aggregation (ACRA). Namely,
we use fuzzy logic to evaluate the combined output of
these rules and compute the degree of report’s similarity
(i.e. membership) to other reports or report groups.

Furthermore, contrary to the approach to evaluation
of the Frequent Closed Ordered Sub-Set Comparison rule
employed by Wang et al. [16], we use a separate fuzzy
model to calculate the degree of report’s similarity based
on the length of the common frame sequence as well as its
distance to the top frame of the stack trace.

The ACRA method proposed in this paper relies on
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the use of a fuzzy model to compute the final degree of
report’s membership to a given group, or alternatively the
degree of correlation between two report groups. As its
input, the model takes values received from the rules, and
by applying weight coefficients and a threshold function
produces the degree of report’s membership.

Membership function of the fuzzy variable "ReportSimilarity"

Medium High

04 0.6 0.8 1
Fig. 4. Membership function of § = “ReportSimilarity”

A linguistic variable is a set of (B, T, X, G, u), where
[ is the name of the fuzzy variable, T is a set of terms
(fuzzy values) of the variable, X is a fuzzy set that
describes the so called “base values” of the term, G is a set
of syntax rules that define the elements of T (it is possible
for G to be empty, i.e. G = 0), and u is the membership
function that maps base values to the terms contained in T.

According to the above definition, the fuzzy variable
ReportSimilarity, which represents the combined
degree of the similarity between two reports or a report
and a report group, is defined as =
“ReportSimilarity”, T =< “low”, "medium”,”high” >,
X =[0-1]. The membership function pg is shown in
Fig. 4.

Experimental results. To assess ACRA’s
performance in identification of duplicate and correlated
crash reports, an experiment was performed. A prototype
report management system was developed and tested on a
pre-downloaded and verified data set. The data set for
analysis was obtained from the Socorro server, which is
maintained as part of the open to public Mozilla Crash
Stats (MCS) project. A statistical comparison of the
number of RCGs created by the MCS project and the
prototype ACRA system was performed, and its results
are presented in Table 1 and in Fig. 5 and 6. Fig. 5 shows
the amount of reports ACRA and MCS correctly
aggregated for the top 10 control groups (the closer to the
control line, the better the result), while Fig. 6 compares
their precision and recall.

Reports relating to the newest stable version of
Mozilla Firefox were imported and analyzed.

A set of 426 reports separated by MCS into 34 RCGs
has been selected, with the resulting set being biased
towards duplicate groups that weren’t correctly
aggregated by MCS. To evaluate the performance of the
ACRA method, the report groups provided by MCS were
taken as an etalon (i.e. MCS precision = 100 %), however
their relationships were analyzed and duplicate groups
were found via analysis of the related Bugzilla bug IDs
provided by Mozilla developers for any sufficiently large
crash report group. More specifically, 21 etalon RCGs

were identified and used as a control sample for the
experiment.
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Fig. 5. Aggregated reports for the top 10 correct RCGs

Analysis of the imported from MCS report groups
showed that the top 21 groups contained 267 aggregated
reports, which is 62 % of all reports in the data set.
Contrary to this, the top 21 groups created by ACRA
contained 383 reports, albeit 38 of them (10 %) were
assigned erroneously, which results in 345 correctly
aggregated reports, or 81 % of the total number. In
general, compared to the 21 etalon groups, 34 groups were
created by Mozilla, whereas ACRA created only 25
groups, a result achieved by a more thorough and in-depth
analysis of the structure and contents of crash reports.

Table 1 — Results of the experiment

MCS ACRA
267 345
Aggregated reports, reports,
correctly 5 0 S
Created RCGs 34/21 25/21
Deleted reports N/A 18 %83 reports,

Using the metrics of information retrieval, precision
and recall values were calculated in the following way:

[{correctRCGs}N{retrievedRCGs}|

precision = |[{retrievedRCGs}| ’
I = [{correctRCGs}N{retrievedRCGs}|
recatt = [{correctRCGs}|

Precision reflects the fraction of created report
groups that are correct, while recall indicates the overall
fraction of correct report groups that were found.

Using crash reports obtained from the Socorro
server, a precision rate of 90 % and a recall of 81 % were
achieved. The obtained recall value is significantly higher
than the 62 % recall of the MCS project.

A statistical analysis of the duplicate report removal
feature (reports with similarity of above 0.95 %) showed
that 18 % of the previously thought to be unique reports
could be reduced to free up the storage space of the
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system, a noticeable improvement for enterprise-grade
products.
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Fig. 6. Recall and precision for the top 10 correct RCGs

The identification of RCGs allows developers to
access the groups of related crash reports and information
contained within them. Working with RCGs instead of
separate crash reports can help identify and track the
underlying cause of the crash faster, thus decreasing the
time it takes to debug and fix an error [2]. Furthermore, it
has been observed that identification of RCGs can
significantly increase the overall efficiency of the work
associated with debugging of certain types of bugs [4].

Bug localization approach within an SPL. Feature
models play a key role in testing of SPLs as they constrain
the space of products to test and enable accurate
categorization of failing tests as failures of programs or
the tests themselves, not as failures due to illegal
configurations [5]. Consequently, testing of SPLs while
ignoring such dependencies is senseless.

As part of our future work, to enable traceability
between collected crash reports and features (software
components) of an SPL, we propose the following
operating model (OM) [17] for crash report localization
(CRL). The CRL OM can be represented as a tuple:

OM(CRL) = (InfBasis,ProcAlgorithm,Metrics).

InfBasis should be built separately for each SPL
product. It consists from a valid feature model of the SPL,
a list of software artifacts (product components) belonging
to each SPL product, a mapping between components and
features, and a list of unprocessed crash reports.
ProcAlgorithm represents an expanded ACRA fuzzy
logic method that is responsible for using the technical
information present inside crash reports (mainly stack
traces and method signatures) to aggregate reports into
RCGs and establish to what type of SPL components these
groups belong. Metrics measure and provide statistics on
types of failures and their counts for various SPL
components and features, as well as reflect how reliable
the work of ProcAlgorithm is.

With the help of this OM, it is possible to connect
crash reports and implemented SPL components (features)
by using the ProcAlgorithm and data from the Inf Basis

to trace sets of crash reports in relation to the implemented
software components of an SPL.

In other words, given a valid feature model, a set of
existing software artifacts, and mappings between
software components and features, it is possible to use the
technical information contained inside crash reports to
identify the type and name of the component that is most
likely responsible for the crash described by an RCG.

Conclusions and future work. Based on the results
of preliminary tests of the developed prototype ACRA
system, the proposed rules for identification of duplicate
and correlated crash reports combined with the fuzzy
evaluation approach have shown better results than the
current solution employed by Mozilla.

By optimizing the underlying fuzzy models and
implementing the suggested SPL bug localization
technique, a more efficient approach to improvement of
the bug tracking process of both distributed systems and
SPLs will be obtained. Furthermore, localization of the
RCGs identified by the ACRA method in an SPL will
allow developers to determine the scope of crashes and
corresponding to them bugs in a more efficient manner.

Our future work concerns further testing and
improvements of the ACRA method combined with
development and testing of a system that will collect crash
reports, aggregate them into crash groups using the ACRA
method, and (if needed) localize the obtained RCGs
within an SPL by using the suggested SPL bug
localization approach. Furthermore, we also plan to
expand the ACRA method to work with user-submitted
bug reports.
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