ISSN 2079-0023 (print), ISSN 2410-2857 (online)

UDC 004.89: 510.635 DOI: 10.20998/2079-0023.2019.02.12
I. V. LIUTENKO, O. I. KURASOQV, D. A. LUKINOVA, S. I. YERSHOVA, A. 0. SEMANIK

USING THE AGGREGATED CRITERIA TO EVALUATE THE SOFTWARE TESTS QUALITY

An approach to evaluating the software tests quality using aggregated quality criteria is proposed. The article considers the finding of such characteristics
of software tests that can be used to judge their quality and their need for improvement. The subject of the study is the formation of a software tests
quality evaluation system, which can be used in the software development process. It is proposed to consider a software test as a multiattribute object. It
is emphasized that it is necessary to take into account both quantitative and qualitative characteristics of tests and test coverage, which greatly complicates
the construction of a model for evaluating the software tests quality. Various approaches to solving the problem of evaluating complex, multiattribute
objects are considered. The problem of comparing and ordering complex objects taking into account different criteria is considered. The choice of the
method of sequential aggregation of classified states to solve the problem of multi-criteria selection and assessment is justified. The stages of the
procedure for solving the estimation problem using the method of sequential aggregation of classified states are considered. An activity diagram is
constructed that reflects an algorithm for constructing a hierarchical system of criteria. The criteria for evaluating software tests are given, which belong
to three groups - efficiency, coverage, and software implementation. For a hierarchical system of criteria aggregation, a set of indicators, their qualitative
gradations with corresponding numerical intervals, are allocated. At the highest level of the hierarchy, it is proposed to use three composite criteria that
correspond to the groups of efficiency, coverage and implementation, which will allow to obtain an integral indicator of the software tests quality. The
resulting integral indicator includes five quality classes, each of which corresponds to a multitude of low-level indicator estimates. Tests quality
evaluation will improve the testing process, which purpose is to ensure the specified quality of the software being developed.
Keywords: software, testing, quality, evaluation, assessment criteria, multiattribute object, aggregated criterion.

1. B.JIOTEHKO, O.1. KYPACOB, 1. A. 1YKIHOBA, C. I. €PIIIOBA, A. 0. CEMAHHUK

BUKOPUCTAHHS ATPETOBAHUX KPUTEPIIB JIJISI OIIIHKA AKOCTI TECTIB TIPOT'PAMHOI'O
3ABE3IIEYEHHA

IporoHyeThesl MiAXiA 1O OMIHKM SIKOCTI TECTiB IPOrpaMHOTO 3a0e3NedeHHs 3 BUKOPHCTAHHSAM arperoBaHHX KpHTeEpiiB skocTi. Posrmsgaerscs
3HAXOKCHHS TAKMX XapaKTEPUCTHK TECTiB IPOrPAMHOTrO 3a0€3MEUCHHS, 3a SIKUMH MOXKHA CYIUTH IPO TXHIO SKICTh 1 HEOOXIAHICTD JOOHPALIIOBAHHSL.
Ipeamerom AociiKeHHS € (OPMyBaHHS CHCTEMHU OLIHIOBAHHS SAKOCTI MPOTPAMHMX TECTiB, Ky MOXIMBO BUKOPHCTOBYBAaTH B IIPOIECi PO3POOKH
porpaMHOro 3abesnedeHHs. 3amporoHOBAHO PO3INANATH TECT MPOTPAMHOro 3abe3ledeHHs sK Oaratoo3HakoBHil 00'ekT. ITimkpecmroeTscs, mIo
HEOOXiTHO BpaxoBYBaTH SIK KUTBKICHI, TaK i SIKICHI XapaKTEPHCTUKH TECTIB i TECTOBOTO MOKPHUTTSI, IO ICTOTHO YCKIAIHIOE MOOYIOBY MOJENI OLIHKA
SIKOCTI POTPAMHHX TECTiB. PO3IIsiHyTO pi3Hi MiAXOAM OO BHUPILICHHS 3a[advi OLIHIOBAHHS CKJIAJHUX, 0araT003HaKOBHUX 00'€KTiB. Posrisimaerscst
npobriemMa TIOPIiBHAHHA i yNMOPSAAKYBAaHHS CKJIAZHMX OO'€KTiB 3 ypaXyBaHHSM pi3HHMX KpuTepiiB. OOrpyHTOBaHO BHOIp METOIY MOCIiZOBHOTO
arperyBaHHs CTaHIB, MIO KIACH(IKYIOTHCS Ui PO3B'SI3aHHS 3a7adi OaraTOKpHUTEPIaTbHOrO BHOOPY 1 MPOBEICHHS OLIHIOBAaHHS. PO3rIsIHYTO eramu
MPOLIEAYPH BUPILIEHHS 3a/1a4i OLIHIOBAHHS 3 BUKOPHCTAHHAM METOJY IMOCIHIZIOBHOTO arperyBaHHs CTaHiB, 110 Kiacu(ikyoTbes. HaBenena miarpama
JUANBHOCTI, sIKa BimoOpakae anropuTM MOOYIOBH iepapXiuHOi chcTeMH KpuTepii. PosrmsHyTi KpuTepii ONiHIOBaHHS TPOTPaMHUX TECTIB, SKi
BITHOCSATBCS 10 TPHOX IPyI — e€HEeKTUBHOCTI, MOKPUTTS i mporpamuoi peanizauii. J{ns iepapxiyHoi cucTeMH arperyBaHHs KpUTepiiB BUIUICHO HaOip
MOKA3HUKIB, X AKiCHI rpajaii 3 BiIOBI THUMH YHCEILHUMH iHTEepBanamMu. Ha BuiioMy piBHi iepapxii 3arpornoHOBaHO BUKOPUCTOBYBATH TPH CKIAIECHHX
KpUTepis, sIKi BiJNOBIar0Th TpynamM e)eKTUBHOCTI, MOKPHUTTS i peaizarii, 10, B CBOIO Yepry, J03BOJIMTH OTPUMATH iHTETPaIbHHUI IIOKA3HUK SKOCTI
MporpamMHuX TecTiB. OTpUMaHUI IHTErpaJbHUI MOKA3HUK BKJIIOYAE M'STh KIACIB SIKOCTi, KOXKHOMY 3 SIKMX BiJIIOBiZIa€ MHOXKMHA OI[IHOK ITOKa3HHKIB
HWKHBOTO PiBHA. OLiHKa SKOCTI MPOrpaMHUX TECTIB J03BOJIUTH TOJIIIIUTH NPOLIEC TECTYBAHHS, METOIO SIKOTO € 3a0€3MeYeHHs 331aHOT0 PiBHA SKOCTI
IIPOTPaMHOTO 3a0€3MeUeHHs, 0 PO3POOIIAETHCS.

KurouoBi ciioBa: mporpamHe 3a0e3NeyeHHs, TeCTyBaHHs, SKIiCTb, OLIHIOBaHHS, KPUTEpii OIIHKH, 0araToO3HaKOBHH 00’€KT, arperoBaHMit
KpHTEpiii.

H.B.JIOTEHKO, A. . KYPACOB, /1. A. TIYKHHOBA, C. H. EPIIIOBA, A. A. CEMAHHUK

HCITIOJb30BAHUE ATPETUPOBAHHBIX KPUTEPHUEB JJI1 OHEHKU KAYECTBA TECTOB
IMPOI'PAMMHOI'O OBECIIEYEHUA

Ipennaraercss MOAXOJ K OIEGHKE KadecTBa TECTOB IPOrPaMMHOIO OOECHEYEHHs] C HCIOJIb30BaHHEM arpernpoOBaHHBIX KPHUTEPHEB KadyecTBa.
PaccmaTpuBaeTcsi HaXOXKICHHE TaKMX XapaKTEPUCTHK TECTOB INPOIPAMMHOIO OOECIeUeHHs, IO KOTOPHIM MOXXHO CYOHTh 00 WX KadecTBe U
HeobOxoxuMocTu nopabotku. IIpeaMerom uccnenoBaHus SIBILETCS (OPMUPOBAHUE CUCTEMBI OIIEHUBAHMS KauecTBa IPOTPAMMHBIX TE€CTOB, KOTOPYIO
BO3MOXHO HCIIONIb30BaTh B NOIIECCE Pa3pabOTKU MporpaMMHoro obecriedenust. [Ipe/uioskeHo paccMaTpiBaTh TECT HPOrPAMMHOTO 0O€CTIeUeH s KaK
MHOTOIIPHU3HAKOBEII 00BeKT. IToquepkuBaeTcs, 4T0 HEOOXOAMMO YUUTHIBATh KaK KOJMYECTBEHHBIC, TAK M KAUECTBEHHBIE XapaKTEPHUCTHUKU TECTOB U
TECTOBOTO MOKPBITHS, YTO CYIIECTBEHHO YCIOXKHSIET HOCTPOSHUE MOJEIN OLICHKU KauecTBa MIPOrPaMMHBIX TeCTOB. PacCMOTpeHBI pa3InyHble HOIXOABI
K PEIICHUIO 33au¥l OLICHWBAHMS CIIOXKHBIX, MHOTOIPH3HAKOBBIX O0OBEKTOB. PaccMarpmBaercs mpoOiema CpaBHEHHS M YIOPSIOYCHHS CIIOXKHBIX
00BEKTOB € YUETOM pa3HbIX KpuTeprueB. OO0OCHOBaH BEIOOP METO/Ia ITOCIIEIOBATENBHOTO arpernPOBaHNUS KIIACCH(UIIMPYEMBIX COCTOSIHUMN ISl PEIICHUS
331298 MHOTOKPUTEPHAIBHOTO BEIOOPA U IIPOBEICHUSI OLIEHUBAHMS. PacCMOTpEeHBI STalbl IPoLeyphl PeIIeH s 3a1adl OIIEHUBAHUS C HCIIOIb30BaHHEM
MeTO/ia TIOCNIeI0BATeIbHOTO arperupoBaHms KIacCHOUIUPYEMbIX cOCTOSHHU. IIpuBenena amarpamma AeATeNbHOCTH, KOTOpas OTPa)kaeT alrOpUTM
MIOCTPOEHUS UEPAPXUUECKOI CUCTEMBI KpUTEPUEB. PacCMOTPEHBI KPUTEPHUH OLIEHUBAHMS IPOrPAMMHBIX TECTOB, KOTOPBIE OTHOCATCS K TPEM IpyIam —
3 HEKTUBHOCTH, HOKPHITUSI U IPOrPaMMHON peanu3anui. [t HepapXudecKoil CHCTEMBI arperHpoBaHUs KPUTEPUEB BbIeNeH HAOOp IMoKa3aTenel, ux
Ka4ecTBEHHBIE IPaJalliy C COOTBETCTBYIOIIUMH YHCIICHHBIMI HHTepBadaMu. Ha BbIcieM ypoBHE HepapXuu MPeI0XKeHO UCIIONB30BaTh TPH COCTABHBIX
KPHTEpHsl, KOTOPBIE COOTBETCTBYIOT rpynnaM 3¢ (GpEeKTHBHOCTH, IOKPHITHS M PeaU3al{y, YTO, B CBOIO OYepelb, MO3BOJIUT MONYYUTh HHTETPaIbHBIA
MOKa3aTeNb KadecTBa MPOTPAaMMHBIX TecToB. IlomydeHHBIN MHTETpalbHBIA IIOKa3aTelb BKIIOYAET IATh KJIACCOB KAauecTBa, KaKIOMY M3 KOTOPBIX
COOTBETCTBYET MHOXKECTBO OLICHOK IOKa3aTeleil HIDKHEro ypoBHsS. OIeHKa KadecTBa TECTOB IIO3BOIMT YIYYIIUTH IPOLECC TECTHPOBAHMS, LENIBIO
KOTOPOTO sABJIIETCS 00ECIeYeH e 3alaHHOT0 KauecTBa pa3pabaThiBaEMOro IpOorpaMMHOI0 00eCeUeHH .

KaioueBble c¢j10Ba: mporpaMMHOe OOECIIeUeHHe, TeCTUPOBAHHUE, KadeCTBO, OLCHHBAHUE, KPUTEPHU OLCHKH, MHOTONPU3HAKOBBIA OOBEKT,
arperupoBaHHbII KPUTEPHH.

© I. V. Liutenko, A. I. Kurasov, D. A. Lukinova, S. I. Yershova, A. O. Semanyk, 2019

Bicnux Hayionanvnozo mexuiunozo ynisepcumemy «XIy. Cepis: Cucmemnuil
70 aHanis, ynpaenints ma ingpopmayivini mexronoeii, Ne 2°2019



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Introduction. Much of modern software (SW) is a
complex, multi-component system with a large amount of
software code, which can include a wide range of
components that perform a variety of tasks. A list of
functional and non-functional requirements is advanced to
the software systems themselves (SS), which complex
programming logic is often implemented for, which must
work with special conditions and restrictions.

The complexity of this task makes software testing an
important step in the development of the oftware systems
of any type and scope. First, it prevents and corrects defects
which make it impossible to use the application, that again
keeps users out of achieving their own goal. Secondly,
testing is necessary to verify the compliance of the software
product with the requirements that have been put forward
by the customer and stakeholders.

The right approach to testing will allow to supply the
customer with a quality product, but this requires a
responsible approach to the organization of testing, design
and development of software tests. Software test quality
evaluation will provide an opportunity to create such a
complex of tests for various purposes, which will allow to
control the quality of the software with the least expenses
for testing.

Formulation of the problem. The purpose of the
study is to define the criteria for assessing the quality of
tests, which will allow to exclude the subjectivity of the
expert. The relevance of the work is due to the fact that
software testing, as well as the other stages of software
development, is performed in conditions of limited time
and financial resources. This means that voluminous and
detailed testing of the entire SS is unprofitable and
sometimes  impossible. Requirements,  software
components differ in priority and complexity, which can be
expressed in quantitative and qualitative terms.

This means that the priority and complexity of the test
object (in this case an individual component of the SS or
requirement) requires an appropriate amount of software
tests. A test group that was formed without these
characteristics cannot be considered qualitative, because
incorrectly defined testing priorities lead to waste of time
and cost, which is not guaranteed by the sufficient
reliability of the SS that was released after such tests. The
purpose of the study is to find indicators that can determine
the value and usefulness of the software tests that are
offered for software testing.

The problem of multi-criteria selection is formed as
follows. There are many options A, ...,A,, each of which
is characterized by specific criteria K, ...,K,,. Each
criterion K; has a scale X; ={x},..x/'},i=1..m,
which has in most cases ordered discrete numeric or verbal
gradations. It is necessary, based on the preferences of the
decision maker, to choose one or more of the best options
from the set presented.

The main difficulty is that both quantitative and
qualitative indicators of varying degrees of importance
need to be analyzed, many of which greatly complicate the
comparison of tests and test coverage. An additional fact is
that there is no single quality assessment model to evaluate
the quality of the tests.

In the case of evaluating many objects with several
dozen properties, there is a problem that comparing only
one attribute value becomes impossible, and attempts to
reduce the number of evaluation criteria leads to a decrease
in the quality of the final result by pulling it away from the
reality. Such conditions require finding a method that
would solve the problem of multicriteria selection in the
large space by reducing the number of dimensions, based
on the rules of the subject area and the specifics of the
objects being compared. The reduction in the number of
measurements will be used to aggregate multiple criteria to
one to obtain a grading scale that depends on the
preferences of the decision maker (DM).

Existing methods for solving the problem. The
solution to a similar problem can be constructed on the
basis of the problem of finding the extremum of one or
more utility (value) functions [1]. To complete the task, it
is necessary to derive a generalized criterion from many
numerical criteria by minimizing them and finding a
weighted sum. With a large number of criteria, this method
is too time-consuming because it requires the domain
analyst to spend a great deal of time in deriving the
approximate utility function, as well as the importance
factors (weights) that must be assigned to each property
taken into account, which in itself is a task of ambiguous
solution. Another disadvantage of this method is that the
use of aggregated indicators does not allow you to
reproduce the input data, which implies the inability to
easily explain the results of the comparison [2]. The use of
coarse sets in the classification of multi-criteria objects is
to use the sets of rules defined by DM to classify
alternatives to a particular class with varying degrees of
accuracy. The method is complex enough because a large
number of classification rules complicates their analysis. In
addition, the method requires pre-debugging on the
prepared data sets [3].

Often, methods are based on pair-wise comparisons of
objects to organize objects as a whole or by many criteria.
Complete ordering of objects occurs when you can
compare all pairs of variants and DM preferences are
transitive. If some of the pairs cannot be compared, partial
ordering will be obtained. In methods of analytical
hierarchy [4] variants are ordered according to their priority
index, which is consistently calculated by pairwise
comparison of variants, criteria of their evaluation and
participants in relation to the global goal of the problem
being solved. The disadvantage is the sensitivity to the
context of the choice, which leads to a dramatic change in
ordering after adding / excluding a particular variant. In [5]
there are two main methods of comparison: the first is the
direct sorting of objects by given classes, which is the most
popular method of classification due to ease of use, and the
second is an interactive classification procedure that
provides a description of DM preferences through the
utility function, which is weighted sum of many scalar
criteria.

Given the poor structure of the problem, the
methodology of verbal analysis of solutions can be used.
According to this methodology, the properties of variants

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIy. Cepis: Cucmemnuii

auanis, ynpaeninua ma ingpopmayivini mexronoeii, Ne 2°2019

71



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

are described using qualitative criteria that have verbal
formulations of gradations on the rating scales [6].

To solve the problem of multicriteria selection, the
"PAKS" method (sequential aggregation of classified
states) was selected. This method is characterized by the
use of verbal analysis methods to reduce the dimension
space of the criteria. The method was chosen because
hierarchical evaluation of complex qualitative criteria will
allow to obtain meaningful and understandable evaluation
with the least time spent on building an evaluation system
for DM [7]. The "PAKS" decision procedure has three
steps.

The first step is to build a hierarchical system of
aggregated criteria by "ISKRA" (hierarchical convolution
of criteria and attributes) taking into account the beliefs of
DM. The process of construction is to create integral
indicators that characterize the properties of options that are
selected based on domain concepts, which aggregate the
initial characteristics. The procedure for aggregation of
indicators is consistent, that is, the obtained sets of criteria
are grouped in series into new groups of the next level of
the hierarchy, and so on up to a single integral criterion of
the highest level, if necessary.

In the second step, the sequential classification task
performs a consistent scale construction of each composite
criterion, which consists of using a combination of grading
estimates of the output indicators as classified objects.
Classes are graded scores of the composite criterion, so that
every combination of gradations of the original scores will
match some gradation of scores on the composite criterion
scale [8]. In the general case, virtually any method of
ranking or classification of multi-criteria alternatives can be
used to construct scales of composite criteria, which allows
to present each gradation of the composite criterion scale in
the form of a combination of gradations of baseline scores.

In the third stage, the final solution of the problem of
selection in the obtained space of complex criteria of
smaller dimension using the method of "ARAMIS"
(aggregation and ranking of alternatives to multipurpose
ideal situations) [9], which allows to rank objects described
by many periodic quantitative and / or qualitative attributes
K;, ... K, without constructing individual object rankings.
Multi-criteria objects Ay, ..., A, are considered as points of
a metric space of multisets with some metric, which are
compared and ordered in terms of relative proximity to the
best (ideal) object A, or worst (anti-ideal) A_ in that space.
The best and worst objects (which may also be
hypothetical) have the highest and lowest scores by all
criteria, respectively. All objects are ordered by proximity
to the best object A, by distance from the worst object A_
or by the value of relative proximity to the best object.

Fig. 1 shows a diagram of the activity of solving the
multicriteria selection problem with a consistent reduction
in the dimension of the feature space.

To obtain a comprehensive assessment of the test
quality, it is necessary to consider a large number of criteria
that can be attributed to the groups of efficiency, coverage
and software implementation

Choosing the type of task T

Forming the set of options Al,....A2

Forming the set of output indicators

K1....K2
Forming the order scale of output
indicators
No Forming the set of combined criteria
R
L1,.L2

Change the gradation
of the scale of
combined criteria?

Forming the order scale of combined
criteria

No

Is the solution of the
task satisfying?
Change the way of Yes
aggregation W?

Fig. 1. Diagram of the algorithm for building a hierarchical
system of criteria

On the other hand, to cover a larger volume of
software projects requires a set of criteria with which the
evaluation process remains relevant to the specifics of the
individual project. Creating higher level criteria allows you
to create new, more general levels of composite criteria by
reducing the number of combinations of grading criteria.
Detailed metrics can be grouped in their essence, making it
possible to obtain an integrated Quality Score. For numeric
metrics, you can enter qualitative gradations that match a
certain range of values. Practice shows that the success of
software testing depends on the quality of test planning and
implementation. Testing performance can be estimated
from a relatively small number of indicators.

The first indicator is the ratio of not intercepted in the
latest software version bugs to the number of bugs found
(found and fixed / not intercepted). This indicator may
characterize the thorough testing of different use cases of
SS. Completely covering all variants of data, conditions
and actions is an almost impossible task, so there is a risk
that the user may perform an unchecked sequence of
actions that will disrupt the normal operation of the
software. Finding data that has not yet been intercepted
should be accompanied by adjusting program logic and
introducing new warning tests, which will help to reduce
the ratio. It is worth noting that bugs found at the testing
stage for various reasons may not be documented and, in
turn, not corrected, which makes it untouched.

This indicator in percentage terms can be calculated
by the following formula:

Bicnux Hayionanvnozo mexuiunozo ynisepcumemy «XIy. Cepis: Cucmemnuil

72

aHanis, ynpaenints ma ingpopmayivini mexronoeii, Ne 2°2019



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

N
E, = —- 100, )

M
where E; —the ratio not intercepted in the latest software
version bugs to the number of all bugs found;

N —the current number of bugs not intercepted after
testing;

M — the total number of bugs that have been detected
since the last test started.

The second indicator is the proportion of bugs that
were repeated in the release — these bugs were fixed in
previous versions, but became relevant again after the
release and the first use the new software version. This
indicator differs from the previous one in that it may
indicate a problem of lack of regression testing, while the
first indicator is more relevant for determining the quality
of functional testing introduced in the latest version. The
indicator can be calculated by the following formula:

N,
E, = —-100,

" @

where E, —the number of bugs that were repeated in the
release;

N,. — the number of repeated bugs;

M, — the total number of fixed bugs.

The disadvantage is the complexity of the calculation
due to the existence of system dependencies of the new and
previously developed program code, which makes possible
the situation when the new functionality doesn’t work due
to previously found defects in the old one [10].

The amount of functionality coverage should show
how comprehensively the capabilities of the software have
been tested. For each project, you can determine your own,
satisfactory coverage level. The metric can be calculated as
the ratio of the number of opportunities tested to the total
number of opportunities.

The total number of functional requirements covered
can be calculated using the requirements trace matrix. In
the simplest form, this matrix is a table on the rows of
which the functional requirements for the application are
placed, and on columns the test scenarios. In the special
circumstances of the project, columns and rows with
additional information may be added. Related features and
scripts should be marked at the intersection of the row and
column, so that testers get clear information about the
current coverage. One test scenario for one function is
considered sufficient coverage, so it is necessary to break
down the complex requirements into atomic components.
This approach simplifies the analysis of congestion or lack
of tests [11].

Also, when evaluating a test coverage, a feature
coverage indicator can be used, which is calculated as the
ratio of the number of features tested to the total number of
features. For the needs of a particular project, those
functions that represent complex operations of an
application's business logic can be included in the list of
functions.

Most software tests are software-implemented, which
makes it possible to evaluate them as a separate software
system with its own interconnected components. When
evaluating tests as code, you can use the following code
properties:.

1) compliance with the rules of programming
language (conventions) - this indicator affects the ease of
perception of the program code, which is important when
accompanied by several developers;

2) code purity - the structural simplicity of the code
(for example, the adequate amount of method or class), the
absence of unnecessary structures (imports, variables) left
after the code is modified or refactored, as well as those
structures that interfere with code maintenance and analysis
("Magic numbers", duplicates) [12]. These metrics can be
measured as the volume of violations per 1000 lines of test
code.

Table 1 — Test evaluation criteria

Indicator Qualitative _grqding / order of Interval
stickiness

1. Amount of not intercepted bugs (%) High /2 (80;100]
Middle / 1 (30;80]
Low /0 [0;30]

2. Amount of returned bugs (%) High /2 [50;100]
Middle / 1 (20;50)
Low /0 [0;20]

3. Test coverage of capabilities (%) High /0 (60;100]
Middle / 1 (20;60]
Low /2 [0;20]

4. Test coverage of software features (%) | High/0 (60;100]
Middle / 1 (20;60]
Low /2 [0;20]

5. Compliance with programming High/0 [0;10]

language standards (violations per Middle / 1 [10;20]

thousand pages of code) Low /2 More then 20

6. Purity of code (violations per thousand | High/0 [0;5]

pages of code) Middle / 1 [5:15]
Low /2 More then 15

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIy. Cepis: Cucmemnuii

auanis, ynpaeninua ma ingpopmayivini mexronoeii, Ne 2°2019

73



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Simulation results. Table 1 lists the main evaluation
criteria, their qualitative gradations, together with the
corresponding numerical intervals.

The order of stickiness is given in ascending order (0
is the best, 1 is satisfactory, 2 is bad) and is used for two
levels of the hierarchy.

It was proposed to use three composite criteria at the
top level of the hierarchy — efficiency, coverage and
implementation.

The performance criterion included the amount of
bugs not intercepted (%) and the number of bugs returned
(%).

The coverage criterion included test capability
coverage (%) and test feature coverage (%).

The implementation criterion included compliance
with the rules of programming language (violations per
thousand pages of code) and purity of code (violations per
thousand pages of code).

Table 2 lists the gradations of the aggregated criteria
and the corresponding tuples of the graded subordinate
criteria.

Table 2 — Composite test quality criteria

Criterion Gradat!on_/ order Corteggs of child
of stickiness estimates
Efficiency High/0 <0;0>,<0;1>,<1;0>,<2;0>,
<0;2>
Middle / 1 <1;2>,<2;1><1;1>
Low /2 <2;2>
Coverage High/0 <0;0>,<0;1>,<1;0>,<0;2>
Middle / 1 <1;2><1;1>,<2;0>
Low/2 <2:2>,<2;1>
Realizatio Good /0 <0,0>;<0,1>;<1,0>
n Satisfactory / 1 <1,2>;<2,1>;<1,1>:<2,0>;
<0,2>
Needs
adjustments/2 <2,2>

Integral Quality Score can be represented as five
consecutive quality classes, each of which corresponds to a
set of tuples of second-level metrics (<Performance,
Coverage, Realization>).

The first class corresponds to <0; 0; 0>,

The second class corresponds to <0; 0; 1>, <0; 0; 2>,
<0; 1;0>,<0;1;1> <1;0;0>,<1;0; 1>, <1; 0; 2>.

The third class corresponds to <0; 1; 2>, <0; 2; 1>, <0;
2,2>,<0;2;0>,<1;1;0>,<1;1;1>,<1; 1; 2>,<1,2,0>.

The fourth class corresponds to <2; 0; 1>, <2,0,0>,
<1,2,1>,<1,2,2>,<2;0; 2>, <2; 1; 0> .

The fifth grade corresponds to <2; 2; 2>, <2; 2; 1>,
<2;2;0>,<2;1; 2>,<2;1;1>.

Conclusions. Developing an approach for software
tests quality evaluation can in the long term improve test
results, reduce the time and other resources spent on finding
defects in the software system and quickly eliminate the
shortcomings of the current testing approach. The obtained
results confirm the possibility to use the indicators that can
be used to evaluate the overall quality of software tests.
These include test performance metrics, test coverage of
software capabilities and its software code, namely

functions, as well as metrics that make it feasible to use the
tests themselves. For these criteria, metrics were formed,
the intervals of which were defined as qualitative
indicators, which were used to create a hierarchical system
of criteria that allows to obtain an integral quality index.

References

1. IlerpoBckuii A.b. Teopus  npumamus  pewenuii. Mocksa:
Wsnarenbckuii neHTp «Akagemusi», 2009. 398 c.
2. Caaru T. lpunsmue pewenuii. Memoo ananusza uepapxuii. Mocksa:

Panuo u cBs3b, 1993. 278 c.

3. Doumpos M.,  ZopounidisC.  Multicriteria  Decision  Aid
Classification Methods. Dordrecht: Kluwer Academic Publishers,
2002. 245 p.

4. Koksalan M., Ulu C. An interactive approach for placing alternatives
in preference classes. European Journal of Operational Research.
2003. Vol. 144, no. 2, pp. 429-439.

5. Jlapuues O. U. Bepbanvuwiii ananus pewenuii. Mocksa: Hayka, 2006.
181c.

6. Poiisenson I'. B. CrocoObl CHIKEHHSI pa3MEpPHOCTH INPU3HAKOBOTO
MPOCTPAHCTBA JIA OIMCAHUA CJIIOKHBIX CUCTEM B 3aJ1a4ax MPUHATUA
pettennit. Hoeocmu uckyccmeennoeo unmennekma. 2005, Ne 1.
C. 18-28.

7. Tlerposckuii A. b., Poiizenson I'. B. MHOrokpurepuanbHbiid BBIOOp ¢
YMEHbIICHHEM Pa3sMEpHOCTH MIPOCTPAHCTBA HPU3HAKOB:
MHorodsTanHas texHonorusi [TAKC. Hckycemeennviii unmeniekm u
npunsimue pewenuti. 2012. Ne 4. C. 88-103.

8. ®ypemc E. M. MoaubuuupoBaHHbII METOJ 9KCHEPTHOM
HOMHUHAJIHO-TIOPSIIKOBOM KJIaccu(UKaImm. Hckyccmeennviii
unmennexm u npunsimue pewenuti. 2010. Ne 4, C. 81-93.

9. Ilerposckuii A. B., Tuxonos H. I1. OyHaMeHTalIbHbIE
HCCII€NOBaHUs, OPUEHTUPOBAHHBLIE Ha HpaKTI/I‘IeCKI/[ﬁ pe3yIIbTaT:
moaxobl K oueHke s3hdexrusnoctu. Becmuux PAH. 2009. T. 79.
Ne 11. C. 1006-1011.

10. Important Software Test Metrics and Measurements.
http://www.softwaretestinghelp.com/software-test-metrics-and-
measurements (access date: 23.01.2019).

11. Gotel O., Cleland-Huang J., Hayes, J., Zisman A., Egyed A. Software
and Systems Traceability. London: Springer, 2012. 152 p.

12. A SLOC Counting Standard. URL:
http://csse.usc.edu/TECHRPTS/2007/usc-csse-2007-737/usc-csse-
2007-737.pdf (access date: 03.06.2019).

URL:

References (transliterated)

1. Petrovskiy A. B. Teoriya prinyatiya resheniy [The decision theory].
Moscow, "Akademiya" Publ., 2009. 398 p.

2. Saaty T. Prinyatie resheniy. Metod analiza iererhiy [The making
decisions. Hierarchy analysis method]. Moscow, Radio i svyaz Publ.,

1993. 278 p.

3. Doumpos M.,  ZopounidisC.  Multicriteria  Decision  Aid
Classification Methods. Dordrecht: Kluwer Academic Publishers,
2002. 245 p.

4. Koksalan M., Ulu C. An interactive approach for placing alternatives
in preference classes. European Journal of Operational Research.
2003. Vol. 144, no. 2, pp. 429-439.

5. Larichev O. l. Verbalnyiy analiz resheniy [The verbal decision
analysis]. Moscow, Nauka Publ. 2006. 181 p.

6. Royzenzon G. V. Sposobyi snizheniya razmernosti priznakovogo
prostranstva dlya opisaniya slozhnyih sistem v zadachah prinyatiya
resheniy [Ways to reduce the dimension of feature space for
describing complex systems in decision-making problems]. Novosti
iskusstvennogo intellekta [Artificial Intelligence News]. 2005, no. 1,
pp. 18-28.

7. Petrovskiy A. B.,, Royzenzon G. V. Mnogokriterialnyiy vyibor s
umensheniem razmernosti prostranstva priznakov: mnogoetapnaya
tehnologiya PAKS [Multi-criteria selection with reduced dimension
of feature space: multi-stage PAKS technology]. Iskusstvennyiy
intellekt i prinyatie resheniy [Artificial Intelligence and Decision
Making]. 2012, no. 4, pp. 88-103.

8. FurmsY.M. Modifitsirovannyiy metod ekspertnoy nominalno-
poryadkovoy Klassifikatsii [The modified method of expert nominal
ordinal classification]. Iskusstvennyiy intellekt i prinyatie resheniy
[Artificial Intelligence and Decision Making]. 2010, no. 4, pp. 81-93.

Bicnux Hayionanvnozo mexuiunozo ynisepcumemy «XIy. Cepis: Cucmemnuil

74

aHanis, ynpaenints ma ingpopmayivini mexronoeii, Ne 2°2019



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

9.

Petrovskiy A. B., Tihonov I. P. Fundamentalnyie issledovaniya,
orientirovannyie na prakticheskiy rezultat: podhodyi k otsenke
effektivnosti  [Result-oriented basic research: approaches to
evaluating effectiveness]. Vestnik RAN [RAS Bulletin]. 2009, vol. 79,
no. 11, pp. 1006-1011.

12. A

11. Gotel O., Cleland-Huang J., Hayes, J., Zisman A., Egyed A. Software

and Systems Traceability. London: Springer, 2012. 152 p.

SLOC Counting Standard. URL:
http://csse.usc.edu/TECHRPTS/2007/usc-csse-2007-737/usc-csse-
2007-737.pdf (access date: 03.06.2019).

10. Important Software Test Metrics and Measurements. URL:
http://www.softwaretestinghelp.com/software-test-metrics-and-
measurements (access date: 23.01.2019).

Received 05.09.2018

Bioomocmi npo asmopis /Ceedenus 06 asmopax! About the Authors

JTromenko Ipuna Bikmopisna — KanaugaT TeXHIYHAX HAyK, HarioHAEHIH TeXHIYHAN YHIBEpCUTET «XapKiBCHKUH
MOJITEXHIYHUIN 1HCTUTYT», NOLIEHT Kadenpu IporpamMHOi imKeHepil Ta iHpOpMamiHHUX TEXHOJOTIH YIpaBIIiHHS,
M. XapkiB, Ykpaina; ORCID: https://orcid.org/0000-0003-4357-1826; e-mail: liv@kpi.kharkov.ua

Kypacoe Onekciii 12o0posuu — HamioHambHUI TEXHIYHUN YHIBEPCHUTET «XapKiBCHKUH MOJMITEXHIYHUHA iHCTHTYTY,
crynenT; M. Xapkis, Ykpaina; ORCID: https://orcid.org/0000-0003-2518-577X; e-mail: kurasov.oleksii@gmail.com

Jlykinosa /lapuna Andpiiena — piznuna ocoba-minnpuemerib; M. Xapkis, Ykpaina; ORCID: https://orcid.org/0000-
0002-3644-9972; e-mail: dasha.lutenko@gmail.com

€Epwosa Ceimnana leaniena — HanionanpHuil TeXHIYHUI yHIBepcHuTeT «XapKiBCHbKHN MOJITEXHIYHUHA 1HCTHTYTY,
CTapIIMi BUKIJIaAa4 Kadeapu NporpamHoi iHkeHepii Ta iHpOpMaliifHUX TEXHOJOTiH ynpaBiiHHSA; M. XapKiB, YKpaiHa;
ORCID: https://orcid.org/0000-0003-3893-117X; e-mail: svetlana.ershova.2016@gmail.com

Cemanuk Anacmacis Onexcanopiena — HalioHambHUN TEXHIUHUH YHIBEpCHTET «XapKiBCHKHH TMOJITEXHIYHUN
IHCTUTYT»,  CTyHAeHTKa; M. XapkiB, Ykpaina; ORCID:  https://orcid.org/0000-0003-0653-5359;  e-mail:
bilenko.anastasiial@gmail.com

Jiwomenko Hpuna Buxmopoena — KaHIUAAT TEXHUYECKUX HayK, HaluoHanbHBIA TEXHUYECKUH YHHBEPCUTET
«XapbKOBCKHH TOIUTEXHUYCCKUH WHCTUTYT», AOICHT KadeAphl MPOrpaMMHOI HHXEHEpHH W HH()OPMAIIMOHHBIX
TEXHOJOTUI  ympamieHus; r. XapbkoB, Ykpaumna;, ORCID: https://orcid.org/0000-0003-4357-1826; e-mail:
liv@kpi.kharkov.ua

Kypacoe Anexceii Heopeseu — HanmmoHanNbHBIN TEXHHYECKHUH YHHBEPCHUTET «XapbKOBCKUI MOIUTEXHHYECKUH

HHCTUTYT»,  CTyJeHT, T.XappkoB, VYkpaumna, ORCID: https://orcid.org/0000-0003-2518-577X;  e-mail:
kurasov.oleksii@gmail.com
JIykunoea Jlapuna Auopeesna — (HU3HMUECKOE JHMIO-NPEINPUHUMATENL; T. XapbkoB, Ykpauna, ORCID:

https://orcid.org/0000-0002-3644-9972; e-mail: dasha.lutenko@gmail.com
Epwosa Ceemnana Heanosna — HaumoHallbHBIN TEXHUYECKUH YHUBEPCUTET «XapbKOBCKUH MOJUTEXHUYECKUN

WHCTUTYT», CTAapIIMA mpenoiaBaTeddb Kadeapsl NPOrpaMMHONW HWHXGHEPUHM M WH(POPMAIMOHHBIX TEXHOJIOTHH
yIpaBICHUS; r. XapbKoB, VYkpauna; ORCID: https://orcid.org/0000-0003-3893-117X; e-mail:
svetlana.ershova.2016@gmail.com

Cemanuxk Anacmacus Anexcanopoena — HaluMOHANBHBIA TEXHUYECKUH YHUBEPCUTET «XapbKOBCKUMN

MOJIUTEXHUIECKHI HMHCTUTYT», CTyAeHTKa; T. XapskoB, Ykpaumua; ORCID: https://orcid.org/0000-0003-0653-5359 ;
e-mail: bilenko.anastasiial@gmail.com

Liutenko Iryna Victorivha — Candidate of Engineering Sciences, National Technical University "Kharkiv
Polytechnic Institute”, Associate Professor, Department of Software Engineering and Management Information
Technology; Kharkiv, Ukraine; ORCID: https://orcid.org/0000-0003-4357-1826; e-mail: liv@kpi.kharkov.ua

Kurasov Oleksii Igorovych — National Technical University "Kharkiv Polytechnic Institute”, student; Kharkiv,
Ukraine; ORCID: https://orcid.org/0000-0003-2518-577X; e-mail: kurasov.oleksii@gmail.com

Lukinova Daryna Andriivna — entepreneur; Kharkiv, Ukraine; ORCID: https://orcid.org/0000-0002-3644-9972;
e-mail: dasha.lutenko@gmail.com

Yershova Svitlana Ivanivna — National Technical University "Kharkiv Polytechnic Institute”, Senior Lecturer in
Department of Software Engineering and Management Information Technology; Kharkiv, Ukraine; ORCID:
https://orcid.org/0000-0003-3893-117X; e-mail: svetlana.ershova.2016@gmail.com

Semanyk Anastasiia Oleksandrivna — National Technical University "Kharkiv Polytechnic Institute", student;
Kharkiv, Ukraine; ORCID: https://orcid.org/0000-0003-0653-5359 ; e-mail: bilenko.anastasiial@gmail.com

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIy. Cepis: Cucmemnuii
auanis, ynpaeninua ma ingpopmayivini mexronoeii, Ne 2°2019 75



