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TOTAL WEIGHTED TARDINESS MINIMIZATION FOR TASKS WITH A COMMON DUE DATE ON
PARALLEL MACHINES IN CASE OF AGREEABLE WEIGHTS AND PROCESSING TIMES

We consider n tasks scheduling problem on m identical parallel machines by the criterion of minimizing the total weighted tardiness of tasks. All tasks
arrive for processing at the same time. Weights and processing times are agreeable, that is, a greater weight of a task corresponds to a shorter processing
time. In addition, we have arbitrary start times of machines for tasks processing. The times may be less or greater than the due date or to coincide with
it. The problem in this formulation is addressed for the first time. It can be used to provide planning and decision making in systems with a network
representation of technological processes and limited resources. We give efficient PSC-algorithm with O(mnlogn) complexity that includes the poly-
nomial component and the approximation algorithm based on permutations of tasks. The polynomial component contains sufficient signs of optimality
of the obtained solutions and allows to obtain an exact solution by polynomial subalgorithm. In the case when the sufficient signs of optimality do not
fulfill, we obtain approximate solution with an estimate of deviation from the optimum for each individual problem instance of any practical dimension.
We show that a schedule obtained as a result of the problem solving can be split into two schedules: the schedule on machines which start time is less
than or equal to the due date, and the schedule on machines which start after the due date. Optimization is only done in the first schedule. The second
schedule is optimal by construction. Statistical studies of the PSC-algorithm showed its high efficiency. We solved problems with dimensions up to
40,000 tasks and up to 30 machines. The average time to solve the problem by the algorithm using the most efficient types of permutations was 27.3 ms
for this dimension. The average frequency of an optimal solution obtaining amounted to 90.3 %. The average deviation from an optimum was no more
than 0.000251.
Keywords: scheduling theory, parallel machines, total weighted tardiness, common due date, agreeable weights, PSC-algorithm
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MIHIMIBALISI CYMAPHOT O 3BA’KEHOTI'O 3AIIIBHEHHS 3AB/IAHB I3 CIIIVIBHUM
JAPEKTUBHUM CTPOKOM HA ITAPAJIEJIbHUX ITPUJIAJAX JUISI BATIAAKY Y3I'OJUKEHUX
BAI' I TPUBAJIOCTEHN

PosrnsaeThes 3a1a4a CKiIaaaHHa PO3KIIAAiB BUKOHAHHS n 3aBJaHb HA m IACHTUYHUX MapajleibHUX MPUIALaX 3a KPUTEpieM MiHiMi3alii cymMapHOro
3BAKEHOTO 3aIli3HEHHS 3aBJaHb. Bci 3aB1aHHSA HaAXOIATh Ha 00CIYroBYBaHHS OJJHOYACHO. Baru 1 TpuBasiocTi y3rojkeHi, ToOTO 3aBAaHHIO 3 MEHILOIO
TPUBAJICTIO BiANOBifae Oinbiia Bara. J{ogaTkoBo, 3a1aHi AOBUIbHI MOMEHTH MOYATKy POOOTH NMPUIIAAiB HA BUKOHAHHS 33aBJaHb, AKi MOXKYTb OyTH SIK
MEHIIIE IMPEKTUBHOIO CTPOKY, TaK 1 OinbIue, a0 criBmaaaTy 3 HUM. Y Takiii OCTAHOBI 33/1a4a PO3B’A3y€ThCs BIepiie. BoHa Moxke BUKO pUCTOBYBATHCS
1151 320 €31 eUCHHS [IaHYBAHHSI Ta HPUITHSTTS PIllICHb B CHCTEMax 3 MEPEKHUM IIPEICTABICHHSIM TEXHOIOTYHUX MPOLIECIB Ta 00MEKCHUMH PECYPCaMu.
Haseneno edextuBnmii I1JIC-anroputm i po3B’s3aHHs i3 Tpyaomictkictio O(mnlogn), sikuil BKIIOYAE MOJIHOMIaJIbHY CKJIAIO0BY 3 JOCTaTHIMH
O3HAKaMM OINTHUMAJIbHOCTI OACP)KYBAaHMX PO3B’S3KIiB, sIKa JO3BOJSE€ OTPUMYBATH TOYHHUM PO3B’A30K IONIHOMIAaJbHUM IiJQITOPUTMOM. Y pasi
HEBMKOHAHHS JOCTaTHIX O3HAK ONTHUMAJIBbHOCTI MU OTPUMYEMO HAOJIMIKCHUIl PO3B’SI30K 3 OLIHKOI BIAXHMJICHHS OTPHUMAHOTO PO3B’S3KY BiJ ONTH-
MaJILHOT'O ISl KOKHOI iHAMBINyabHOI 3a1a4i Oyab-sKOi MpakTU4HOi po3MmipHOcTi. [Toka3aHo, 10 pO3KIaA, OTPUMAHUI B PE3yJIbTaTi PO3B’SI3aHHS
3a/1a4i, MO’KHA YMOBHO PO3OHTH Ha JIBa PO3KJIAAN — PO3KIIa] Ha PHJIAaX, MOMCHT TOYaTKy POOOTH SIKMX MEHIIE ab0 OPIBHIOE IUPEK THBHOMY CTPOKY,
Ta PO3KJaJ Ha MpHIIaJax, 10 MOYNHAIOTh POOOTY Micis IUPEKTHBHOIO CTPOKY. ONTHMI3allisi BUKOHYEThCS TUIBKH y MEpIIOMY po3kiami. Jpyruii
PO3KJIaa ONTUMaTIbHUI 3a moOynoBot. CratuctuuHi pociimpkenns [1J]C-anroputMy nokasaiu i#oro BUCOKY edeKkTHBHICTh. Po3B’s3yBasmuch 3anadi 3
po3mipHicTio 10 40 000 3aBxanb 3 unciaoM npunaaiB 10 30. CepenHiil yac po3B’si3aHHS 3aJa4i aITOPUTMOM, 110 BUKOPHCTOBYE HalOLIbII eheKTUBHI
THIIH TIEPECTAHOBOK, CKiaB 27,3 Mc mpH Hii posmipHOcTi. CepegHs YacToTa OTPHMAaHHS ONTUMAIBHOrO po3B’s3Ky ckiama 1o 90,3 %. Cepenne
BIJIXMJICHHS Bl onTUMyMY — He Oinbi, Hixk 0,000251.

Kuaio4oBi ciioBa: koMOiHATOpHA ONTHMI3Allis, TEOPis PO3KIA/IB, MapaielbHi MPUIaIi, CyMapHe 3BaXKEHE 3ali3HEHHS, CIUTbHUN JUPEKTHBHUIH
CTPOK, y3ropkeni Baru, [1JJC-anroputm

A. A. IIABJIOB, E. b. MUCIOPA, O. B. MEJIbHUKOB

MHUHUMM3ALIUSA CYMMAPHOTO B3BEIIEHHOT'O 3AITA3/IIBAHUSA 3AJIAHUI C OBILLIIUM
JAPEKTUBHBIM CPOKOM HA ITAPAJIJIEJIbHBIX ITPUBOPAX JUISI CJTYYASI
COI''TACOBAHHBIX BECOB U JJIMTEJIbHOCTENU

PaCCManI/IBaETCﬂ 3a7a4a COCTaBJICHUA paCHI/ICaHI/Iﬁ BBITIOJTHEHHUA N 33[18,HI/II>’I Ha m UACHTUYHBIX TapaJlJICIbHBIX HpI/I60an T10 KpUTEPHUIO MUHUMHU3ATTUN
CYMMAapHOI'0 B3BE€IICHHOI'O OITO3aHUst 3aannii. Bee 3a/laHus MOCTYNMAT HA O6CJ'Iy)KI/IBaHI/Ie OTHOBPEMEHHO. Becau JJIATEIIBHOCTH COI'JIaCo BaHBI, TO
€CTh 3aIaHUIO C MEHBIIEH JIUTEIIBHOCTBIO COOTBETCTBYET OoubIIHii BEC. HOHOJ’IHI/ITCHLHO, 3aJ1aHbl TPOU3BOJILHBIE MOMEHTEI HavYala pa6OTI)I HpI/I60p0B
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Ha BBIIIOJHEHHE 33/IaHUI, KOTOPBIE MOI'YT OBITh KaK MEHBIIIEe JUPEKTUBHOTO CPOKA, TaK M OoJbIIe, IMO0 COBIAAATh C HUM. B Takoif mocra HOBKe 3a1a4a
pemraercst Brepsble. OHa MOXKET HCIIOIB30BATHCS JJIs1 00ECIeUeHNs! IUTAHUPOBAHHS U IIPUHATHSL PELICHUH B CHCTEMAaX C CETEBHIM IPeJ]CTaBJICHHEM
TEXHOJIOIHYECKUX IIPOLECCOB M OIpaHHYCHHBIMU pecypcami. [Ipusenen s dexrusnslii [1IJIC-anroputy ee pemeHus ¢ Tpygoemkoctsio O(mnlogn),
BKJTIOYAFOIIIH ITOJIMHOMHAJBEHYIO COCTaBILIIONIYIO C OCTATOUYHBIMH IPH3HAKAMHU OIITHMAJIEHOCTH IIOJIy4aeMbIX PELICHUIT, KOTOpasi 103BOJISIET OJIyIaTh
TOYHOE peIICHHE IOJMHOMUAIBGHBIM IIOJAaJIrOPHTMOM. B cilydae HEBBIIOJNHEHHUsS JOCTATOYHBIX IIPU3HAKOB ONTUMAJIBHOCTH MBI IIOJTydaeM
NPHOIIKEHHOE PELICHHE C OLEHKOH OTKIOHEHWS IIOMYYEHHOrO pELICHHs OT ONTUMAIBHOrO I KAaXIOH HHIMBHAYaNbHOI 3ajadd JHOOOH
HpaKTUUECKOH pazmepHocTH. [Toka3aHo, YTO pacnucaHue, OJly4eHHOE B PE3YJIbTaTe PELICHUs 3a/1aul, MOKHO YCJIOBHO Pa30MTh Ha JIBA PACI MCAHUS —
pacucaHie Ha npuOopax, MOMEHT Havaja paboThl KOTOPHIX MEHbIIE WM PaBeH AUPEKTHBHOIO CPOKA, U PACIMCAHHE Ha IMPUOOpax, HAUMHAIOLMINX
padoTy 1mocie AUPEeKTHBHOro cpoka. ONTHMH3ALUS BBIIOIHIETCS TOJIBKO B IIEPBOM pacnucaHud. Bropoe pacnucanne onTHMaibHO 110 ITOCTPOCHHIO.
Cratucruueckue ucciaenosanus [1/[C-anaropurMa mokasaiu ero BICOKYI0 dddextuBHOCTb. Pemanics 3agaun ¢ pasmeproctsio 10 40 000 3amanuii ¢
gpcioM npudopos 10 30. Cpennee BpeMst peLeHHs 3ajadl aIrOPUTMOM, HCIOIB3YIOMUM Hauboiee 3G ()EKTHBHBIC THIIBI EPECTAHOBOK, COCTABHIIO
27,3 Mc ipu 9To# pazmepHocTH. CpeHsis 4acToTa IOTydeHHs O THMAIBHOro perenus cocrapuia 10 90,3 %. CpenHee OTKIOHEHHE OT ONTHMYMa — HE

6ouee 0,000251.

KiioueBble ci10Ba: KOMOMHATOpPHAsI ONTHMH3ALMS, TEOPUSI PACIHMCAHHN, MapajUleNbHbIe IPUOOPHI, CyMMapHOE B3BCIICHHOE 3ala3iblBaHue,

o0LINii IUPEKTUBHEIN CPOK, coriacoBanHble Beca, [1]]C-anroput™

Introduction. Scheduling theory problems play an
important role in calendar and operational planning of
discrete type manufactures. In particular, those manufac-
tures include small-series productions, aircraft and ship-
building enterprises. Almost all known scheduling prob-
lems are NP-hard problems of combinatorial optimization.
Therefore, creating for them efficient approximation algo-
rithms is very important to solve practical problems of large
dimensions.

The interest for tardiness criterion is due to its prac-
tical effect in the real life [1]. This criterion is among the
most interesting criteria for production systems, especially
in the current situation where competitiveness is becoming
more and more intensive. Suppliers do ensure their markets
and customers. For that, they must have a high service
quality while focusing on delivery dates.

We solve in this paper the problem of the total
weighted tardiness minimization on identical parallel ma-
chines with a common due date and agreeable weights
(WTPA). It can be used to provide planning and decision
making in systems with a network representation of tech-
nological processes and limited resources. In particular, it
is used in the algorithmic ware of the four-level model of
planning (including operative planning) and decision
making [2].

WTPA problem statement. Given a set of tasks | =
= {J1,J2, - »jn}, the number of machines is m. For each task
Jj €], we know its processing time [; and the weight w;.
The weights are agreeable: if [; <;, then w; > w;. All
tasks have the same due date d. We need to build a schedule
o of tasks j €] on m machines that minimizes the
function:

F(o) = Z w; max|0,C; (o) — d], 1)

jel

where C; (o) is the completion time of a task j in a schedule
O.

We assume that all tasks of the set J arrive simulta-
neously. The start times of the machines’ operation for the
processing of tasks r; = d, i = I,m, may be different.
Here, a,b denotes the interval of integer numbers from a to
b. Machines’ idle times and interruptions in a task’s
processing are not allowed.

Literature review. This problem belongs to the class
of NP-hard problems since it is NP-hard already for m = 1
andr, = 0[3,4].

Many modern methods of scheduling are described in
the book [5]. Unified heuristics and annotated bibliography
for a large class of scheduling problems with tardiness
criteria are presented in [6]. The case of the problem with
equal start times of machines and equal weights of tasks
(TTP problem) was investigated in [2, 7-9]. A literature
review for TTP problem in different formulations is given
in [10]; this problem is also considered there for the case of
different release dates of tasks. The class of schedules that
contain an optimal solution is defined in [7], also an esti-
mate of the deviation of the obtained solution from the opti-
mum for each individual problem instance was formulated
there. Kovalyov et al. [8] show that there is no polynomial
approximation algorithm with a guaranteed relative error of
a solution for TTP problem unless P = NP. Lawler et al.
[11] indicated that the total tardiness problem on a single
machine with a common due date is solved in 0(n?) time.
Its version with job weights is NP-hard in the ordinary
sense [12].

Books [2, 9] present efficient PSC-algorithm to solve
TTP problem, prove sufficient signs of optimality of the
obtained solutions, and clarify the estimate of deviation of
an obtained solution from the optimum. In contrast to the
well-known estimate [7] which can be arbitrarily large even
at an optimal solution, the estimate from [2, 9] is adequate:
it is limited from above and from the bottom and shows the
maximum possible reduction of the functional during an
optimal solution construction. It was shown in [2, 9] that
the PSC-algorithm for the problem solving, sufficient signs
of optimality of the solutions obtained, and the estimate of
deviation of a solution from the optimum for each
individual problem instance obtained for TTP problem, are
also valid for WTPA problem in the case of equal weights.

The above review shows that the problem under con-
sideration is not presented in the scheduling literature in
original formulation. This explains why we address it here.
The problem in above formulation is addressed for the first
time. The purpose of this paper is to develop the PSC-
algorithm for the WTPA problem solving with an estimate
of deviation of an obtained solution from the optimum for
each individual problem instance.

Theoretical foundations. We now present basics of
PSC-algorithm for TTP problem [2, 9, 10] which underlies
the PSC-algorithm for WTPA problem.

Algorithm for initial schedule construction.

1. Renumber the tasks j € J in non-decreasing order

of their processing times.
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2. Set release time (completion time of all assigned
jobs) of all machines to zero: ;=0 Vi=
=1m.

3. Select the next unassigned task j with the mini-
mum processing time [;. Assign it to a machine i
with the minimum release time C;.

4. Determine new release time of the machine i:
Ci = Ci + l]

5. If all tasks were assigned, the algorithm termi-
nates. Otherwise, go to step 3.

As a result of the above algorithm’s execution, tasks

j € J are split into three subsets [2]:
P;(0) is the set of non-tardy tasks in the schedule of
machine i;

S;(0) is the set of “straddling” tardy tasks in the

schedule of machine i for which

C]—l]<d,C]>d, Vjegi(ﬁ),

where C; — [; is the start time of a task j;

Q;(0) is the set of “fully” tardy tasks in the schedule
of machine i for which C; — I; > d, Vj € Q;(0).

We use the notation from [2]:

P=UitmP;S=Uitm Si: Q0 = Uimtm Q15

R; (o) the time reserve of machine i in a schedule o:
Ri(0) =d — ZjePi(c) li; Ry(0) = XiZ1 R;(0);

A; (o) the tardiness of straddling task j € S;(o) in re-
gard to the due date: A;(0) = Xjep,)us;(o) i — >

Az(c) =2t 4(0).

Theorem 1 [7]. There is an optimal schedule that satis-
fies the conditions:

1)PuS={12,..,|PUSl}

2)if [PUS| <n, then X;ep,us; [ = d and Q; con-
tains those and only those elements which differ from
[P U S|+ i by an amount which is a multiple of m, i =
=1m.

Corollary 1 [7]. Suppose that the tasks processing on
L-th machine cannot be started before the time point r;, >
> 0, L = 1,m. Schedule o where each successive task k =
= 1,2,...,n is assigned to be processed on the machine
released before the others, corresponds to the smallest sum
of completion times for all tasks.

Statement 1 [7]. When constructing an optimal
schedule as a result of directed permutations, tasks can be
moved only between sets P and S.

Let Yrpg denote a class of schedules that correspond to
the conditions of Theorem 1. Y, © Y, is a class of sched-
ules satisfying the following additional conditions:

1) P={1.2,..|PI};

2 ity > B RO

3)ify, <l thenC;, — 1, <G, — 1 Yji.j, € S(0).

The number of tardy tasks on machines differs by a
maximum of one in the class s, [2]. We determine R; (o)
on machines with a smaller number of tardy tasks and A; (o)
on those with a larger number of tardy tasks.

Two sufficient signs of optimality of a feasible solu-
tion were proved in [2]:

1) a schedule o € Y, with the same number of tardy
tasks on all machines (an even schedule) is optimal;

2)if Qz(0) = min(Rz(G),Az(o)) = 0 in a schedule
o € Y, then the schedule o is optimal.

The PSC-algorithm from [2] is based on directed
permutations that decrease Ay (¢) on machines with a larger
number of tardy tasks due to reserves Ry (o) on machines
with a smaller number of tardy tasks or to build an even
schedule. Let y(op) € Yps denote the class of such sche-
dules.

Theorem 2 [2]. The following estimate of deviation of
the functional value from the optimum is valid for any
schedule o € Yi(op): f(0) — f(c*) < Qz(0).

The case of the TTP problem, in which the start times
of machines are less than the common due date, was
considered in [2], and a PSC-algorithm was given. Let us
consider the general case.

Study of WTPA problem properties. Let us call
w;/1; the priority of a task j. Since we have different start
times of machines in the WTPA problem, in contrast to the
TTP problem, let us give a new algorithm for construction
of initial schedule 6°™® € 5.

Algorithm AQ.

1. Renumber the tasks j € J in non-increasing order

of priorities w; /1;.

2. Renumber the machines in non-decreasing order

of start times ;.

3. Set the initial release times of machines: C; = r;

vi=1m.
4. Select an unassigned task j with the maximum
priority. Assign it to a machine i with the mini-
mum release time C;.

5. Determine the new release time of the machine i:
Ci = Ci + l]

6. If all tasks were assigned, the algorithm termi-
nates. Otherwise, go to step 4.

Denote the obtained schedule as 6°™ (sigma ordered).
Let us split 6°™ conditionally into o' and 62 where o is
the schedule of tasks on machines with ; < d and o? is the
schedule of tasks on machines with r; > d.

Statement 2. The number of tardy tasks on machines
in the schedule o* differs by a maximum of one.

Statement 3. The number of tardy tasks on each of the
machines with r; < d is greater than or equal to the number
of tardy tasks on each of the machines with r; > d.

Validity of Statements 2 and 3 is based on the algo-
rithm for the schedule ¢°¢ construction.

The schedule o' meets the requirements to the class
Yp. The following theorem is true.

Theorem 3. The PSC-algorithm for the problem sol-
ving, sufficient signs of optimality of obtained solutions,
and the estimate of deviation of a solution from the opti-
mum for each individual problem instance which were ob-
tained for TTP problem, are also valid for WTPA problem.

Proof. Initial schedule of the class s, is constructed
in TTP problem by distributing the list of tasks in non-
decreasing order of their processing times, each to the
machine with a minimum release time. Similarly, initial
schedule in WTPA problem is built by distributing the
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priority-ordered sequence of tasks, each to the machine
with the minimum release time. But the priority-ordered
sequence of tasks coincides with the sequence of tasks
ordered by non-decreasing of their processing times, due to
the agreeability of weights and processing times. Hence,
the initial schedules in TTP and WTPA problems coincide.
The PSC-algorithm is based on task permutations from
machines with a greater number of tardy tasks to machines
with a smaller number of tardy tasks. Thus, the task weights
do not affect the implementation of the algorithm and are
taken into account only when determining the functional
value. This proves the theorem.

Theorem 4. There are no permutations of tasks in the
schedule ¢°™@ between the machines i € ¢ and i € o2
which lead to a decrease in the functional value.

Proof is based on Statement 1 and Corollary 1. Con-
sider the schedule on machines i, € o* and i, € o2. Sup-
pose that a task j,, is processed on the machine i, and a task
Jp On the machine i;. We have [;, < L, for these tasks, in
accordance with the algorithm for the schedule o°™® con-
struction and due to the agreeability of weights and proces-
sing times. Let us swap these tasks, that is, let the task j, be
processed on the machine i and the task j, on the machine
i,. As a result of such a permutation, in accordance with
Corollary 1, the functional value increases. The processing
times of tasks j € o? is greater than that of tasks in the sets
P or S, according to Theorem 1. Therefore, according to
Statement 1, tasks j € o cannot be moved into the set P or
the set S. Consequently, there are no permutations of tasks
in the schedule 6°™¢ between schedules ¢ and o2 which
decrease the functional value. This proves the theorem.

Corollary 2. Optimization is only done in the schedule
ot. The schedule o2 is optimal by construction in accor-
dance with Corollary 1.

Corollary 3. We check the sufficient signs of opti-
mality on the schedule o and determine the estimate of
deviation of the functional value from the optimum Q5 (o),
which is equal to min(Ry(0),A5(0)), on the schedule o?,
since the schedule o2 is optimal by construction.

Theorem 5. The functional value for WTPA problem
is equal to the sum of the functional values of the schedules
o' and o2,

Proof of Theorem 5 is obvious.

PSC-algorithm for WTPA problem solving. It has
the following 8 steps.

1. Initial schedule construction by Algorithm AO.

2. Split the obtained schedule 6°™¢ into ¢! and o?
where o? is the schedule of tasks on the machines
with r; < d and o2 is the schedule of tasks on the
machines with r; > d.

3. Execute the PSC-algorithm Al or A2 [2] on the
schedule o?.

4. Analyze the obtained solution. If the polynomial
component of the algorithm has been fulfilled,
then the schedule o is optimal, go to step 5. Oth-
erwise, go to step 6.

5. Determine the functional value for the schedule
ol. Gotostep 7.

6. Determine the functional value and the estimate of
deviation of the functional value from the opti-
mum for the schedule o?.
7. Determine the functional value for the schedule
o2 which is optimal by construction.
8. Determine the functional value for WTPA prob-
lem in accordance with Theorem 5. Terminate.
Justification of the algorithm. As a result of the initial
schedule construction for WTPA problem which is
implemented by Algorithm A0, we obtain schedules o? (the
schedule on the machines with 7; < d) and o? (the schedule
on the machines with r; > d). The functional value for the
entire schedule o is equal to the sum of the functional
values for the schedules o and o2. The schedule o2 is
optimal by construction. But building and optimization of
the schedule o is reduced to solving the TTP problem.
Thus, PSC-algorithm for WTPA problem solving coincides
with the PSC-algorithm for TTP problem solving on the
schedule o!. The polynomial component of the PSC-
algorithm coincides with the polynomial approximation of
the exact algorithm. As a result of the problem solving, we
obtain either an exact optimal solution by the polynomial
component of the algorithm (if at least one of the sufficient
signs of optimality has fulfilled during its execution), or an
approximate solution with an upper estimate of deviation
of the functional value from the optimum which is Qs (o).
The complexity of the polynomial component of the
PSC-algorithm is determined by the complexity of the
algorithm (Al or A2) used to solve the problem. Their
complexities are 0 (n?m) and O0(mnlogn), respectively.
Computational studies. To research the algorithm’s
efficiency, we used instances generator and solver written
in C# in Microsoft Visual Studio 2010 environment. We
randomly generated the task sets with uniform distribution
of parameters. We chose processing times and weights of
tasks from interval [L,200], then we assigned to each next

task with the minimal processing time the next maximal of
unassigned weights. The due date d was calculated as
0.7L/m where L is the sum of all processing times. The
start times of machines were chosen from uniform distri-
bution within [0,2d]. We carried out 2,000 runs for each
(n,m) pair. We tested problems with up to 40,000 tasks and
30 machines on a PC with 2 GBytes of RAM and a Pentium
Core 2 Duo processor with 3.0 GHz frequency.

Average (for 100 runs) solving time appeared: from
1.53ms at n = 3,000 and m =5 to 2,025.14 ms at n =
= 40,000 and m = 15 for Algorithm Al; from 1.78 ms at
n = 3,000andm = 30to27.3msatn = 40,000 andm =
= 20 for Algorithm A2. The average frequency of ob-
taining an optimal solution was 90.3% for Algorithm Al
and 73.5% for Algorithm A2. The average deviation from
an optimal solution was 0.000251 for Algorithm Al and
0.000114 for Algorithm A2. After introducing additional
types of permutations, Algorithm A2 becomes more effi-
cient than Algorithm Al. In this case, we achieve an op-
timal functional value by the polynomial component of the
algorithm for 92 % of instances.

Conclusions. We considered the problem of schedu-
ling tasks on identical parallel machines. Weights and pro-
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