ISSN 2079-0023 (print), ISSN 2410-2857 (online)

UDC 519.2
B. ARSLAN, R. GAMZAYEV, E. KARACUHA, M. TKACHUK

ALGORITHMS AND SOFTWARE SOLUTIONS FOR SQL INJECTION VULNERABILITY TESTING
IN WEB APPLICATIONS

Software security gains importance day by day and developers try to secure web applications as much as possible to protect confidentiality, integrity
and availability that are described in the fundamental security model so-called CIA triad. SQL injection vulnerability which can violate the
confidentiality and integrity principles of the CIA triad is reviewed, and SQL injection attack execution and protection techniques are explained. The
common frameworks’ solutions against SQL injection vulnerability were compared, and this comparison shown the most used techniques in this
domain. Error-based and time-based detection algorithms for SQL injection’s identification are developed to create a vulnerability scanner that can
detect SQL attacks which cause vulnerability in web applications, and these algorithms are represented in form of UML-activity diagrams. In order to
discover all possible links and forms to perform SQL injection vulnerability tests in the entire website, a web crawler is needed. Breadth-First Search
(BFS) algorithm for developing the web crawler is proposed, and the appropriate pseudo code and activity diagram are provided. Besides, Common
Vulnerability Scoring System (CVSS) that is used to measure severity score of attacks that can violate CIA triad principles is reviewed. Qualitative
severity score rating scale of CVSS is explained. An example of CVSS calculation is represented. Necessary components of a vulnerability scanner are
explained. A vulnerability scanner prototype is developed using explained algorithms. Process results of this vulnerability scanner’s usage for real web
applications are represented. Conclusions are made, and goals of future work are defined.

Keywords: software security, web application, vulnerability, scanner, CIA triad, SQL injection, error-based detection, time-based detection,
web-crawler, BFS-search algorithm, common vulnerability scoring system.

b. APCJIAH, P. A. TAM3A€B, E. KAPAKYXA, M. B. TKA4YYK
AJITOPUTMHU TA ITPOI'PAMHI PIINEHHSI IS TECTYBAHHS BPA3JIMBOCTI B IHTEP®EMCI
SQL Y BEB-ITPOI'PAMAX

Besmexa mporpamHOro 3a0esledeHHs MIOJEHHO HaOyBae Bce OUIBIIOrO 3HAYCHHS, 1 PO3POOHMKH HAaMararThCsl MaKCHMaJbHO 3aXUCTHTH BeO-
mporpamu, o6 3abe3nednTr iX KOH(IAeHUIHHICTh, ITICHICTh Ta JOCTYIHICTH, SKi OMHCaHi B OCHOBHiil Mozeni Ge3meku Tak 3BaHoi Tpiagu CIA.
PosrisayTta BpasnmuBicts SQL-iH’€exuilf, sika Moe MOpYIIyBaTH NIPHHIUIN KOH}ieHifiHOCTI Ta mimicHoCTi Tpiaau LIPY Ta MOsSCHIOIOTHCS BUKOHAHHS
SQL-arax Ta MeToqu 3aX¥CTy BiJ HUX. byio mpoBeeHO MOPIBHAHHS 3aralIbHUX CTPYKTYPHUX PillleHb JUIS YCyHEeHHs Bpa3nuBocTi SQL-iH’ekmii, sike
BUSIBWIO HAMMOIIMPEHINI TEXHONOrii y wiil ramysi. Po3poOieHi anropuTMi BUSIBJICHHS HAa OCHOBI MOMHJIOK Ta Ha OCHOBI BHMIpi 4acy st
inenTudikamii SQL-iH €Kil s CTBOPEHHS CKaHepa BPa3JIMBOCTI, IKUil MOXe BUSBUTH SQL-aTakw, 110 BUKJIMKAIOTh ypa3IHBiCTh B BeO-I0AaTKAX, 1
i anropurMmu mpexcrasieHi y ¢opmi UML-giarpam aktuBHOcTi. 1I[06 BUSIBUTH BCi MOXJIMBI IOCHIAHHS Ta (OPMH IS BUKOHAHHS TECTiB
BPAa3IUBOCTI Ha BChOMY BeO-caiiTi, moTpibeH momykoBuii BeO-pobot. 3ampomoHoBaHo anroput™ Breadth-First Search (BFS) mias po3poOku Be6-
CKaHepy, IVIS HbOTO HABEICHO ICEBAOKOJ Ta [giarpaMa aKkTUBHOCTI. Po3risimaerscs cucreMa 3aranbHoi owinku BpasmmBocti (CVSS), ska
BUKOPHCTOBYETHCS JUISl BHMIPIOBAHHS CTYIICHS TSDKKOCTI aTak, IO MOXYTb IOPYLIYBAaTH NMpPUHIMIM 3axucty Tpiagu LIPY. Posz’scHeHo sikicHy
ouinoyny mkamy CVSS. Ilpencrasiennit mpuxman pospaxynky CVSS. Po3po0OieHo NpOTOTHI CKaHepa BPa3iIUBOCTI 3 BHKOPHUCTAHHIM
3aIIPOIIOHOBAHMX AITOPUTMIB. Pe3ynbraTi 3acTOCYBaHHS 1IbOTO CKaHEPY BPA3/IMBOCTI NPECTABICHI IIPUKIIAJaMH OLIHKU peallbHUX BeO-3aCTOCYBaHb.
3po06ieHo BUCHOBKY, BU3HAYEHI I1ii MaiOyTHBOI poOOTH.

Kurouosi ciioBa: Oesneka nporpaMHOro 3abesneueHHs, Be0-3acTOCYBaHHs, BPa3IMBICTh, cKaHep, Tpiaga LIPY, SQL-in’exiis, BU3HAUCHHS Ha
OCHOBI TIOMMJIOK, BU3HAYEHHsS Ha OCHOBI BHMMIpIB uacy, 3arajJibHa MOJeNb Oe3leKu, MourykoBuidl BeO-poboT, BFS - anroputm nomyky, 3aransHa
CHCTEMa OIIHKH BPA3JIHBOCTI.

b. APCJIAH, P. A. TAM3AEB, 3. KAPAKYXA, H. B. TKA4YYK
AJI'OPUTMBI U ITPOTPAMMHBIE PEIHNEHUSA JJIA TECTUPOBAHUSA YA3BUMOCTHU B SQL-
NHBEKIUAX B BEB-IIPNJIOKEHUAX

be3omacHOCTh MPOrpaMMHOTO 00eCIIeUeHHs] eXEAHEBHO IPUOOpeTaeT Bece Oonbllee 3HAUCHHE, H Pa3pabOTYMKH CTapaloTCsl MAKCHMAIbHO 3aIlUTHThH
BeO-IIPUIIOKEHHS, YTOOBI 00ECTIEUNTh HX KOH(HACHIIHAIBLHOCTD, EJIOCTHOCTE U JOCTYITHOCTh, KOTOPBIE ONMCAHBI B OCHOBHOH MOJIEH 0€30IIacCHOCTH
Tak HaspiBaeMoi Tpmanpl I[PY. Paccmorpena ys3Bumocts SQL-MHBEKIWMif, KOTOpas MOXET HapymiaTh HPHHIWIEI KOH(UIEHIMAIBHOCTH M
nenoctHoctd Tpuansl LIPY, u oOwsicHstorcs kak BbimonHeHue SQL-atak Tak M METOIBI 3aIIMTHI OT HUX. BBUIO MpOBENEHO cpaBHEHUE OOIMIMX
CTPYKTYPHBIX PELICHHIl UL ycTpaHEeHHs ys3BHMOCTH SQL-HHBEKIMH, KOTOpOE BBISBIIO CaMble pPaclHpOCTpaHEHHbIE TEXHOJIOTHH B 3TOH 00JIacTH.
Pa3spaboTaHHbIe aITOPUTMBI OOHAPYKEHHSI HA OCHOBE OMIMOOK U HAa OCHOBE W3MEPEHUH BPEeMeHH JUI HaeHTH(HKAMH SQL-HHbeKIui 11 co31anus
CKaHepa yA3BUMOCTH, KOTOPBII MOXeT 00HapykuTh SQL-aTaku, BBI3bIBAIOMINE YA3BUMOCTh B BEO-IPHIOKECHUAX, U 3TH aITOPHTMBI IPEICTaBICHbI B
tdopme UML-anarpamMm akTHBHOCTH. UTOOBI BEIIBHTE BCE BO3MOXKHBIE CCBUIKH U (DOPMBI JUIS BEIIOJTHEHHUS TECTOB YSI3BHMOCTH Ha BCEM CaiiTe, Hy)KeH
TIOMCKOBBIIT BeO-poboT. Ilpemnoxen amroputMm Breadth-First Search (BFS) mns paspaboTkm BeO-ckaHepa, UL HETO HPHBENCHBI IICEBIOKON U
JMarpaMMa akTHBHOCTH. PaccMaTpuBaercst cuctema oOuieit ouenku yszsumoctd (CVSS), koTopas HCHONb3yeTcs A U3MEPEHHs CTENEHH TSKECTH
aTak, KOTOpPbIe MOTYT HapyIlaTh HPHHIMIBI 3amuThl Tpuaasl LIPY. Pa3wsicHeHo kadecTBeHHyI0 oneHounyto mkainy CVSS. Ilpencrasien mpumep
pacuera CVSS. Pa3paboraH IpOTOTHII CKaHepa YsS3BHMOCTH C HCIOJB30BAHHEM INPEIIOKEHHBIX aJIrOPHTMOB. Pe3ynbTaThl NMPUMEHEHHUs! 3TOrO
CKaHepa YsI3BUMOCTH IIPEICTaBICHBI IPIMEPaMU OLICHKH PeaabHbIX BeO-IpunoskeHui. Crenansl BEIBOABL, ONPEeIeHb el Oyaymeil paboTsL.

KaroueBble ciioBa: 06e30macHOCTh NMPOrPaMMHOIO OOecriedeHHs, BeO-IPpUIIOKEHUe, YSI3BUMOCTh, ckaHep, Tpuaga LIPY, SQL-unbexuns,
ompesieNieHNe Ha OCHOBE OIIMOOK, ONpeJeNeHHe Ha OCHOBE M3MEpEHMi BpeMeHH, o0mas Mojenb 6e30macHOCTH, MOMCKOBBIA BeO-podot, BFS -
AJITOPUTM IIOUCKA, O0IIAsi CHCTEMA OLICHKH yS3BHMOCTH.

Introduction: Problem Actuality and Research
Goal. In direct proportion to the popularity of web
applications, information security gains importance to
protect the data from adversaries, because insecure

applications can leak sensitive information to their users.
This information can be used by adversaries to manipulate
the data for different motivations [1], such as; curiosity,
wealth, recognition, national security, etc. The

© B. Arslan, R. A. Gamzaev, E. Karaguha, M. V. Tkachuk, 2018

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 3

SSN 2079-0023 (print), ISSN 2410-2857 (online)

fundamental security model [2] which is also referred as
CIA triad, is designed to provide a baseline standard for
evaluating and implementing information security
regardless of the underlying system. CIA triad has three
main principles [2] as follows:

(1) Confidentiality is the protection of information
from unauthorized access. Confidentiality
principle states that access to information must
be granted only on a “need-to-know” basis, so
that information which is only available to some
individuals should not be accessible by everyone;

(2) Integrity is maintaining the consistency, accuracy
and trustworthiness of the information over its
entire life-cycle. Integrity principle makes sure
that the information is not tampered whenever it
travels from source to destination or even at rest;

(3) Availability principle ensures that the
information concerned is readily accessible to
authorized individuals when it is needed.

In order to have a wider perspective on the subject,
web application vulnerabilities are classified by the main
phases of each software development life cycle as shown
in Fig. 1. This classification does not show all existing
vulnerabilities. Instead, it contains the most commonly
known and dangerous vulnerabilities.

In this paper, implementation caused SQL injection
(SQLI) vulnerability that can violate confidentiality (1)
and integrity (2) principles of the CIA triad is analyzed.
SQLI vulnerability analysis includes the attack execution,
countermeasures against such attack and solutions that are
applied by commonly used frameworks to secure
applications against such attacks.

Moreover, error-based and time-based SQLI
vulnerability detection algorithms are developed and
explained. The main purpose for these detection
algorithms is to develop a vulnerability scanner (VS) that
will simplify penetration testers’ job to find
vulnerabilities. That is why, it is also important to
discover all links and forms in the targeted website for
SQLI vulnerability detection test executions. Therefore,
Breadth-First Search (BFS) [4] algorithm is used to
develop a web crawler to explore the targeted website for
SQLI tests to be performed. Furthermore, Common
Vulnerability Scoring System [5] (CVSS) is analyzed to
give testers an opportunity to measure severity score of
attacks to compare different possible attack scenarios to

find out the most dangerous one for the application. This
will help to prioritize vulnerabilities for developers to
apply countermeasures.

Ultimately, the main research goal of this paper is to
consider SQLI attack execution, its countermeasures,
commonly used frameworks’ solutions and to develop
algorithms for exploring the targeted website and for
performing SQLI vulnerability detection tests.

Overview of the SQLI vulnerability. Any
application that has an SQL database (DB) to save any
type of data is at risk of SQLI attacks [6]. A SQLI attack
consists of insertion or injection of an SQL query via the
input data from the client to the application and a
successful SQLI exploit can perform CRUD operations
meaning that it can read sensitive data from the DB,
modify DB data by Insert, Update, Delete operations.
Consequently, such attack can lead to violation of
confidentiality (1) and integrity (2) principles of the CIA
triad.

Alternatively, if the administrative operations are
allowed to be executed remotely by DB Management
System (DBMS), then adversaries can use SQLI
vulnerability to execute administrative operations to shut
down the DBMS which can cause violation of availability
(3) principle of the CIA triad.

Because of the fact that SQLI attacks consist of
injection of SQL query via the input data from the client
to the application, it could be also said that SQLI attacks
are a type of injection attacks [7] even though it was
classified by the main phases of the software development
life-cycle phases in Fig. 1.

According to statistics between the year 2000 to
2018 from the National Vulnerability Database (NVD) of
National Institute of Standards and Technology (NIST)
[8], there were upward trends on SQLI vulnerability from
the year 2000 to 2006. The percentage of the SQLI
vulnerability fell slightly from 14.60% in 2006 to 10.87%
in 2007, and then rose significantly to 19.55% in 2008
which was the most popular time of SQLI vulnerability.
Starting from the year 2009, the reported SQLI
vulnerability percentage started decreasing until 2013 and
stayed around 4% until 2015. In 2016, it fell to 1.35% and
increased up to 3.52% in 2017. In the time when this
statistic was obtained from NVD in 2018, there was
3.11 % of SQLI vulnerability reported among all. This
may change by the end of 2018.

Web Application
Vulnerabilities

[[I]
Requirements . Implementation Deployment
Analysis Caused Design Caused Caused Caused
i i i : i
[I I I]
Cross-Site Credential / . . R
Abuse of Buffer - Cross-Site I Denial of Application
" " Brute Force Request Session I SQL Injection " . N .
Functionality Forgery Overflow Prediction Scripting Service Misconfiguration
E i f Performing Unauthorized U horized
Password Password | [Unauthorized xecution of Session Stealing Brute Force Elevation of nauthorize
Cracking Cracking Action Unauthorized Hijacking | |the Session Password Access Lo Priviledge Access to
Operations Cracki Database Administration
racking

Figure 1 — Classification of web application vulnerabilities [3lemy «XTII». Cepia: Cucmemnuii
4 ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Even though the total amount of reported SQLI
vulnerabilities are decreased after year 2008 and it is
currently around 3.11% percent in 2018, this vulnerability
is in existence, and it can still be dangerous to violate
confidentiality (1) and integrity (2) principles of the CIA
triad.

Overview of the underlying causes of SQLI
vulnerability and SQLI attack execution. Above all,
main reasons that causes SQLI vulnerability must be well-
known to execute SQLI attacks, to detect SQLI
vulnerability and to secure applications against such
vulnerabilities. There are mainly two reasons as follows:

1. Direct usage of the input data from tainted

source;

2. Direct usage of the input data to dynamically

construct the SQL query.

The underlying issue in the SQLI vulnerability is the
fact that one string combines the code and the data to
construct a query. In order to illustrate this issue, a basic
SQL query to select data from DB can be used. Such
queries have simply three keywords, such as: select, from,
where (see Fig. 2).

$token = "token"
$query = "SELECT *x FROM users WHERE token =
$result = mysql_query($query

" $token."';";

Figure 2 — SQL select query sample

The above figure shows an example of SQL query to
select all users from table named as ‘users’ where token
matched. Expected query to be processed in DBMS is
represented in Fig. 3.

$token = "token"
$query = "SELECT * FROM users WHERE token =
$result = mysql_query($query

token';

Figure 3 — Expected SQL select query

An adversary can trick this query easily by adding
extra code by providing unexpected token as shown in
Fig. 4.
$token PIOR =

$query = "SELECT * FROM users WHERE token = OR
$result = mysql_query($query)

L T

Figure 4 — SQL injection with unexpected input data

Provided input value for token, which is OR ‘1’=‘1
in this case, perfectly fits on the query. Since there is no
syntax error and ‘1’ always equals to ‘1°, DBMS will
think query is fine to execute and return all users.

Sometimes when adversaries are not sure about how
the query does look like to be sure that injection will
work, they can use SQL comments to force DBMS to skip
the rest of query. MySQL servers do accept two types of
SQL comments:

1. Single line comment: such comments start with

‘# character or ‘--* sequence and end at the end
of line;

2. Multi-line comments: such comments start with

‘/*’ sequence and end with “*/° sequence.

Additionally, injection with comment character or

sequence of characters may not work without adding an

extra space character at the end of input data after the
comment character or character sequence. Thus, it is
occasionally needed to add space character at the end of
the malicious SQL query that contains comment character
to execute a successful SQL injection attack.

Moreover, using URL encoded version of the
malicious input data is also useful to successfully perform
a SQLI attack.

Once the SQLI attack is successfully executed,
adversaries understand the structure of the SQL query and
they perform other attacks using different queries to
manipulate the DB as they wish.

Overview of the SQLI vulnerability
countermeasures. As explained above, the main reason
for SQLI vulnerability existence is using the tainted input
data directly to construct the SQL query without
sanitization and using the tainted input data to construct
SQL query dynamically. Therefore, securing the
application against SQLI vulnerability is about increasing
the trustworthiness of the input data or separating the data
and the code. Techniques [9] used to eliminate SQLI
vulnerability as follows:

1. Blacklisting: The action of detecting and deleting
the special characters that can break SQL query,
such as; quotation mark (), single quotation
mark (), semicolon (;), comment (/*, */, #, --),
etc.;

2. Escaping: The action of replacing the
problematic characters with the safe ones, such
as; changing single quotation mark (“), quotation
mark (), semicolon (;) to (\), (\), (\})
respectively;

3. Whitelisting: The action of allowing input data to
be one of pre-defined values or in a pre-defined
range. Whitelisting is hard to implement, because
input data may not be predicted for rich input
data;

4. Prepared statements: This is a feature that DBMS
provides. In order to work with prepared
statements, an SQL query template must be
prepared. Prepared statement object contains not
just SQL statement, but also pre-compiled SQL
statement. Needed data will be provided later on
and placed into related part of the query in

prepared statement. An example prepared
statement usage is shown in Fig. 5.

$token = "' OR '1'='1"

$db = new mysql("localhost", "user", "password", "dbname"

$statement = $db->prepare("SELECT * FROM users WHERE token = ?;"
$statement->bind_param("s",$token
$result = $statement->execute

Figure 5 — Prepared statement example

When the prepared statement is executed, DBMS can
just run the SQL statement without compiling it first. This
will result with faster work time and help to separate the
code and the data in the SQL query. Thus, the best way to
secure applications against SQLI vulnerability is to use
prepared statements.

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 5

SSN 2079-0023 (print), ISSN 2410-2857 (online)

Web application frameworks are applying different
solutions to SQLI vulnerability to help developers to
easily get over this problem, see table 1.

It is important to understand that below table does
not compare frameworks’ capabilities, instead it compares
their solutions against SQLI vulnerability that is described
in their official documentations.

Many of these frameworks provide escaping feature
to get rid of SQLI vulnerability while prepared statements
resolve the main problem that causes SQLI vulnerability.
That is why, encouraging developers to use prepared
statements is a better solution to develop secure
applications against SQLI vulnerability. Table 1 shows
that only three frameworks, ASP.NET, Spring and Zend
use prepared statements for this purpose.

Even though these frameworks provide solutions to
SQLI wvulnerability, applications developed using these
frameworks may have this vulnerability if developers do
not use the framework properly. Therefore, organizations
hire penetration testers to perform tests to find existing
vulnerabilities even if they are using web application
frameworks which provide solutions against
vulnerabilities. Penetration testers or ethical hackers are
also using SQLI attack technique, that is discussed above,
to find SQLI vulnerability in web applications.

Since it takes significant amount of time to manually
perform vulnerability tests to detect vulnerabilities,
automating the work has to be completed by penetration
testers with the help of VS is a good idea because of the
fact that it will increase the speed of these tests and
provide with result much faster.

In order to create such VS, several algorithms are
needed. These algorithms are explained later in the paper
and they are as follows:

1. Error-based SQLI detection algorithm which can

detect SQLI wvulnerability by searching for
DBMS error messages;

2. Time-based SQLI detection algorithm which can
detect SQLI vulnerability based on the server
response time;

3. Breadth-First Search (BFS) algorithm which can
be used to develop a web crawler that explores
the targeted website to find all links and forms
for future use in SQLI vulnerability testing;

4. Common Vulnerability Scoring System (CVSS)
which measures the qualitative severity score of

vulnerabilities.

If VS detects a vulnerability, then it means that the
application is not well secured, and immediately better
solutions must be applied.

Overview of Breadth-First Search algorithm and
its usage in development of a web crawler. BFS
algorithm [4] is important for developing a web crawler to
discover all links and forms in a website. These links and
forms will be tested against SQLI vulnerability one after
another until all links and forms in the entire website is
tested. As a result, penetration tester will be providing
URL for the home page of the website and VS will
discover all links and forms in the website by the help of
web crawler developed based on the BFS algorithm to
perform SQLI test. Fig. 6 represents the pseudo-code of
BFS algorithm.

unmark all vertices

choose some starting vertex x
mark x

list L = x

tree T = x

while L nonempty
choose some vertex v from front of list
visit v
for each unmarked neighbor w
mark w
add it to end of list
add edge vw to T

Figure 6 — Pseudo-code of BFS algorithm

BFS algorithm starts at the root URL which is the
one for home page of the website (represented as vertex in
the pseudo-code) and searches all the neighboring URLS
at the same level meaning that it searches for all links and
forms in the current page. If the goal is reached, then it is
reported as success and the search ends. If it is not, search
proceeds down to the next level, sweeping the search
across the neighboring URLSs at that level and so on until
the goal is reached. Goal is to discover all links and forms
in the entire website. In order to have better understanding
on the algorithm, Fig. 7 shows an activity diagram of BFS
algorithm.

BFS algorithm is more suitable for applications and
situations where the desired results can be obtained in the
upper levels of a deeper tree. Its performance will get
affected if the results will be found in the deeper levels.
Since the purpose of the web crawler is to get all links and
forms in entire website, this is not going to be an issue.

Table 1 — Web application frameworks comparison for SQLI vulnerability countermeasure

Framework Blacklisting Escaping Whitelisting Prepared statement
ASP.NET[10] - + — +
Codelgniter[11] - + — +/—
Laravel[12] - + _ +/—
Node.js[13] - + — +/—
Phalcon[14] - + — +/—

Ruby on Rails[15] - +/—- - -
Spring[16] _ _ B
Zend[17] - - _

Bicnux Hayionanvrozo mexuniunoeo ynisepcumemy «XI11». Cepia: Cucmemnuii
6 ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Unmark all vertices

Select starting vertex

Mark vertex

Is queue empty?

Visit vertex in queue

Queue adjacent vertex

Figure 7 — Activity diagram of BFS algorithm

Developing an error-based SQLI vulnerability
detection algorithm. Forms and links obtained from the
web crawler which is developed based on the BFS
algorithm, will be used to execute SQLI vulnerability tests
to detect the vulnerability itself. Error-based SQLI
detection algorithm is used in one of these tests. Fig. 8
contains activity diagram for this algorithm.

Parameters iterative

olrm Para}neter
Send Form request with SQLI parameter

Pty ml i (L]
iterative SQL Errors

1
1

I

il I
Response Error I
Analyze Response for Error 1
1

I

1

I

1

1

I

1

|

[”° *5_>{Save found vulnerability to DB)

Does Response contain Error?
e

Continue Loop

Figure 8 — Error-based SQLI detection algorithm

The main idea is to send malicious input data via
found forms and links to the application. These malicious
input data is explained earlier, but this time the goal is to
break SQL query and force DBMS to produce an error.
That is why, input data must be a character and must not
complete the SQL query in a correct form. Therefore,
input data can be a quotation mark (), or single quotation
mark () or any character that will break the query
including their URL encoded versions.

Next, the malicious input data will be processed by
the application. If there is a SQLI vulnerability and
injection of malicious code is successful, then the input

data will break the SQL query and DBMS will prompt a
DB error message. These error messages contain
followings:

1. “error in your SQL syntax”;

2. “Microsoft OLE DB Provider for ODBC Driver

error’”’;
3. “Invalid Query String”;
4. etc.

Finally, VS must analyze the response from the
application to find one of pre-defined DB error messages.

Developing a time-based SQLI vulnerability
detection algorithm. Activity diagram of time-based
SQLI vulnerability detection algorithm for found forms is
shown in Fig. 9 for a clear vision on the algorithm.
Similarly, the same algorithm must be applied for the
found links.

Get Forms from DB

iterative
<<datastore>>
SQLI Parameters
-——Of-—-—————————————— ———————— ~
Parameters iterative

orm Parameter
Send Form request with SQLI parameter

NO *
ii Is Response time long as expected?

(Save found vulnerability to DB)

| |
| |
I I
I I
| |
1 |
I I
I I
1 I
I I
1 Receive response from server‘ @Ieasure response time] :
| |
I |
I I
I I
| I
I I
I |
I I
| I
| |

Continue Loop

Figure 9 — Activity diagram of time-based detection algorithm

Time-based SQLI vulnerability detection technique
consists of sending input data which forces DB server to
wait for a certain amount of time that is defined in the
malicious input data and on the other hand counting the
time to get response from the server.

Several query examples which make DB server sleep
for a while are as follows:

1. 1\” and sleep (10)--;

2. 1; wait for delay \’00:00:10V’;

These example queries make DB server wait for 10
seconds. This time is absolutely more than normal
response time of any web server.

After sending the malicious input data to the
application, if the response time is equal or greater than
the pre-defined and expected time which is 10 seconds for
the queries above, then it can be said that SQLI
vulnerability has been found.

To accomplish this task, there must be two
simultaneous actions running in the VS, such as; one
action is sending a request to the server with malicious
input data, and the another is measuring the response time
of the server.

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 7

SSN 2079-0023 (print), ISSN 2410-2857 (online)

Overview of the Common Vulnerability Scoring
System. The Common Vulnerability Scoring System
(CVSS) provides a way to capture the principal
characteristics of a vulnerability, and produce a numerical
score reflecting its severity, as well as a textual
representation of that score. The numerical score can then
be translated into a qualitative representation (such as;
low, medium, high and critical) to help organizations
properly assess and prioritize their vulnerability
management process.

CVSS is composed of three metric groups, such as;
base, temporal and environmental.

The exploitability metrics reflect the ease and
technical means by which the wulnerability can be
exploited. On the other hand, the impact metrics reflect
the direct consequence of a successful exploit and
represent the consequence to the thing that suffers the
impact, which is referred to formally as the impacted
component.

The temporal metric group reflects the characteristics
of a vulnerability that may change over time but not
across user environments.

The environmental metric group represents the
characteristics of a vulnerability that are relevant and
Unique to a particular user’s environment.

When the base metrics are assigned values by
analyst, the base equation computes a score ranging from
0.0 to 10.0. These metrics and equations are explained in
CVSS v3.0 documentation [5].

Specifically, the base equation is derived from two
sub equations: the exploitability sub score equation, and
the impact sub score equation.

The exploitability sub score equation is derived from
the base exploitability metrics, while the impact sub score
equation is derived from the base impact metrics.

The base score can then be refined by scoring the
temporal and environmental metrics in order to more
accurately reflect the risk posed by a vulnerability to a
user’s environment. However, scoring the temporal and
environmental metrics is not required.

The environmental metrics are specified by end-user
organizations because they are best able to assess the
potential impact of a wvulnerability within their own
computing environment.

The score calculated in CVSS can be between 0.0
and 10.0. Qualitative severity rating scale for both of
numerical and textual score is shown in table 2.

Table 2 — Qualitative severity rating score

Metric value Description
Not 0.0
Low 0.1...39
Medium 4.0...6.9
High 7.0...8.9
Critical 9.0...10.0

As an example, a CVSS base score of 4.0 has an
associated severity rating of medium. The use of these
qualitative severity ratings is optional and there is no

requirement to include them when publishing CVSS
scores. They are intended to help organizations properly
assess and prioritize their vulnerability management
processes.

Software architecture of a vulnerability scanner.
In general, a VS is made up of four main modules,
namely; a scan engine, a scan database, a report module
and a user interface. To illustrate these modules, a
component diagram of VS is shown in Fig. 10.

<<component>> g]
Vulnerability Scanner

<<component>> &
User Interface

<<component>>]
Report Module

\r Scan request Report data %)\

<<component>>]) <<component>> &]
Scan Engine)} Database
KJ\ Results
\&J O
Request Response
) L
Request Response

Figure 10 — Component diagram of vulnerability scanner [18]

The scan engine executes security checks according
to its installed plugins, identifying system information and
vulnerabilities while scan DB stores vulnerability
information, scan results and other data used by scanner.
Scan engine cal also execute web crawler functionalities.

On the other hand, the report module provides
different levels of reports on the scan results, such as;
detailed technical reports, summary reports, etc.

The user interface allows the user to operate the
scanner. It may be either a graphical user interface or just
a command line interface.

Software implementation and SQLI vulnerability
test results. Algorithms to develop a VS for measuring
vulnerability severity score and SQLI vulnerability testing
are explained earlier. Fig. 11 shows a sample CVSS
calculation.

Base Metrics -

Attack Vector Confidentiality Impact Scope

Network High Changed
Attack Complexity Integrity Impact User Interaction
High High None
Availability Impact Privileges Required

High High

Requirement Metrics

Confidentiality Integrity Availability

Low Low Low

Figure 11 — An example of CVSS calculation

Bicnux Hayionanvnozo mexuniunozco ynisepcumemy «XI1». Cepis: Cucmemnuii
8 ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

The prototype VS is using URL that points to the
home page of the targeted website to discover forms and
links to perform SQLI scans. When the URL is provided,
and necessary forms and links are discovered, VS starts to
perform necessary tests to find SQLI vulnerabilities in
entire website.

Once the VS finishes all tests for the targeted
website, it is ready to report found vulnerabilities. If there
is SQLI vulnerability found in the website, then it is
reported as in the Fig. 12.

Type Url / Action Method Parameter Error
Error Based SQLI http://192.168.99.100/sqi- GET error in your SQL
labs/Less-1/ syntax

Time Based SQLI http://192.168.99.100 GET 1and

(Blind) /sqli/example9.php sleep(10)--

Time Based SQLI http://192.168.99.100 GET 1and

(Blind) Isqli/exampled.php sleep(10)--

Time Based SQLI http://192.168.99.100 GET 1and

(Blind) [sqli/example5.php sleep(10)--

Figure 12 — SQLI vulnerability test result shows found
vulnerabilities

This result contains information about the type of
detection algorithm that is used to find the vulnerability,
the related URL, used HTTP request method, the injected
parameter, and an error if the vulnerability was found
using error-based SQLI vulnerability detection algorithm.
This information will be helpful to re-produce the error or
to find the vulnerability manually.

Conclusions and Future Work. In this paper, the
fundamental security model so-called CIA triad is
analyzed, web application vulnerabilities are classified to
have a better view on the research area and SQLI
vulnerability was analyzed. SQLI effects on the CIA triad

are discussed. SQLI attack execution and its
countermeasures are explained. Moreover, web
application frameworks’ solutions to the SQLI

vulnerability are compared. BFS algorithm for a web
crawler is explained. Furthermore, error-based and time-
based SQLI vulnerability detection algorithms are
introduced and CVSS is overviewed. Proposed algorithms
are used to develop a VS and test results of the VS is
represented.

Overall, this VS prototype can be used by
organizations to find SQLI vulnerabilities in the website
faster than manual tests that have to be done by
penetration testers or ethical hackers.

Our future work concerns final implementation of
the proposed VS, as well as improving algorithms for
SQLI vulnerability detection to make it more reliable.

References

1. Madarie R. Hackers’ Motivations: Testing Schwartz’s Theory of
Motivational Types of Values in a Sample of Hackers. International
Journal of Cyber Criminology, 2017, vol.11, issue 1, pp. 78 — 97.

2. Rhodes-Ousley M. Information Security: The Complete Reference —
2nd ed., 2013. pp. 85 — 87.

3. Meshram B.B., Savita B. C. Classification of Web Application
Vulnerabilities. International Journal of Engineering Science and

10.

11.

12.

13.

14.

15.

16.

17.

18.

Innovative Technology (IJESIT), March 2013, vol.2, issue 2, pp. 226
—234.

Zhou R., Hansen E. A. Breadth-First Heuristic Search. Journal
Artificial Intelligence, April 2006, vol. 170, issue 4 — 5, pp. 701 —
709.

Common Vulnerability Scoring System v3.0 Specification Document.
Available at: https://www.first.org/cvss/specification-document
(accessed 11.05.2018).

SQL Injection. Auvailable at:
https://www.owasp.org/index.php/SQL_Injection (accessed
11.05.2018).

Top 10 2017 — Injection Flaws. Available at:

https://www.owasp.org/index.php/Top_10_2007-Injection_Flaws
(accessed 11.05.2018).

Vulnerability Search Page. Auvailable at:
https://nvd.nist.gov/vuln/search (accessed 11.05.2018).
SQL Injection Prevention Cheat Sheet. Awvailable at:

https://www.owasp.org/index.php/SQL_ Injection_Prevention_Cheat
_Sheet (accessed 11.05.2018).

Security Considerations (Entity Framework).
https://docs.microsoft.com/en-
us/dotnet/framework/data/adonet/ef/security-considerations
(accessed 11.05.2018).

Codelgniter User Guide. Auvailable at:
https://www.codeigniter.com/user_guide/general/security.html
(accessed 11.05.2018).

Laravel Documentation. Available at:
https://laravel.com/docs/5.6/eloquent (accessed 11.05.2018).

A Pure Node.js JavaScript Client Implementing the MySQL
Protocol. Available at: https:/github.com/mysqljs/mysql#escaping-
query-values (accessed 11.05.2018).

Phalcon Documentation: Database Abstraction Layer. Available at:
http://phalcon-php-framework-
documentation.readthedocs.io/en/latest/reference/db.html (accessed
11.05.2018).

Rail Guides: Securing Rail Applications. Available at:
http://guides.rubyonrails.org/security.html (accessed 11.05.2018).
Spring Framework v.5 Documents: Data Access. Available at:
https://docs.spring.io/spring/docs/current/spring-framework-
reference/data-access.html (accessed 11.05.2018).

Available at:

Zend Framework Documentation: Zend-DB. Available at:
https://docs.zendframework.com/zend-db/sql/ (accessed
11.05.2018).

An Overview of Vulnerability Scanners. Available at:

https://www.infosec.gov.hk/english/technical/files/vulnerability.pdf
(accessed 11.05.2018)

References (transliterated)

Madarie R. Hackers’ Motivations: Testing Schwartz’s Theory of
Motivational Types of Values in a Sample of Hackers. International
Journal of Cyber Criminology, 2017, vol.11, issue 1, pp. 78 — 97.
Rhodes-Ousley M. Information Security: The Complete Reference —
2nd ed., 2013. pp. 85— 87.

Meshram B.B., Savita B. C. Classification of Web Application
Vulnerabilities. International Journal of Engineering Science and
Innovative Technology (IJESIT), March 2013, vol.2, issue 2, pp. 226
—234.

Zhou R., Hansen E. A. Breadth-First Heuristic Search. Journal
Artificial Intelligence, April 2006, vol. 170, issue 4 — 5, pp. 701 —
709.

Common Vulnerability Scoring System v3.0 Specification Document.
Available at: https://www.first.org/cvss/specification-document
(accessed 11.05.2018).

SQL Injection. Available at:
https://www.owasp.org/index.php/SQL_Injection (accessed
11.05.2018).

Top 10 2017 - Injection Flaws. Available at:

https://www.owasp.org/index.php/Top_10_2007-Injection_Flaws
(accessed 11.05.2018).

Vulnerability Search Page. Available at:
https://nvd.nist.gov/vuln/search (accessed 11.05.2018).
SQL Injection Prevention Cheat Sheet. Available at:

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat
_Sheet (accessed 11.05.2018).

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 9

SSN 2079-0023 (print), ISSN 2410-2857 (online)

10. Security Considerations (Entity Framework). Awvailable at: documentation.readthedocs.io/en/latest/reference/db.html (accessed
https://docs.microsoft.com/en- 11.05.2018).
us/dotnet/framework/data/adonet/ef/security-considerations 15. Rail Guides: Securing Rail Applications. Available at:
(accessed 11.05.2018). http://guides.rubyonrails.org/security.html (accessed 11.05.2018).

11. Codelgniter User Guide. Available at: 16. Spring Framework v.5 Documents: Data Access. Available at:
https://www.codeigniter.com/user_guide/general/security.html https://docs.spring.io/spring/docs/current/spring-framework-
(accessed 11.05.2018). reference/data-access.html (accessed 11.05.2018).

12. Laravel Documentation. Available at: 17. Zend Framework Documentation: Zend-DB. Available at:
https://laravel.com/docs/5.6/eloquent (accessed 11.05.2018). https://docs.zendframework.com/zend-db/sql/ (accessed

13. A Pure Node.js JavaScript Client Implementing the MySQL 11.05.2018).

Protocol. Available at: https://github.com/mysqljs/mysql#escaping- 18. An Overview of Vulnerability Scanners. Available at:
query-values (accessed 11.05.2018). https://www.infosec.gov.hk/english/technical/files/vulnerability.pdf

14. Phalcon Documentation: Database Abstraction Layer. Available at: (accessed 11.05.2018).
http://phalcon-php-framework-

Received 12.05.2018
Bioomocmi npo asmopis / Ceedenus 06 asmopax | About the Authors
Apcnan Bepk (Apcnan Bepxk, Arslan Berk) — HarionanpHuii TexHIYHUE yHiBepcUTET «XapKiBChKHUM

MONITEXHIYHUN {HCTUTYT», CTyIeHT; M. Xapkie, Ykpaina; ORCID: https://orcid.org/0000-0002-9493-0430; e-mail:
berk.arslan93@gmail.com

I'amszace Pycmam Onexcanoposuu (I'amszaee Pycmam Anexcandpoeuu, Gamzayev Rustam Olexandrovich) —
KaHIuJaT TeXHIYHUX HayK, JOLEHT, HalioHambHUI TeXHIYHUHA yHIBepCUTET «XapKiBChKUIl MOJITEXHIYHUN IHCTHTYTY,
IOLIEHT Kadenpu mporpamHoi imkeHepii Ta iHQOpMAaIiifHUX TeXHOoJOTiH ympaeniHHS, M. XapkiB, Ykpaina; ORCID:
https://orcid.org/0000-0002-2713-5664; e-mail: rustam.gamzayev@gmail.com

Epmyzpyn Kapaxyxa (Ipmyzpyn Kapaxyxa, Ertugrul Karaguha) — mpodecop, mokrop, nekan Incturyry
inpopmaruku CramOysbcekoro TexHiunoro yHiBepcutery (Istanbul Technical University), m. Crambyn, Typuiis;
ORCID: https://orcid.org/0000-0002-7555-8952; e-mail: ertugrulkaracuha@gmail.com

Tkauyk Mukona Bauecnasosuu (Tkauyx Hukonait Bauecnaeosuu, Tkachuk Mykola Vyacheslavovich) — noxtop
TEeXHIYHMX Hayk, mnpodecop, HamioHanbHMH TeXHIYHMH YHIBepcHTET «XapKiBCbKUI IOJITEXHIYHUH I1HCTHTYTY,
npodecop kadeapu mporpamMHoi imkeHepil Ta iH(GOpMaIifHUX TEXHOJIOTIH yIHpaBiiHHS; XapKiBChKHI HaIlliOHAIbHUI
yHiBepcuteT imeni B.H. Kapazina, npodecop xadeapu mozpentoBaHHS cuCTeM 1 TexHousorii, M. XapkiB, YkpaiHa;
ORCID: https://orcid.org/0000-0003-0852-1081; e-mail: tka.mobile@gmail.com

Bicnux Hayionanvnozo mexuniunozco ynisepcumemy «XI1». Cepis: Cucmemnuii
10 ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

