
ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 22 (1298) 2018 53

UDС 004.9:510.635

Y. M. GONTAR, K. V. TKACH, B. O. YENA, A. V. VASYLENKO

TOWARDS INFORMATION SYSTEM DEVELOPMENT FOR DATA EXTRACTION FROM WEB

Today, the Internet contains a huge number of sources of information, which is constantly used in our daily lives. It often happens that similar in
meaning information is presented in different forms on different resources (for example, electronic libraries, online stores, news sites and etc.). In this

paper, we analyze the extraction of information from certain type of web sources that is required by the user. The analysis of the data extraction

problem was carried out. When considering the main approaches to data extraction, the strengths and weaknesses of each were identified. The main
aspects of the extraction of web knowledge were formulated. Approaches and information technologies for solving problems of syntactic analysis

based on existing information systems are analyzed. Based on the analysis, the task of developing models and software components for extracting data

from certain types of web resources were solving. A conceptual model of extracting data was developed taking into account web space as an external
data source. A requirements specification for the software component was created, which will allow to continue working on the project and to clearly

understand the requirements and constraints for implementation. During the process of modeling software, the following diagrams have been

developed, such as activities, sequences and deployments, which will then be used to create the finished software application. For further development
of the software, a programming platform and types of testing (load and modular) were defined. The obtained results allow to state that the proposed

design solution, which will be implemented as a prototype of the software system, can perform the task of extracting data from different sources on the

basis of a single semantic template.
Key words: information, web search, data extraction, data source, data mining, language standards, informational technology.

Ю. М. ГОНТАР, К. В. ТКАЧ, Б. А. ЄНА, А. В. ВАСИЛЕНКО

ПІДХІД ДО РОЗРОБКИ ІНФОРМАЦІЙНОЇ СИСТЕМИ ДЛЯ ЕКСТРАКЦІЇ ДАНИХ З ВЕБ

Сьогодні Інтернет містить величезну кількість джерел інформації, яка постійно використовується в нашому щоденному житті. Часто буває,
що схожа за змістом інформація представлена в різній формі на різних ресурсах (наприклад, електронні бібліотеки, інтернет-магазини,

новинні сайти). У даній роботі аналізується вилучення інформації з веб-джерел певного типу, яке потрібно користувачеві. Проведено аналіз

проблеми вилучення даних. При розгляді основних підходів до екстракції даних були виділені сильні і слабкі сторони кожного.
Сформульовано основні аспекти вилучення веб-знань. Проаналізовано підходи та інформаційні технології вирішення проблем

синтаксичного аналізу на основі існуючих інформаційних систем. На основі проведеного аналізу була сформована задача розробки моделей

і програмних компонентів для отримання даних з веб-ресурсів певного типу. Розроблено концептуальну модель вилучення даних з
урахуванням веб-простору як зовнішнього джерела даних. Була створена специфікація вимог для програмного компонента, що дозволить

продовжити роботу над проектом, щоб чітко розуміти вимоги і обмеження для реалізації. При моделюванні програмного забезпечення були

розроблені наступні діаграми, такі як діаграми класів, активності, послідовності і розгортання, які потім будуть використовуватися для
створення готового додатка. Для подальшої розробки програмного забезпечення була визначена платформа програмування і види

тестування (навантажувальний і модульне). Отримані результати дозволяють стверджувати, що пропоноване проектне рішення, яке буде

реалізовано у вигляді прототипу програмної системи, може виконувати завдання екстракції даних з різних джерел на основі одного
семантичного шаблону.

Ключові слова: інформація, екстракція даних, джерело даних,інтелектуальний аналіз даних, язикові стандарти, інформаційні

технології.

Ю. Н. ГОНТАРЬ, Е. В. ТКАЧ, Б. О. ЕНА, А. В. ВАСИЛЕНКО

ПОДХОД К РАЗРАБОТКЕ ИНФОРМАЦИОННОЙ СИСТЕМЫ ДЛЯ ИЗВЛЕЧЕНИЯ ДАННЫХ ИЗ

ВЕБ

Сегодня Интернет содержит огромное число источников информации, которая постоянно используется в нашей ежедневной жизни. Часто
бывает, что похожая по смыслу информация представлена в разной форме на разных ресурсах (например, электронные библиотеки,

интернет-магазины, новостные сайты). В данной работе анализируется извлечение информации из веб-источников определенного типа,
которое требуется пользователю. Проведен анализ проблемы извлечения данных. При рассмотрении основных подходов к экстракции

данных были выделены сильные и слабые стороны каждого. Сформулированы основные аспекты извлечения веб-знаний.

Проанализированы подходы и информационные технологии решения проблем синтаксического анализа на основе существующих
информационных систем. На основе проведенного анализа была сформирована задача разработки моделей и программных компонентов для

извлечения данных из веб-ресурсов определенного типа. Разработана концептуальная модель извлечения данных с учетом веб-пространства

как внешнего источника данных. Была создана спецификация требований для программного компонента, что позволит продолжить работу
над проектом, чтобы четко понимать требования и ограничения для реализации. При моделировании программного обеспечения были

разработаны следующие диаграммы, такие как диаграммы классов, активности, последовательности и развертывания, которые затем будут

использоваться для создания готового приложения. Для дальнейшей разработки программного обеспечения была определена платформа
программирования и виды тестирования (нагрузочное и модульное). Полученные результаты позволяют утверждать, что предлагаемое

проектное решение, которое будет реализовано в виде прототипа программной системы, может выполнять задачи экстракции данных из

разных источников на основе одного семантического шаблона.
Ключевые слова: информация, экстракция данных, источник данных, интеллектуальный анализ данных, стандарты,

информационные технологии.

Introduction. The amount of information available

through the Internet is constantly increasing.

Unfortunately, extracting useful content from this huge

amount of data remains an open question. The lack of

standard data models and structures makes developers

create solutions from scratch. In some cases, the use of

descriptions of metadata or data models can help to

understand the structure of data.

An expert figure is still needed in many situations

where developers do not have the right fundamental

knowledge. This forces developers to spend expensive

time, absorbing expert knowledge. In other areas there are

promising solutions that use machine learning techniques.

However, increasing accuracy requires an enlargement the

© Y. M. Gontar, K. V. Tkach, B. O. Yena, A. V. Vasylenko, 2018

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

54 аналіз, управління та інформаційні технології, № 22 (1298) 2018

complexity of the system that cannot be realized in many

projects.

The purpose of the study is to develop software

components for extraction of data from web resources of a

certain type. This requires an analysis of the extraction

algorithms, modern programs that are implemented and an

overview of the methodology and technology solutions to

the problem.

Data extraction. The Internet needs a language that

is compatible with the syntax, which allows the user to

display data with saving a particular layout. HTML

became the language of the Internet and, therefore, the

most accepted decision. However, HTML, by default,

does not provide any mechanism that facilitates the

automatic analysis of existing documents [1]. This

restriction does not allow to distinguish content from the

layout and semantics of data.

 Several standards, such as RDF, RDFS and OWL,

have been developed to provide a common syntax for

defining data models. These solutions allow to define

ontologies that support queries. These technologies are

usually not understood by developers who initially ignore

the process of semantic annotation in developing HTML

pages. To simplify this problem, a later approach called

Schema defines a vocabulary of concepts such as people,

places, events and products that allow annotation of data

contained in an HTML document. This allows to establish

a connection between the content and any existing

scheme, bring semantics to the Internet.

Web page design can hide data from existing search

engines [2]. Using dynamic content, CAPTCHAS, private

web pages, scripts or unconnected content among others

leads to the creation of Deep Web. A simple example is

web pages that use search queries in database. Information

contained in the database can’t be indexed by the search

engine, as this requires the software engine interact with

the search form, defines the search parameters, and

understands the semantics of the returned data.

Commercial search engines, such as Google, Bing, or

DuckDuckGo, are developing their tools with a clear

focus on indexing the so-called surface network. This

makes us think that most of the information contained on

the Internet is not indexed. This problem has recently been

covered by the MEMEX DARPA project, which shows an

attempt to index the information contained in the Deep

Web [3].

The processing of data on any of these webpages

involves a certain degree of human interaction (filling out

the search form, script interaction, etc.). After

downloading raw data, it becomes a kind of index format

that can be stored in the database for further analysis [4].

When solving the problem of extracting knowledge, most

solutions are developed from scratch, engaging in data

extraction, analysis and storage. In the case of multiple

data sources, the complexity of the problem increases until

it becomes impossible.

We can identify three key players in any problem of

knowledge extraction. The first is a data source containing

relevant information (for example, a web page). The

second is a database for data storage purposes (for

example, MySQL). The third is an expert who can

determine how to translate data into a source and into a

database. Transformation between source and base can be

considered automatically done. Regardless of the level of

automation, the role of an expert is needed to insert some

initial semantics of the data before the removal. In

addition, the expert is responsible for determining whether

data extraction is correct or not. The fourth actor can be

developers. The developer is defined as a professional

who can contribute to the development of a solution in a

technical sense. The developer is appointed to write code,

subprograms and programs that prepare processed data.

As a rule, some aspects are ignored in existing

projects, such as:

1 Several data sources. Most approaches to data

extraction plan deal with several data sources that are

similar in design (for example, on Amazon product pages,

Wikipedia, etc.). The system must take into account that

the data sources do not have a unique design, basically

inconsistent in the source or several sources of

information.

2 Multilingual approach. Most existing solutions

consider only data sources written in one language. For

example, Member Countries and partners use their official

language for the publication of any EU-related document,

and official central reports are available in English, French

or German, as the most commonly used languages, by the

number of speakers.

3 Extract data from different file formats: HTML is

the most common data format. However, other formats

such as XML, DOC or PDF may be present. For HTML

and XML there are various parsers that also store the

formatting structure, so you can use it later. DOC and

parser PDFs are harder to find, and most of them extract

text data without any formatting. This makes it difficult to

automatically extract data. In some extreme cases, files

are archived in various formats (for example, ZIP, RAR,

self-extracting RAR), and the file preprocessor component

must be designed to receive data. Moreover, data

encoding is also a problem that depends on the base

system. In the current web world UTF-8 is a widely used

standard, but in some cases, servers send another encoding

from the actual file encoding.

4 Multiple recurring operations and continuous

updates. In system design, it’s important to keep in mind

that data from relevant data sources develops over time,

which means that you can add more documents, but the

design of the extraction process can also be changed

through structural changes to the document. Most of the

operations can be reused in domains and data sources, so

the conveyor needs to be reused and configurable.

Moreover, these operations must be performed

continuously and repeatedly, without much human

intervention.

The simplest solution adopted by many projects is to

use XQuery [5] or regular expressions to extract the exact

path to the target element. This approach is not very

resistant to structural changes of the document template.

Another popular approach is the use of advanced style

table language transformations (XSLT) [5], which

provides a unified syntax for writing conversion rules

from compatible XML languages. In the basic form,

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 22 (1298) 2018 55

HTML is basically XML-compatible, so this approach can

be applied to HTML. This approach is more durable than

XQuery to structural changes, but it is usually very

difficult to debug. Another simple technique, very

practical in small projects, is a simplified version or

HTML. This is achieved by simplifying the syntax of

HTML by deleting all elements except the main HTML

syntax and formatting [6].

In recent years, the problem of extraction of

knowledge is intensively studied. The first family of

solutions has studied the use of domain languages to

determine how data should be deleted. Solutions similar to

those presented in use the language of extracting

declarative information to determine data extraction plans.

Similarly, [7] uses rule sets to determine extraction. In

these solutions, the quality of extraction depends in

particular on the operators’ skills to determine the rules

for extracting. The second family of solutions investigates

the use of machine learning techniques to improve the

information extraction. These solutions are based on using

output models that attempt to build relationships for this

data set.

An overview of the existing methods of analyzing

web content with an emphasis on automated and machine

learning methods was reviewed earlier [8]. An automated

iterative process for creating a formal description of a

document series template using a single, homogeneous

template can automatically detect duplicate structures

within a single template and create an approximation of

the page structure, as well as the ability to obtain any

relevant data [9]. IEPAD uses this approach and reduces

the complexity of the problem by grouping HTML

element tags into different categories [10]. The result of

IEPAD is the PAT tree, which is closer to the single,

uniform, template document. Van [11] broadens this

approach by comparing the similarity of a tree obtained by

constructing several tree elements of HTML.

One of the popular frameworks that unifies the

methods of machine learning and based on dictionaries is

GATE [12]. This toolkit provides a complete structure for

annotation, creating dictionaries for named objects, and

various methods for processing natural language and

machine learning, which is very useful for creating

controlled approaches in Data Mining.

Recently, the DeepDive framework [13] has

attracted much attention from the research community.

DeepDive uses a set of defined rules to establish

relationships between objects. The final creation of a

database is an iterative loop, in which the operator can

control the process of machine learning, identifying errors

committed by the system. Similarly, Google Knowledge

Vault builds relationships using RDF triplets. This

approach shows some similarity to DeepDive with a clear

emphasis on data scalability.

Approaches to data extraction from web resources.

Extraction is a process of obtaining data from resources,

which, as a rule, has a more practical component than the

theoretical one. The main purpose of extraction is the

collection of data (parsing) with subsequent preservation

in the right format. In fact, the task is to write HTML

parsers, then it will be discussed in more detail. There are

several approaches to extracting data.

DOM tree analysis using XPath. Using this

approach, data can be obtained directly by the identifier,

name, or other attributes of the tree element (such item

can be paragraph, table, block, etc.). In addition, if an item

is not marked with any identifier, then you can get it by

some unique path, going down the DOM tree or

navigating through a collection of similar elements.

Advantages of this approach:

 data of any type and any level of complexity can

be obtained;

 knowing the location of an element, you can get

its value by writing the path to it.

Disadvantages of this approach:

 various HTML / JavaScript engines generate a

DOM tree differently, so you need to bind to a

specific engine; the path to the element may

change, therefore, as a rule, such parsers are

designed for a short period of data collection;

 the DOM path can be complex and not always

unambiguous.

This approach can be used in conjunction with the

Microsoft.mshtml library, which is essentially the main

element in Internet Explorer.

The Data Extracting SDK uses Microsoft.mshtml to

analyze the DOM tree, but it is a "superstructure" over the

library for ease of use.

The next evolutionary stage of the DOM tree

analysis is the use of XPath – that is, the ways that are

widely used in parsing XML data. The essence of this

approach is to use a simple syntax to describe the path to

an element without need for a gradual downward

movement of the DOM tree. This approach is well known

by the jQuery library and the HtmlAgilityPack library.

Parsing lines. Despite the fact that this approach

cannot be used to write serious parsers, it’s necessary to

pay attention to it.

Sometimes the data is displayed using a certain

template (for example, a mobile phone characteristics

table) when the values of the parameters are standard and

only their values change. In this case, the data can be

obtained without analyzing the DOM tree, and by parsing

the strings, for example, as it is done in the Data

Extracting SDK. The use of a set of methods for analyzing

strings sometimes (more often, in simple template cases)

is more effective than a DOM tree or XPath analysis.

Using Regular Expressions. Regular expressions

should be used only for obtaining data that has a strict

format – electronic addresses, telephones, etc., in rare

cases – addresses, template data.

Visual approach. At this moment, the visual

approach is at an early stage of development. The essence

of the approach is that the user could "configure" the

system without using a software language or API to get

the necessary data of any complexity.

Methods of analyzing web pages at the level of

information blocks. There are currently a large number

of available web scanners in open source projects. One is

the Apache Nutch [14] project, which offers a complete

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

56 аналіз, управління та інформаційні технології, № 22 (1298) 2018

structure for the development of distributed and scalable

scanners that can easily be linked to other solutions from

the Apache environment. However, for smaller-scale

solutions, other frameworks such as Scrapy are more

acceptable. Scrapy lets to define a parallel scanner with

Python and provides the developer with a structure that

manages simultaneous queries and makes it easier to

connect to applications based on Django. To handle pages

using JavaScript, the most common approach is to use the

Selenium driver [15]. This driver allows you to connect a

large number of browsers, such as Firefox or Chrome,

using a scanner and emulate the behavior of the user who

clicks or text over the current page.

Formulation of the problem. Scanning web pages

is the first step in data collection. The items to be

traversed may vary, depending on the data source. How to

crawl web pages depends on the design of the data source.

In some cases, pages are easily accessible through a single

URL or can be obtained after completing the search form.

Possible scenarios:

 Identity by public identifier. In this case, each

item that is to be traversed is uniquely identified

with a URL that contains a unique identifier. If

the generation of identifiers is known, you can

statically generate a list of possible URLs for the

query.

 Identification on an unknown identifier. As in the

previous scenario. However, how the IDs are

generated is unknown. In this case, the identifiers

must first be extracted from the website itself,

and then used to create a final destination URL

that is to be traversed.

 Dynamic URLs. Many platforms distribute

content to dynamic URLs. This makes it

impossible to statically generate a list of

addresses for study. This script refers to the

initial navigation that requests the URL web

platform and then generates unique URLs that

can identify these elements to ensure their

uniqueness in the archival system.

 As mentioned earlier, it’s difficult to develop a

common scan solution that can be useful in all

scenarios. This is due to the fact that many

platforms contain a large number of JavaScript

code in conjunction with AJAX messaging. It is

possible to generalize some aspects that need to

be taken into account during the phase of

circumvention.

 The following collection of links. Many web

portals display content received after a database

request. This means that not all of the existing

content is displayed at once, but only a small

part. One thread can scan each page with a list of

links, while others can navigate through existing

links.

 Not all items are displayed. The results displayed

in these systems are simply the result of a

database query. In some cases, the result set is

divided into pages that need to be switched, in

other cases the resulting set has a limit that

prevents full display of existing results. In these

cases, it may not be possible to scan all existing

results because the system does not disclose this

information.

 Massive use of JavaScript. In many cases, the

use of JavaScript solutions greatly complicates

the scanning of these systems. The easiest

solution is to emulate user behavior using

Javascript engines. However, it imposes

penalties on the side of the scan due to the

excessive use of resources of some browsers.

 Limit of queries. To avoid attacks such as "denial

of service" (DDoS), many platforms track

requests. Exceeding a certain number of queries

may result in a temporary termination of the

service for the user. Each platform is different,

and only a trial error method can reveal what

measures these platforms use.

 Cookies and sessions. Many systems use cookies

to store session identifiers, which allow the

server to identify query parameters that are used

by the user. However, these cookies have an

expiration date, which can sometimes break the

extraction on some platform.

 Not serviced. Bypass servers may fail. Multiple

crawling of these servers will simply return the

HTTP error code. However, many systems return

a web page that informs about the inaccessibility

of the service.

 Type of content. The content type code returned

by the HTTP header is especially important

when parsing web pages that are not encrypted

using standard ASCII or UTF8.

The task of this work is to analyze and develop

models and software components for extraction of data

from web resources of a certain type.

Specification of software requirements. The

component developed in this work provides a convenient

opportunity for automatic data extraction and its further

automatic analysis. The primary area of knowledge is the

extraction and analysis of marketing information for

obtaining a sample of the most relevant and most

advantageous offers in the market. But the component

developed in this work has a wide range of uses, from

travel agencies to state-owned enterprises.

The purpose of this project is to automate the process

of extracting accurate and specific data contained in

various WEB-pages. An example of the overall interaction

of the system is shown in Figure 1. This system is a

complex software and hardware. For its full functioning,

the software is developed taking into account the ability to

process a large number of requests from users of the

product, as well as its reliability, openness for further

development, security and properly developed mode for

its further support.

This component is developed as a component of the

server part of larger software systems. The relationship

between the client and the component that is developed on

the server use HTTP queries. The request will contain

information about which pages to extract, and what type

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 22 (1298) 2018 57

of data they should provide. On the server component is

trying to get information from the page, and if the

extraction was successful – analyzes the page. The

information that meets the requirements of the user is

returned to the client as the response to the request.

Communication with the server is carried out using the

same HTTP requests, but they only contain a template,

created after the analysis, for further use on similar sites.

Fig. 1. DFD Diagram of developing system

Figures 2 and 3 depict a component diagram and a

use-case diagram respectively.

The system will receive the WEB-address on the

input, and return the result to the user in the format that

will select in advance. Connection between the interface

and the server will use JSON as the serialization format.

Increasing the number of supported resources should

not affect performance. Using pre-created and generated

templates by the component itself, analyzing pages with

increasing number of resources should decrease

complexity and consume less time. To implement this

requirement, a requirement stability ratio will be used

which shows how many of the already implemented

requirements have to be processed from release to release

in the development of new features. Also, this metric

gives an idea of how easy it is to scale the functional of

the system, adding new features.

Transferability is implemented through the use of

cloud storage. Due to this, it does not matter which server

will store the component. If you need to move it from one

server to another, the cost should be minimal. The metric

for this requirement is the Adaptability Measure, which

measures the ability of the system to adapt to requirements

changes or re-design of the system or the integration of

applications.

Paying attention to the fact that the system can grow

to very large sizes, since there are so many online sites,

the complexity of the newly configured resources should

not be complicated. Due to the configuration of the

extractor using YAML files, the developed component

can easily adapt to extraction from new a resource without

losing a lot of time and effort.

Fig. 2. Component diagram of developing system

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

58 аналіз, управління та інформаційні технології, № 22 (1298) 2018

Fig. 3. Use-case diagram of developing system

The regression coefficient will be used as a metric

for this requirement. The purpose of the metric is to show

the efforts of the team: the creation and adjustment of new

features or the bulk of time is lost to work with existing

parts of the software. The closer the coefficient to 0, the

less was the mistakes made to the existing functional in

the implementation of new requirements. If the value is

greater than 0.5, then we spend more than half of the time

on the restoration of earlier functions of the software.

Software development and testing. The main

criterion for choosing a platform was the possibility of

cross-platform. So, among all the well-known

programming languages, the choice falls on Java. In

addition to cross-platform, the strengths of the Java

language are also high reliability of work, the

development of language. The OOP paradigm gives the

language such a wonderful feature as scalability, which

makes it possible to expand the system many times

without difficulty. The Java language is designed to be as

reliable as possible. For example, it is prohibited to use

multiple imitation in order to avoid ambiguity when

referring to the parent class. Instead, the notion of an

interface that is no longer a class has been introduced, but

contains general guidelines for creating classes and

provides multiple imitation.

At the first stage of testing, it is necessary to conduct

a modular testing of all components of the system that can

be tested separately from the other in the artificial testing

environment. Unit testing will be conducted using Junit’s

Automation Testing Tool. This choice is due to the simple

integration of Junit with Java. In the future it is necessary

to perform integration testing, which involves testing in

two directions. Integration testing of the component level

after unit testing is required to verify the correct

interaction of parts of the business logic application. This

kind of testing can detect errors in the implementation of

external interfaces or their improper use. System-level

integration testing is needed to find possible mistakes in

the interaction between different subsystems of the

software, its interaction with the operating system, and

other applications.

Load testing is a subset of performance testing, the

collection of indicators and the determination of the

productivity and time of the response of the software

system or device in response to an external request in

order to establish compliance with the requirements of this

system.

Apache JMeter is a load testing tool developed by

the Apache Software Foundation, a Jakarta subproject.

Although JMeter was originally developed as a Web

application testing tool, it is currently capable of

performing load tests for JDBC connections, FTP, LDAP,

SOAP, JMS, POP3, IMAP, HTTP, and TCP.

Postman is a powerful set of API testing tools that

has become a must have for many developers. Helps to

create test case APIs and improve the productivity of

development work. The main purpose of the program is to

create collections with API requests.

Locmetrics is very simple freeware. Among the

supported languages – C/C++, C#, Java, SQL – it is

possible to calculate not only SLOC metrics and its

varieties, but also cyclomatic complexity.

Conclusions. An analysis of the data extraction

problem was performed. The approaches and information

technologies of solving parsing problems on the basis of

existing information systems are analyzed. On the basis of

the conducted analysis, the task of developing models and

software components for extraction of data from web

resources of a certain type is set.

The conceptual model of data extraction, considering

the web space as an external data source, is developed.

This allows to get objective and relevant search results

data in the web space.

A requirement specification for a software

component has been created. This will allow further work

on the project to clearly understand the requirements and

limitations to the implementation. The approximate

deployment diagram and all types of users that need to be

implemented are translated.

In the simulation of the software, the following

diagrams were developed such as a class, activity,

sequence and deployment diagrams, which will then be

used to build a ready-made application.

A software component has been built that allows

extraction of data from trading platforms. Its testing and

elaborated metrics are responsible for the quality of the

product being developed.

Список літератури

1. Baumgartner R., Gatterbauer W., Gottlob G. Web data extraction

system. In Encyclopedia of Database Systems. 2009. P. 3465–3471.

2. Anupam V., Freire J., Kumar B., Lieuwen D. Automating web
navigation with the WebVCR. Computer Networks. 2000. P. 503–

517.

3. Memex (Domain-Specific Search). URL:
www.darpa.mil/program/memex (дата звернення: 02.11.2017).

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 22 (1298) 2018 59

4. Gatterbauer W., Bohunsky P., Herzog M., Krüpl B., Pollak B.

Towards domain-independent information extraction from web

tables. Proceedings of the 16th international conference on World
Wide Web (May 08–12, 2007, Banff, Alberta, Canada). New York,

ACM, 2007. P. 71–80.

5. Bonifati A., Braga D., Campi A, Ceri S. Active XQuery.
Proceedings of the 18th International Conference on Data

Engineering (26 February – 1 March 2002, San Jose, California).

2002. P. 129–138.
6. Bohannon P., Dalvi N., Filmus Y. Automatic web-scale information

extraction. Proceedings of the ACM SIGMOD ICMD. 2012. P. 609–

612.
7. Shen W., AnHai D., Jeffrey F. Naughton, Ramakrishnan R.

Declarative information extraction using datalog with embedded

extraction predicates. In Proceedings of the 33rd International
Conference on Very Large Data Bases. VLDB Endowment. 2007.

P. 1033–1044.

8. Crescenzi V. RoadRunner. Towards automatic data extraction from
large Web sites. Proceedings of the 27th International Conference

on Very Large Data Bases. 2001. P. 109–118.

9. Agichtein E., Gravano L. Snowball: extracting relations from large
plain-text collections. Proceedings of the fifth ACM conference on

Digital libraries. 2000. P. 85–94,

10. Arasu A., Garcia-Molina H. Extracting Structured Data from
Webpages. Proceedings of SIGMOD International Conference on

Management of Data (June 9–12, 2003, San Diego, California).
ACM, New York, 2003. P. 337–348.

11. John T. Van Stan, Aron Stubbins, Tree DOM: Dissolved organic

matter in throughfall and stemflow. Limnology and Oceanography
Letters. 2017. Vol. 3. P. 199–214.

12. Cunningham H., Tablan V., Roberts A., Bontcheva K. Getting more

out of biomedical documents with gate’s full lifecycle open source
text analytics. PLoS Comput Biol. 2013. No. 9 (2). P. 31–47.

13. Shin J., Wu S., Wang F., Christopher De Sa, Ce Zhang C., Re C.

Incremental knowledge base construction using deepdive. VLDB
Endowment. 2015. Vol. 8. No. 11. P. 1310– 1321.

14. Khare R, Cutting D., Sitaker K., Rifkin A. Nutch: A Flexible and

Scalable Open-Source Web Search Engine. Proceedings of the 14th
International Conference on World Wide Web. 2005, vol. 1, p. 32.

15. Avasarala S. Selenium WebDriver Practical Guide. Pact Publishing,

2014. 266 p.

References

1. Baumgartner R., Gatterbauer W., Gottlob G. Web data extraction

system. In Encyclopedia of Database Systems. 2009, pp. 3465–3471.
2. Anupam V., Freire J., Kumar B., Lieuwen D. Automating web

navigation with the WebVCR. Computer Networks. 2000, pp. 503–

517.

3. Memex (Domain-Specific Search). Available at:

www.darpa.mil/program/memex (accessed 02.11.2017).

4. Gatterbauer W., Bohunsky P., Herzog M., Krüpl B., Pollak B.
Towards domain-independent information extraction from web

tables. Proceedings of the 16th international conference on World

Wide Web (May 08–12, 2007, Banff, Alberta, Canada). New York,
ACM, 2007, pp. 71–80.

5. Bonifati A., Braga D., Campi A, Ceri S. Active XQuery.

Proceedings of the 18th International Conference on Data
Engineering (26 February – 1 March 2002, San Jose, California).

2002, pp. 129–138.

6. Bohannon P., Dalvi N., Filmus Y. Automatic web-scale information
extraction. Proceedings of the ACM SIGMOD ICMD. 2012,

pp. 609–612.

7. Shen W., AnHai D., Jeffrey F. Naughton, Ramakrishnan R.
Declarative information extraction using datalog with embedded

extraction predicates. In Proceedings of the 33rd International

Conference on Very Large Data Bases. VLDB Endowment, 2007,
pp. 1033–1044.

8. Crescenzi V. RoadRunner. Towards automatic data extraction from

large Web sites. Proceedings of the 27th International Conference
on Very Large Data Bases. 2001, pp. 109–118.

9. Agichtein E., Gravano L. Snowball: extracting relations from large

plain-text collections. Proceedings of the fifth ACM conference on
Digital libraries. 2000, pp. 85–94,

10. Arasu A., Garcia-Molina H. Extracting Structured Data from
Webpages. Proceedings of SIGMOD International Conference on

Management of Data (June 9–12, 2003, San Diego, California).

ACM, New York, 2003, pp. 337–348.
11. John T. Van Stan, Aron Stubbins, Tree‐DOM: Dissolved organic

matter in throughfall and stemflow. Limnology and Oceanography

Letters. 2017, vol. 3, pp. 199–214.
12. Cunningham H., Tablan V., Roberts A., Bontcheva K. Getting more

out of biomedical documents with gate’s full lifecycle open source

text analytics. PLoS Comput Biol. 2013, no. 9 (2), pp. 31–47.
13. Shin J., Wu S., Wang F., Christopher De Sa, Ce Zhang C., Re C.

Incremental knowledge base construction using deepdive. VLDB

Endowment. 2015, vol. 8, no. 11, pp. 1310–1321.
14. Khare R, Cutting D., Sitaker K., Rifkin A. Nutch: A Flexible and

Scalable Open-Source Web Search Engine. Proceedings of the 14th

International Conference on World Wide Web. 2005, vol. 1, p. 32.

15. Avasarala S. Selenium WebDriver Practical Guide. Pact Publishing,

2014. 266 p.

Надійшла (received) 25.05.2018

Відомості про авторів / Сведения об авторах / About the Authors

Гонтар Юлія Миколаївна (Гонтарь Юлия Николаевна, Gontar Yulia Mukolaivna) – Національний

технічний університет «Харківський політехнічний інститут», аспірант; м. Харків, Україна, ORCID:

https://orcid.org/0000-0002-3748-5086; e-mail: gontaryn@gmail.com

Ткач Катерина Вікторівна (Ткач Екатерина Викторовна, Tkach Kateryna Victorivna) – Національний

технічний університет «Харківський політехнічний інститут», студент; м. Харків, Україна, ORCID:

https://orcid.org/0000-0001-7104-800X; e-mail: tkachkv@i.ua

Єна Богдан Олександрович (Ена Богдан Александрович, Yena Bohdan Oleksandrovych) – Національний

технічний університет «Харківський політехнічний інститут», студент; м. Харків, Україна, ORCID:

https://orcid.org/0000-0003-4791-956X; e-mail: enafortest@gmail.com

Василенко Артем Вікторович (Василенко Артем Викторович, Vasylenko Artem Victorovych) –

Національний технічний університет «Харківський політехнічний інститут», аспірант; м. Харків, Україна,

ORCID: https://orcid.org/ 0000-0003-3121-4856; e-mail: artyom4ek@yandex.ua

