ISSN 2079-0023 (print), ISSN 2410-2857 (online)

UDC 004.9:510.635
Y. M. GONTAR, K. V. TKACH, B. O. YENA, A. V. VASYLENKO

TOWARDS INFORMATION SYSTEM DEVELOPMENT FOR DATA EXTRACTION FROM WEB

Today, the Internet contains a huge number of sources of information, which is constantly used in our daily lives. It often happens that similar in
meaning information is presented in different forms on different resources (for example, electronic libraries, online stores, news sites and etc.). In this
paper, we analyze the extraction of information from certain type of web sources that is required by the user. The analysis of the data extraction
problem was carried out. When considering the main approaches to data extraction, the strengths and weaknesses of each were identified. The main
aspects of the extraction of web knowledge were formulated. Approaches and information technologies for solving problems of syntactic analysis
based on existing information systems are analyzed. Based on the analysis, the task of developing models and software components for extracting data
from certain types of web resources were solving. A conceptual model of extracting data was developed taking into account web space as an external
data source. A requirements specification for the software component was created, which will allow to continue working on the project and to clearly
understand the requirements and constraints for implementation. During the process of modeling software, the following diagrams have been
developed, such as activities, sequences and deployments, which will then be used to create the finished software application. For further development
of the software, a programming platform and types of testing (load and modular) were defined. The obtained results allow to state that the proposed
design solution, which will be implemented as a prototype of the software system, can perform the task of extracting data from different sources on the
basis of a single semantic template.
Key words: information, web search, data extraction, data source, data mining, language standards, informational technology.

I0. M. TOHTAP, K. B. TKAY, B. A. €HA, A. B. BACHJIEHKO
MIIXIJI 10 PO3POBKU IHOGOPMAIIIHOI CACTEMH JJISI EKCTPAKIIL JAHUX 3 BEB

CroroHi [HTepHET MICTHTh BeNUYE3HY KUTBKICTh DKepen iHopMaril, sika MOCTIHHO BUKOPHCTOBYETHCS B HALIOMY IOICHHOMY *HUTTi. YacTo OyBae,
10 CXO’Ka 3a 3MIiCTOM iH(opMamis MpeacTaBieHa B pi3Hii (opmi Ha pi3HHX pecypcax (HANPUKIAL, IEKTPOHHI Oi0MIOTEKH, IHTEpPHET-Mara3uHHu,
HOBWIHHI caiiTn). Y naHiif po0OTi aHai3yeThCs BUIydeHHs iH(popManii 3 Be6-pkepert IeBHOTo THUILy, sIke HOTpiOHO KopucTyBaueBi. [IpoBeneHo anaii3
npobiaeMyd BUIyYeHHs OaHuX. [IpH po3misii OCHOBHHX IIAXOMIB MO €KCTpakmii AaHMX OyaM BUALNEHI CHIbHI 1 c1abki CTOPOHH KOXKHOTO.
CthopMynb0BaHO OCHOBHI aCHeKTH BHIIyYeHHs BeO-3HaHb. [IpoanamizoBaHo mimxoan Ta iHGbOpMAIiiiHi TEXHOJOTII BHPIIICHHS MPoOIeM
CHHTaKCHYHOI'O aHAJIi3y HA OCHOBI iCHYIOUMX iH(popMaliiHuX cucteM. Ha 0CHOBI mpoBeeHoro ananizy Oyna copmoBaHa 3agada po3poOKu Moerei
i NMpOrpaMHUX KOMIIOHEHTIB JUIi OTPUMAaHHS NAHUX 3 BeO-pecypciB MEBHOro THIly. Po3poOiieHO KOHIENTyalbHY MOJENb BHIYyYCHHS IaHHX 3
ypaxyBaHHSM BeO-TIPOCTOPY SK 30BHILIHBOIO JpKepesa JaHuX. Byia cTBopeHa crermdikaiiss BUMOT JUlsi HPOrPAMHOTO KOMIIOHEHTA, 10 103BOJIHTh
MPOJIOBXKHUTH POOOTY HaJl POSKTOM, 1100 YiTKO pO3yMIiTH BUMOTH i 0OMeXeHHs Juisl peasizauii. [Ipu MozenoBaHHI POrpaMHOro 3abe3neyeHHs Oyiu
PpO3poOIeHi HACTYIHI [iarpamu, Taki sk AlarpaMi KJIaciB, aKTHBHOCTI, HOCIIZOBHOCTI i PO3TOPTAaHHS, SIKi MOTIM OyAyTh BUKOPHUCTOBYBATHCS IS
CTBOPEHHSI TOTOBOro aojarka. J[ms momanbiioi po3poOKdM OporpaMHOro 3adesmedeHHs Oyna BU3HAYeHa UIaTGOpMa MPOrpaMyBaHHS 1 BHAN
TECTyBaHHs (HaBaHTAXYBAJIbHUN 1 MoAyibHe). OTpUMaHI pe3yJbTaTH JO3BOJISIOTH CTBEPKYBATH, IO IPOIOHOBAHE NPOCKTHE DIlCHHS, sIke Oye
peanizoBaHO y BUIVIAAI MPOTOTHITY MPOIPAMHOI CHCTEMH, MOXKE BHKOHYBATH 3aBIAHHS CGKCTPAKIii JaHUX 3 PI3HUX MKEpea Ha OCHOBI OJHOTO
CEMaHTUYHOI'O LI1a0JIOHY.

KuawuoBi ciaoBa: iHpopMmallis, €KCTpakilis TaHUX, JKEPEIO JaHHX,iHTCICKTYyalbHUIl aHali3 JaHUX, S3UKOBI CTaHAApTH, iHpOpMaiiiiHi
TEXHOJIOTIT.

10. H. TOHTAPAB, E. B. TKAY, b. O. EHA, A. B. BACH/IEHKO
MOJIXO0/1 K PA3BPABOTKE UH®OPMAIIMOHHOM CUCTEMBI JIJI1 U3BJIEUEHU A JTAHHBIX U3
BEB

Ceropmst IHTEpHET CONEPIKUT OrpOMHOE YHCJIO HCTOYHHKOB HH(OPMALNH, KOTOpast IIOCTOSTHHO HMCIIONB3yeTCsl B HallleH exeIHeBHOW xH3HH. YacTo
ObIBaeT, YTO IIOXOXKasi MO CMBICIY HH(pOpPMaIWs IpeACTaBIcHa B pa3HOH (opme Ha pasHBIX pecypcax (HAaIpHMep, JJIEKTPOHHBIE OMOIMOTEKH,
HHTEpPHET-Mara3uHbl, HOBOCTHBIE CalfThl). B maHHON paboTe aHaIM3MpyeTcs: n3BledeHHe WHGOPMAIMH U3 BeO-HCTOYHHKOB OMPEAEICHHOrO THIIA,
KOTOpoe Tpebyercsi mosp3oBatenio. [IpoBeneH aHamn3 mpoOiieMbl W3BICYCHHs AAHHBIX. [IpH pacCMOTPEHHH OCHOBHBIX MOAXOIOB K IKCTPAKIIHU
JAHHBIX OBUIM BBIJEIEHBl CIJIBHBIE M Cla0ble CTOPOHBI Kaxkmoro. CQopMynMpoBaHBI OCHOBHBIC aCIEKTHl H3BJICUECHHS BeO-3HAHMIL.
[poaHamu3upOBaHbBl TMOAXOABl M HH(MOPMAIMOHHBIE TEXHOJOTHH PEUICHHS MpOOJeM CHHTAKCHYECKOTO aHain3a Ha OCHOBE CYIIECTBYIOIIMX
nH(OOPMALMOHHBIX cicTeM. Ha ocHOBe mpoBeeHHOro aHanmu3a 6bputa chopMUpOBaHa 3a/1a4a Pa3pabOTKH MOJENeH 1 IPOrPAMMHBIX KOMITIOHEHTOB TSt
H3BJICUCHHMST JTAaHHEIX U3 BEO-PECYpPCOB OIpeielIeHHOro THIa. Pa3paboTaHa KOHIENTyanbHasi MOIENb H3BJICUCHHS JTaHHBIX C YUETOM BeO-IIpoCTpaHCTBa
KaK BHEIIHEro HCTOYHHKA JaHHBIX. bbla co3mana cnermbukanis TpeGOBaHuMiA s TPOrPAMMHOTO KOMITOHEHTA, YTO MO3BOJIHT IPOJOKUTE PaboTy
HAJ MPOEKTOM, YTOOBI Y€TKO MOHUMATh TPEOOBAHUsI M OTPAHHYCHHUS I peanu3aiud. [Ipu MOAETHPOBaHHH MPOrPAMMHOIO OOeCTIeYeHHs OBLTH
pa3paboTaHbl CIEyIOIHe THarpaMMbl, TaKHe Kak JHarpaMMBl KJIACCOB, aKTHBHOCTH, MOCIIEIOBATEILHOCTU M Pa3BepPTHIBAHNUS, KOTOPBIE 3aTeM OymyT
HCTIONB30BAThCS ISl CO3IAHUsI TOTOBOTO TpmioxkeHus. Jsi manpHeinieit pa3paboTKi MporpaMMHOro obecredeHus Oblia omperesieHa miarhopma
MPOrPaMMHUPOBAHKS M BHIbI TECTUPOBAHUS (HATPY30YHOEe M MOAYIbHOE). [lomydeHHbIe pe3yabTaThl MO3BONSAIOT YTBEP)KAATh, YTO MHpeIaraeMoe
MPOEKTHOE pEIIeHHEe, KOTOpoe OyAeT peasli30BaHO B BHJE NMPOTOTHUIA NPOIPAMMHOM CHCTEMBI, MOXKET BBINOJIHATH 33/1aUd KCTPAKLHU JaHHBIX U3
Pa3HBIX HCTOYHUKOB HA OCHOBE OJTHOTO CEMAHTHYECKOTO MIA0I0OHA.

KuroueBbie cioBa: uH(OpMaIMs, SKCTPAKUUS —JTaHHBIX,
HHGOPMALOHHBIE TEXHOJOTHH.

HUCTOYHUK JTaHHBIX, HHTGHHEKTyaHLHLIﬁ aHalin3 [JaHHBIX, CTaHOapThI,

Introduction. The amount of information available
through the Internet is constantly increasing.
Unfortunately, extracting useful content from this huge
amount of data remains an open question. The lack of
standard data models and structures makes developers
create solutions from scratch. In some cases, the use of
descriptions of metadata or data models can help to

understand the structure of data.

An expert figure is still needed in many situations
where developers do not have the right fundamental
knowledge. This forces developers to spend expensive
time, absorbing expert knowledge. In other areas there are
promising solutions that use machine learning techniques.
However, increasing accuracy requires an enlargement the

© Y. M. Gontar, K. V. Tkach, B. O. Yena, A. V. Vasylenko, 2018

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 53

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

complexity of the system that cannot be realized in many
projects.

The purpose of the study is to develop software
components for extraction of data from web resources of a
certain type. This requires an analysis of the extraction
algorithms, modern programs that are implemented and an
overview of the methodology and technology solutions to
the problem.

Data extraction. The Internet needs a language that
is compatible with the syntax, which allows the user to
display data with saving a particular layout. HTML
became the language of the Internet and, therefore, the
most accepted decision. However, HTML, by default,
does not provide any mechanism that facilitates the
automatic analysis of existing documents [1]. This
restriction does not allow to distinguish content from the
layout and semantics of data.

Several standards, such as RDF, RDFS and OWL,
have been developed to provide a common syntax for
defining data models. These solutions allow to define
ontologies that support queries. These technologies are
usually not understood by developers who initially ignore
the process of semantic annotation in developing HTML
pages. To simplify this problem, a later approach called
Schema defines a vocabulary of concepts such as people,
places, events and products that allow annotation of data
contained in an HTML document. This allows to establish
a connection between the content and any existing
scheme, bring semantics to the Internet.

Web page design can hide data from existing search
engines [2]. Using dynamic content, CAPTCHAS, private
web pages, scripts or unconnected content among others
leads to the creation of Deep Web. A simple example is
web pages that use search queries in database. Information
contained in the database can’t be indexed by the search
engine, as this requires the software engine interact with
the search form, defines the search parameters, and
understands the semantics of the returned data.
Commercial search engines, such as Google, Bing, or
DuckDuckGo, are developing their tools with a clear
focus on indexing the so-called surface network. This
makes us think that most of the information contained on
the Internet is not indexed. This problem has recently been
covered by the MEMEX DARPA project, which shows an
attempt to index the information contained in the Deep
Web [3].

The processing of data on any of these webpages
involves a certain degree of human interaction (filling out
the search form, script interaction, etc.). After
downloading raw data, it becomes a kind of index format
that can be stored in the database for further analysis [4].
When solving the problem of extracting knowledge, most
solutions are developed from scratch, engaging in data
extraction, analysis and storage. In the case of multiple
data sources, the complexity of the problem increases until
it becomes impossible.

We can identify three key players in any problem of
knowledge extraction. The first is a data source containing
relevant information (for example, a web page). The
second is a database for data storage purposes (for
example, MySQL). The third is an expert who can

determine how to translate data into a source and into a
database. Transformation between source and base can be
considered automatically done. Regardless of the level of
automation, the role of an expert is needed to insert some
initial semantics of the data before the removal. In
addition, the expert is responsible for determining whether
data extraction is correct or not. The fourth actor can be
developers. The developer is defined as a professional
who can contribute to the development of a solution in a
technical sense. The developer is appointed to write code,
subprograms and programs that prepare processed data.

As a rule, some aspects are ignored in existing
projects, such as:

1 Several data sources. Most approaches to data
extraction plan deal with several data sources that are
similar in design (for example, on Amazon product pages,
Wikipedia, etc.). The system must take into account that
the data sources do not have a unique design, basically
inconsistent in the source or several sources of
information.

2 Multilingual approach. Most existing solutions
consider only data sources written in one language. For
example, Member Countries and partners use their official
language for the publication of any EU-related document,
and official central reports are available in English, French
or German, as the most commonly used languages, by the
number of speakers.

3 Extract data from different file formats: HTML is
the most common data format. However, other formats
such as XML, DOC or PDF may be present. For HTML
and XML there are various parsers that also store the
formatting structure, so you can use it later. DOC and
parser PDFs are harder to find, and most of them extract
text data without any formatting. This makes it difficult to
automatically extract data. In some extreme cases, files
are archived in various formats (for example, ZIP, RAR,
self-extracting RAR), and the file preprocessor component
must be designed to receive data. Moreover, data
encoding is also a problem that depends on the base
system. In the current web world UTF-8 is a widely used
standard, but in some cases, servers send another encoding
from the actual file encoding.

4 Multiple recurring operations and continuous
updates. In system design, it’s important to keep in mind
that data from relevant data sources develops over time,
which means that you can add more documents, but the
design of the extraction process can also be changed
through structural changes to the document. Most of the
operations can be reused in domains and data sources, so
the conveyor needs to be reused and configurable.
Moreover, these operations must be performed
continuously and repeatedly, without much human
intervention.

The simplest solution adopted by many projects is to
use XQuery [5] or regular expressions to extract the exact
path to the target element. This approach is not very
resistant to structural changes of the document template.
Another popular approach is the use of advanced style
table language transformations (XSLT) [5], which
provides a unified syntax for writing conversion rules
from compatible XML languages. In the basic form,

Bicnux Hayionanvrozo mexuniunoeo ynisepcumemy «XI11». Cepia: Cucmemnuii
54 ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

HTML is basically XML-compatible, so this approach can
be applied to HTML. This approach is more durable than
XQuery to structural changes, but it is usually very
difficult to debug. Another simple technique, very
practical in small projects, is a simplified version or
HTML. This is achieved by simplifying the syntax of
HTML by deleting all elements except the main HTML
syntax and formatting [6].

In recent vyears, the problem of extraction of
knowledge is intensively studied. The first family of
solutions has studied the use of domain languages to
determine how data should be deleted. Solutions similar to
those presented in use the language of extracting
declarative information to determine data extraction plans.
Similarly, [7] uses rule sets to determine extraction. In
these solutions, the quality of extraction depends in
particular on the operators’ skills to determine the rules
for extracting. The second family of solutions investigates
the use of machine learning techniques to improve the
information extraction. These solutions are based on using
output models that attempt to build relationships for this
data set.

An overview of the existing methods of analyzing
web content with an emphasis on automated and machine
learning methods was reviewed earlier [8]. An automated
iterative process for creating a formal description of a
document series template using a single, homogeneous
template can automatically detect duplicate structures
within a single template and create an approximation of
the page structure, as well as the ability to obtain any
relevant data [9]. IEPAD uses this approach and reduces
the complexity of the problem by grouping HTML
element tags into different categories [10]. The result of
IEPAD is the PAT tree, which is closer to the single,
uniform, template document. Van [11] broadens this
approach by comparing the similarity of a tree obtained by
constructing several tree elements of HTML.

One of the popular frameworks that unifies the
methods of machine learning and based on dictionaries is
GATE [12]. This toolkit provides a complete structure for
annotation, creating dictionaries for named objects, and
various methods for processing natural language and
machine learning, which is very useful for creating
controlled approaches in Data Mining.

Recently, the DeepDive framework [13] has
attracted much attention from the research community.
DeepDive uses a set of defined rules to establish
relationships between objects. The final creation of a
database is an iterative loop, in which the operator can
control the process of machine learning, identifying errors
committed by the system. Similarly, Google Knowledge
Vault builds relationships using RDF triplets. This
approach shows some similarity to DeepDive with a clear
emphasis on data scalability.

Approaches to data extraction from web resources.
Extraction is a process of obtaining data from resources,
which, as a rule, has a more practical component than the
theoretical one. The main purpose of extraction is the
collection of data (parsing) with subsequent preservation
in the right format. In fact, the task is to write HTML

parsers, then it will be discussed in more detail. There are
several approaches to extracting data.

DOM tree analysis using XPath. Using this
approach, data can be obtained directly by the identifier,
name, or other attributes of the tree element (such item
can be paragraph, table, block, etc.). In addition, if an item
is not marked with any identifier, then you can get it by
some unique path, going down the DOM tree or
navigating through a collection of similar elements.

Advantages of this approach;

e data of any type and any level of complexity can
be obtained:;

e knowing the location of an element, you can get
its value by writing the path to it.

Disadvantages of this approach:

e various HTML / JavaScript engines generate a
DOM tree differently, so you need to bind to a
specific engine; the path to the element may
change, therefore, as a rule, such parsers are
designed for a short period of data collection;

e the DOM path can be complex and not always
unambiguous.

This approach can be used in conjunction with the
Microsoft.mshtml library, which is essentially the main
element in Internet Explorer.

The Data Extracting SDK uses Microsoft.mshtml to
analyze the DOM tree, but it is a "superstructure™ over the
library for ease of use.

The next evolutionary stage of the DOM tree
analysis is the use of XPath — that is, the ways that are
widely used in parsing XML data. The essence of this
approach is to use a simple syntax to describe the path to
an element without need for a gradual downward
movement of the DOM tree. This approach is well known
by the jQuery library and the HtmlAgilityPack library.

Parsing lines. Despite the fact that this approach
cannot be used to write serious parsers, it’s necessary to
pay attention to it.

Sometimes the data is displayed using a certain
template (for example, a mobile phone characteristics
table) when the values of the parameters are standard and
only their values change. In this case, the data can be
obtained without analyzing the DOM tree, and by parsing
the strings, for example, as it is done in the Data
Extracting SDK. The use of a set of methods for analyzing
strings sometimes (more often, in simple template cases)
is more effective than a DOM tree or XPath analysis.

Using Regular Expressions. Regular expressions
should be used only for obtaining data that has a strict
format — electronic addresses, telephones, etc., in rare
cases — addresses, template data.

Visual approach. At this moment, the visual
approach is at an early stage of development. The essence
of the approach is that the user could "configure" the
system without using a software language or API to get
the necessary data of any complexity.

Methods of analyzing web pages at the level of
information blocks. There are currently a large number
of available web scanners in open source projects. One is
the Apache Nutch [14] project, which offers a complete

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 55

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

structure for the development of distributed and scalable
scanners that can easily be linked to other solutions from
the Apache environment. However, for smaller-scale
solutions, other frameworks such as Scrapy are more
acceptable. Scrapy lets to define a parallel scanner with
Python and provides the developer with a structure that
manages simultaneous queries and makes it easier to
connect to applications based on Django. To handle pages
using JavaScript, the most common approach is to use the
Selenium driver [15]. This driver allows you to connect a
large number of browsers, such as Firefox or Chrome,
using a scanner and emulate the behavior of the user who
clicks or text over the current page.

Formulation of the problem. Scanning web pages
is the first step in data collection. The items to be
traversed may vary, depending on the data source. How to
crawl web pages depends on the design of the data source.
In some cases, pages are easily accessible through a single
URL or can be obtained after completing the search form.

Possible scenarios:

e ldentity by public identifier. In this case, each
item that is to be traversed is uniquely identified
with a URL that contains a unique identifier. If
the generation of identifiers is known, you can
statically generate a list of possible URLs for the
query.

e Identification on an unknown identifier. As in the
previous scenario. However, how the IDs are
generated is unknown. In this case, the identifiers
must first be extracted from the website itself,
and then used to create a final destination URL
that is to be traversed.

e Dynamic URLs. Many platforms distribute
content to dynamic URLs. This makes it
impossible to statically generate a list of
addresses for study. This script refers to the
initial navigation that requests the URL web
platform and then generates unique URLs that
can identify these elements to ensure their
uniqueness in the archival system.

e As mentioned earlier, it’s difficult to develop a
common scan solution that can be useful in all
scenarios. This is due to the fact that many
platforms contain a large number of JavaScript
code in conjunction with AJAX messaging. It is
possible to generalize some aspects that need to
be taken into account during the phase of
circumvention.

e The following collection of links. Many web
portals display content received after a database
request. This means that not all of the existing
content is displayed at once, but only a small
part. One thread can scan each page with a list of
links, while others can navigate through existing
links.

e Not all items are displayed. The results displayed
in these systems are simply the result of a
database query. In some cases, the result set is
divided into pages that need to be switched, in
other cases the resulting set has a limit that

prevents full display of existing results. In these
cases, it may not be possible to scan all existing
results because the system does not disclose this
information.

e Massive use of JavaScript. In many cases, the
use of JavaScript solutions greatly complicates
the scanning of these systems. The easiest
solution is to emulate user behavior using
Javascript engines. However, it imposes
penalties on the side of the scan due to the
excessive use of resources of some browsers.

o Limit of queries. To avoid attacks such as "denial
of service" (DDoS), many platforms track
requests. Exceeding a certain number of queries
may result in a temporary termination of the
service for the user. Each platform is different,
and only a trial error method can reveal what
measures these platforms use.

e Cookies and sessions. Many systems use cookies
to store session identifiers, which allow the
server to identify query parameters that are used
by the user. However, these cookies have an
expiration date, which can sometimes break the
extraction on some platform.

¢ Not serviced. Bypass servers may fail. Multiple
crawling of these servers will simply return the
HTTP error code. However, many systems return
a web page that informs about the inaccessibility
of the service.

e Type of content. The content type code returned
by the HTTP header is especially important
when parsing web pages that are not encrypted
using standard ASCII or UTF8.

The task of this work is to analyze and develop
models and software components for extraction of data
from web resources of a certain type.

Specification of software requirements. The
component developed in this work provides a convenient
opportunity for automatic data extraction and its further
automatic analysis. The primary area of knowledge is the
extraction and analysis of marketing information for
obtaining a sample of the most relevant and most
advantageous offers in the market. But the component
developed in this work has a wide range of uses, from
travel agencies to state-owned enterprises.

The purpose of this project is to automate the process
of extracting accurate and specific data contained in
various WEB-pages. An example of the overall interaction
of the system is shown in Figure 1. This system is a
complex software and hardware. For its full functioning,
the software is developed taking into account the ability to
process a large number of requests from users of the
product, as well as its reliability, openness for further
development, security and properly developed mode for
its further support.

This component is developed as a component of the
server part of larger software systems. The relationship
between the client and the component that is developed on
the server use HTTP queries. The request will contain
information about which pages to extract, and what type

Bicnux Hayionanvrozo mexuniunoeo ynisepcumemy «XI11». Cepia: Cucmemnuii
56 ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

of data they should provide. On the server component is
trying to get information from the page, and if the
extraction was successful — analyzes the page. The
information that meets the requirements of the user is
returned to the client as the response to the request.
Communication with the server is carried out using the
same HTTP requests, but they only contain a template,
created after the analysis, for further use on similar sites.

Process 3 HTML
page

Analysis and <
{ Data Structure I

WEB page
DATA OBTAINED resource »

Results

HTML

Process 2

Data Extraction

N

Resource
adresses

Verified

resource Edl’eSSv Extended

information

Process 1
— Extraction Y

source

Processing
incoming
Data

ADRESSES

Result of
work

A
Desired
functionality

S

User

Fig. 1. DFD Diagram of developing system

Figures 2 and 3 depict a component diagram and a
use-case diagram respectively.

The system will receive the WEB-address on the
input, and return the result to the user in the format that
will select in advance. Connection between the interface
and the server will use JSON as the serialization format.

Increasing the number of supported resources should
not affect performance. Using pre-created and generated
templates by the component itself, analyzing pages with
increasing number of resources should decrease
complexity and consume less time. To implement this
requirement, a requirement stability ratio will be used
which shows how many of the already implemented
requirements have to be processed from release to release
in the development of new features. Also, this metric
gives an idea of how easy it is to scale the functional of
the system, adding new features.

Transferability is implemented through the use of
cloud storage. Due to this, it does not matter which server
will store the component. If you need to move it from one
server to another, the cost should be minimal. The metric
for this requirement is the Adaptability Measure, which
measures the ability of the system to adapt to requirements
changes or re-design of the system or the integration of
applications.

Paying attention to the fact that the system can grow
to very large sizes, since there are so many online sites,
the complexity of the newly configured resources should
not be complicated. Due to the configuration of the
extractor using YAML files, the developed component
can easily adapt to extraction from new a resource without
losing a lot of time and effort.

WEB client

Server

hitp(s)

WEE browser

i

‘ 15 runtime anvironment
L

Angular

i

htips)

! | Relalion—
i 2.m a
= R
‘WebPack s msseaaad

Database extracior

1 Cloud Hesting

WEB data extractor

TCPIP

H
I WEB Crawling

\
H
REST Contrallar

A Dataness

Page Analizator

Fig. 2. Component diagram of developing system

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 57

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Processing incoming
data
Using configuration file

Component

Data extraction o

b
-:e.‘:ﬂ.&."‘f.‘"'=

<include=

L Using template
o

Response generation
Forming search template

Zeinclude==

Fig. 3. Use-case diagram of developing system

The regression coefficient will be used as a metric
for this requirement. The purpose of the metric is to show
the efforts of the team: the creation and adjustment of new
features or the bulk of time is lost to work with existing
parts of the software. The closer the coefficient to 0, the
less was the mistakes made to the existing functional in
the implementation of new requirements. If the value is
greater than 0.5, then we spend more than half of the time
on the restoration of earlier functions of the software.

Software development and testing. The main
criterion for choosing a platform was the possibility of
cross-platform. So, among all the well-known
programming languages, the choice falls on Java. In
addition to cross-platform, the strengths of the Java
language are also high reliability of work, the
development of language. The OOP paradigm gives the
language such a wonderful feature as scalability, which
makes it possible to expand the system many times
without difficulty. The Java language is designed to be as
reliable as possible. For example, it is prohibited to use
multiple imitation in order to avoid ambiguity when
referring to the parent class. Instead, the notion of an
interface that is no longer a class has been introduced, but
contains general guidelines for creating classes and
provides multiple imitation.

At the first stage of testing, it is necessary to conduct
a modular testing of all components of the system that can
be tested separately from the other in the artificial testing
environment. Unit testing will be conducted using Junit’s
Automation Testing Tool. This choice is due to the simple
integration of Junit with Java. In the future it is necessary
to perform integration testing, which involves testing in
two directions. Integration testing of the component level
after unit testing is required to verify the correct
interaction of parts of the business logic application. This
kind of testing can detect errors in the implementation of
external interfaces or their improper use. System-level
integration testing is needed to find possible mistakes in
the interaction between different subsystems of the
software, its interaction with the operating system, and
other applications.

Load testing is a subset of performance testing, the
collection of indicators and the determination of the
productivity and time of the response of the software
system or device in response to an external request in
order to establish compliance with the requirements of this
system.

Apache JMeter is a load testing tool developed by
the Apache Software Foundation, a Jakarta subproject.
Although JMeter was originally developed as a Web
application testing tool, it is currently capable of
performing load tests for JDBC connections, FTP, LDAP,
SOAP, JMS, POP3, IMAP, HTTP, and TCP.

Postman is a powerful set of API testing tools that
has become a must have for many developers. Helps to
create test case APIs and improve the productivity of
development work. The main purpose of the program is to
create collections with API requests.

Locmetrics is very simple freeware. Among the
supported languages — C/C++, C#, Java, SQL — it is
possible to calculate not only SLOC metrics and its
varieties, but also cyclomatic complexity.

Conclusions. An analysis of the data extraction
problem was performed. The approaches and information
technologies of solving parsing problems on the basis of
existing information systems are analyzed. On the basis of
the conducted analysis, the task of developing models and
software components for extraction of data from web
resources of a certain type is set.

The conceptual model of data extraction, considering
the web space as an external data source, is developed.
This allows to get objective and relevant search results
data in the web space.

A requirement specification for a software
component has been created. This will allow further work
on the project to clearly understand the requirements and
limitations to the implementation. The approximate
deployment diagram and all types of users that need to be
implemented are translated.

In the simulation of the software, the following
diagrams were developed such as a class, activity,
sequence and deployment diagrams, which will then be
used to build a ready-made application.

A software component has been built that allows
extraction of data from trading platforms. Its testing and
elaborated metrics are responsible for the quality of the
product being developed.

Cnucok sitepatypn

1. Baumgartner R., Gatterbauer W., Gottlob G. Web data extraction
system. In Encyclopedia of Database Systems. 2009. P. 3465-3471.

2. Anupam V., FreireJ., Kumar B., Lieuwen D. Automating web
navigation with the WebVCR. Computer Networks. 2000. P. 503—
517.

3. Memex (Domain-Specific Search). URL:
www.darpa.mil/program/memex (mata 3Bepuenns: 02.11.2017).

Bicnux Hayionanvrozo mexuniunoeo ynisepcumemy «XI11». Cepia: Cucmemnuii
58 ananis, ynpasninus ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

4. Gatterbauer W., Bohunsky P., Herzog M., Kriipl B., Pollak B. 3. Memex (Domain-Specific Search). Available at:

Towards domain-independent information extraction from web www.darpa.mil/program/memex (accessed 02.11.2017).

tables. Proceedings of the 16th international conference on World 4. Gatterbauer W., Bohunsky P., Herzog M., Kriipl B., Pollak B.

Wide Web (May 08-12, 2007, Banff, Alberta, Canada). New York, Towards domain-independent information extraction from web

ACM, 2007. P. 71-80. tables. Proceedings of the 16th international conference on World
5. BonifatiA,, BragaD., CampiA, CeriS. Active XQuery. Wide Web (May 08-12, 2007, Banff, Alberta, Canada). New York,

Proceedings of the 18th International Conference on Data ACM, 2007, pp. 71-80.

Engineering (26 February — 1 March 2002, San Jose, California). 5. Bonifati A, BragaD., CampiA, CeriS. Active XQuery.

2002. P. 129-138. Proceedings of the 18th International Conference on Data
6. Bohannon P., Dalvi N., Filmus Y. Automatic web-scale information Engineering (26 February — 1 March 2002, San Jose, California).

extraction. Proceedings of the ACM SIGMOD ICMD. 2012. P. 609— 2002, pp. 129-138.

612. 6. Bohannon P., Dalvi N., Filmus Y. Automatic web-scale information
7. ShenW., AnHai D., Jeffrey F. Naughton, Ramakrishnan R. extraction. Proceedings of the ACM SIGMOD ICMD. 2012,

Declarative information extraction using datalog with embedded pp. 609-612.

extraction predicates. In Proceedings of the 33rd International 7. ShenW., AnHai D., Jeffrey F. Naughton, Ramakrishnan R.

Conference on Very Large Data Bases. VLDB Endowment. 2007. Declarative information extraction using datalog with embedded

P. 1033-1044. extraction predicates. In Proceedings of the 33rd International
8. Crescenzi V. RoadRunner. Towards automatic data extraction from Conference on Very Large Data Bases. VLDB Endowment, 2007,

large Web sites. Proceedings of the 27th International Conference pp. 1033-1044.

on Very Large Data Bases. 2001. P. 109-118. 8. Crescenzi V. RoadRunner. Towards automatic data extraction from
9. Agichtein E., Gravano L. Snowhball: extracting relations from large large Web sites. Proceedings of the 27th International Conference

plain-text collections. Proceedings of the fifth ACM conference on on Very Large Data Bases. 2001, pp. 109-118.

Digital libraries. 2000. P. 85-94, 9. Agichtein E., Gravano L. Snowball: extracting relations from large
10. Arasu A., Garcia-Molina H. Extracting Structured Data from plain-text collections. Proceedings of the fifth ACM conference on

Webpages. Proceedings of SIGMOD International Conference on Digital libraries. 2000, pp. 85-94,

Management of Data (June 9-12, 2003, San Diego, California). = 10. Arasu A., Garcia-Molina H. Extracting Structured Data from

ACM, New York, 2003. P. 337-348. Webpages. Proceedings of SIGMOD International Conference on
11. John T. Van Stan, Aron Stubbins, Tree DOM: Dissolved organic Management of Data (June 9-12, 2003, San Diego, California).

matter in throughfall and stemflow. Limnology and Oceanography ACM, New York, 2003, pp. 337-348.

Letters. 2017. Vol. 3. P. 199-214. 11. John T. Van Stan, Aron Stubbins, Tree-DOM: Dissolved organic
12. Cunningham H., Tablan V., Roberts A., Bontcheva K. Getting more matter in throughfall and stemflow. Limnology and Oceanography

out of biomedical documents with gate’s full lifecycle open source Letters. 2017, vol. 3, pp. 199-214.

text analytics. PLoS Comput Biol. 2013. No. 9 (2). P. 31-47. 12. Cunningham H., Tablan V., Roberts A., Bontcheva K. Getting more
13. ShinJ., Wu S., Wang F., Christopher De Sa, Ce Zhang C., Re C. out of biomedical documents with gate’s full lifecycle open source

Incremental knowledge base construction using deepdive. VLDB text analytics. PLoS Comput Biol. 2013, no. 9 (2), pp. 31-47.

Endowment. 2015. Vol. 8. No. 11. P. 1310- 1321. 13. ShinJ., Wu S., Wang F., Christopher De Sa, Ce Zhang C., Re C.
14. Khare R, Cutting D., Sitaker K., Rifkin A. Nutch: A Flexible and Incremental knowledge base construction using deepdive. VLDB

Scalable Open-Source Web Search Engine. Proceedings of the 14th Endowment. 2015, vol. 8, no. 11, pp. 1310-1321.

International Conference on World Wide Web. 2005, vol. 1, p. 32. 14. Khare R, Cutting D., Sitaker K., Rifkin A. Nutch: A Flexible and
15. Awvasarala S. Selenium WebDriver Practical Guide. Pact Publishing, Scalable Open-Source Web Search Engine. Proceedings of the 14th

2014. 266 p. International Conference on World Wide Web. 2005, vol. 1, p. 32.

15. Avasarala S. Selenium WebDriver Practical Guide. Pact Publishing,
References 2014. 266 p.

1. Baumgartner R., Gatterbauer W., Gottlob G. Web data extraction Hadiiiuna (received) 25.05.2018

system. In Encyclopedia of Database Systems. 2009, pp. 3465-3471.

2. AnupamV., FreireJ.,, Kumar B., Lieuwen D. Automating web
navigation with the WebVCR. Computer Networks. 2000, pp. 503—
517.

Bioomocmi npo asmopis | Ceedenust 06 asmopax | About the Authors

Tonmap KOnia Muxonaiena (onmape FOnus Huxonaesna, Gontar Yulia Mukolaivna) — Harionansauit
TEXHIYHUH YHIBEPCUTET «XapKIiBChKHI TMOJITEXHIYHUI 1HCTUTYT», acmipaHT; M. XapkiB, Ykpaina, ORCID:
https://orcid.org/0000-0002-3748-5086; e-mail: gontaryn@gmail.com

Txau Kamepuna Bikmopisna (Tkau Examepuna Buxmoposena, Tkach Kateryna Victorivna) — Hamionansauit
TEXHIYHUHA yHIBepcUTET «XapKiBCPKAN TIONITEXHIYHHHA 1HCTUTYT», CTyIeHT; M. XapkiB, Yxkpaina, ORCID:
https://orcid.org/0000-0001-7104-800X; e-mail: tkachkv@i.ua

€na bozoan Onexcanoposuu (Ena Bozoan Anexcandposuu, Yena Bohdan Oleksandrovych) — HarionansHuit
TEXHIYHMH yHIBepcuTeT «XapKiBCbKMH IOJITEXHIYHUH I1HCTUTYT», CTyneHT; M. XapkiB, Ykpaina, ORCID:
https://orcid.org/0000-0003-4791-956X; e-mail: enafortest@gmail.com

Bacunenko Apmem Bikmoposuu (Bacunenxo Apmem Buxmopoeuu, Vasylenko Artem Victorovych) —
HamionaneHuil TexHIYHWH yHIBepCcHTET «XapKiBCBKHH TONITEXHIYHWHA IHCTHTYT», acmipaHT; M. XapkiB, YKpaiHa,

ORCID: https://orcid.org/ 0000-0003-3121-4856; e-mail: artyom4ek@yandex.ua

Bicnux Hayionanvnoeo mexwniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
auanis, ynpasiinksa ma ingopmayiiuni mexnonozii, Ne 22 (1298) 2018 59

