ISSN 2079-0023 (print), ISSN 2410-2857 (online)

uDC 004.02 DOI: 10.20998/2079-0023.2020.01.19
. Y. MALIK, V. Y. VOLOVSHCHYKOV, V. F. SHAPO, M. A. GRINCHENKO

TECHNOLOGY OF IDENTIFYING ANTIPATTERNS IN ANDROID PROJECTS WRITTEN IN
KOTLIN LANGUAGE

The problem of the lack of instruments for identifying the characteristics of low-quality code in Android projects that are written in the Kotlin language
is determined. A review of modern approaches for identifying antipatterns in program code is accomplished. The analysis of the methods used to find
problems with code in Android projects is performed. DECOR and Paprika approaches are considered. Conclusions are drawn about the importance of
finding design flaws in program code for the mobile software development and its further support. An antipatterns identification approach for Kotlin
language program code in Android projects is proposed. An algorithm for identifying low-quality Kotlin code is presented. The technology for detecting
poor quality code characteristics consists of four stages: collecting metrics about an analyzed software system, building a quality model, converting a
quality model into a graph representation, and identifying predefined antipatterns. The collection of metrics, including the search for both Android-
specific and object-oriented metrics of Chidamber and Kamerer, is proposed to be implemented through parsing source code and converting it into an
abstract syntax tree using the KASTree library. The implementation of KASTree library usage is offered through the Adapter design pattern. The
construction of a quality model is implemented using the Paprika tool, supplemented by a number of introduced metrics. Conversion of quality model
exactly into graph representation is used to identify antipatterns in order to ensure the speed and quality of complex queries execution for identifying
antipatterns. Antipatterns identification using database queries is based on various template rules, including the Catolino rules. Different features of
applying the Cypher query language to a graph database are used to represent the rules in form of queries. Results of the work can be used in development
of software for poor quality code identification in mobile applications written in Kotlin language, as well as in studies of mobile development antipatterns
for this language.
Keywords: antipattern, identification, graph model, low-quality code, Kotlin, Android, Adapter pattern

L 10. MAJIIK, B. I0. BOJIOBIIIHKOB, B ®. IIAIIO, M. A. TPHHYEHKO

TEXHOJIOI' IS ITEHTU®IKAIII AHTUIIATEPHIB B KOJII ANDROID ITPOEKTIB MOBOIO
KOTLIN

Busnadena mpobiiema BiICYTHOCTI MpOrpaMHOro 3a0e3nedeHHs s ifeHTH(iKalil XapakTepHCTHK HU3bKOSKICHOrO Komy B mpoektax Android, mo
po3pobiieHi 3 BUKOpUCTaHHIM MOBH niporpamysants Kotlin. [TpoBeneHo oriisig cyqacHUX MiIX0/iB /10 BUSIBIICHHS aHTU-IIA0JIOHIB B IPOrPAMHOMY KOJ.
BukoHaHO aHalli3 METOIB, 10 BUKOPUCTOBYIOTBCS JUISl 3HAXOJDKEHHs mpobieM 3 komoM juist Android mpoekTiB. PosrisHyTo Bimomi migxomu 1o
inentudikanii: DECOR Tta Paprika. 3po6ieHo BHCHOBKH PO BXXJIMBICTh 3HAXOPKEHHS HEAOMIKIB Y MPOrpaMHOMY KOAI JJIsI PO3POOKH MOOIIBHOTO
NporpaMHOro 3abe3neueHHs Ta Horo MaiOyTHHOro OOCIYroBYBaHHs. 3alpONOHOBAHO MiAXiA 10 iAeHTH(IKaLil aHTHIATEPHIB Y MPOrpaMHOMY KOZi
Kotlin s Android npoekris. IIpencTaBieHo aaroput™ igeHTUdIKALiT HeAKICHOro Koay. TeXHONOorisi BU3HAYeHHs XapaKTePUCTUK HESKiCHOTO KOy
BKJIIOYA€ YOTHUPHU eTamnu: 30ip METPUK PO MPOrpaMHy CUCTEMY, IO aHali3yeThbcs, MOOYA0Ba MOJEINi SIKOCTi, KOHBEPTAaLlis MOZeNi AKOCTi B rpadose
MPEACTABICHHS Ta iqeHTH(]IKallis Hamepe BU3HAUYCHHX aHTHIIATEPHIB. 30ip MEeTPHK, 110 BKiIOYae momyk sk Android-cnenudivnux, Tak i 06°€KTHO-
opieHToBanux MeTpuk Ymnambepa ta Kamepepa, npornoHyeTbcsi peai3yBaTi yepe3 CHHTAKCHYHUM aHaji3 BUXIIHOrO KOJAy Ta HOro KOHBEpTallilo B
a0CTpaKkTHEe CHHTAKCHYHE [epeBo 3 BuKopuctanusm 6ibmiorekn KASTree. BmpoBamkenns 6i6miotekn KASTree mpormonyerscs 4epe3 mabioH
npoekTyBanHs Ananrtep. [1o0ynoBa Mozerni sKOCTI peatizyeThes 3acobamu iHCTpymeHTy Paprika, 1o H1omoBHEHO HU3KOI0 BBEACHUX METPUK. 3 METOO
3a0e3neyeHHs MIBUAKOCTI Ta SIKOCTI BUKOHAHHS CKIAJHUX 3alUTIiB s ineHTH(dIKalii aHTUIATEPHIB BUKOPUCTOBYETHCS KOHBEPTALlist MOZENI SKOCTL
came B rpadoBe npencrasiieHHs. besnocepenupo ineHTH(diKalis aHTUIIAOIOHIB 32 JOMOMOIOI0 3alUTiB BUKOPUCTOBYE B SIKOCTI OCHOBH Pi3H OMaHITHI
mabJIoHHI paBuiIa, y TOMY uucii npaBuwia Karomino. [npencraBieHHs NpaBuil y BUTIIA/ 3alIMTIB BUKOPUCTOBYIOTHCS MOMKIIMBOCTI 3aCTOCYBAHH 5
moBH 3anuTiB Cypher no rpadoBoi 6a3u gaHux. Pesymbraté poGOTH MOXKYTh OYTH BHKOPHCTaHi IMPH PO3POOLI MPOrpaMHOro 3abe3medeHHs Uit
izenTH diKarii HESKiCHOro KOay B MOGITBHIX 3aCTOCYHKAX, 110 HamucaHi MoBoro Kotlin, a Takoyx mpu gocumipkeH i aHTHIaTepHiB B MOO1IBbHIH po3pobii
3 BUKOPHUCTAHHSM JaHOI MOBH.
KuarouoBi ciioBa: antunareps, inentudikauis, rpagosa Mmoxens, HeskicHuit kon, Kotlin, Android, narepn Ananrep

U. I0. MAJTUK, B. I0. BOJIOBLIIUKOB, B. ®. IlIAIIO, M. A. TPHHYEHKO

TEXHOJIOI'USI UAEHTU®UKALIMU AHTUITATTEPHOB B KOJIE ANDROID ITPOEKTOB HA
A3BIKE KOTLIN

Onpenenena npodiaemMa OTCYTCTBUSI CPEACTB UACHTU(DUKALIMU XaPAaKTEPUCTHK HEKaYECTBEHHOTO Ko/ia B poekTax Android, KoTopble HanMCaHHbBI € Ha
szpike Kotlin. IIpoBeneH 0630p COBPEMEHHBIX MOAXOMOB K BBIABICHUIO AHTH-IIAOJIOHOB B HPOrPAMMHOM KOZC. BBINONHEH aHAnM3 METOAOB,
HCIIOJIB3YEMBIX U1 HAX0XKACHHS IIpobiieM ¢ kogoM B Android mpoekTtax. PaccMOTpeHbI H3BECTHBIC OAXO/BI 10 OOHAPYKEHHUIO aHTHIIATTEPHOB B KOJC:
DECOR wu Paprika. Cnenansl BBIBOABI O BaKHOCTH HAXOX/IEHHS HELOCTATKOB B IMPOrPaMMHOM KOZE Ul pa3pabOTKH MOOHIIBHOTO MPOrPaMMHOIO
obecrieyeHus U ero Oyayuieit mogaepxku. Ilpensioxkes moaxoa K uaeHTU(HKALUK aHTHIIATEpPHOB B iporpaMmmuoM koze Kotlin aist Android -mpoexTos.
IIpencraBiieH aaropuT™ HACHTH(YHKAIMN HEKaYeCTBEHHOTO Koza. TeXHOMOr st OIPECICHNS XapaKTePHCTHK HEKaueCTBCHHOT 0 KOZIa BKIIIOYACT 4 €THIPE
sTama: c6op MeTpuK 00 aHAIM3UPYEMOH IPOrPAMMHOI CHCTEME, MOCTPOCHHE MOACIN KadeCTBAa, KOHBEPTALMS MOAEIH KadecTBa B rpadoBoe
MpeNCTaBICHUE U UICHTU(DHUKALMS 3apaHee ONMpPEIeICHHBIX aHTUNaTTepHoB. COOp METPUK, BKIFOYArOUIMil monck kak Android -cennpuyeckux, Tak u
00BEKTHO-OPHEHTHPOBAHHBIX MeTpuK Ynaambepa u Kamepepa, mpeanaraercsi peann30BbIBATh 4EPe3 CHHTAKCHYCCKHH aHAIN3 MCXOAHOTO KOAA U
KOHBEPTALHMIO €r0 B a0CTPAaKTHOE CHHTAKCHYECKOE AepeBo ¢ ucnonb3oBaHueM oudamoreku KASTree. Buenpenue oudanorexkun KASTree nmpennaraercs
4epe3 mabIoH MpoeKTHpoBaHus Amantep. IlocTpoeHHe MOenn KadecTBa PealM3yercsi CPeACTBaMM MHCTpyMeHTa Paprika, MOMOIHEHHOrO psioM
BBEACHHBIX METPHK. C 11e/bI0 00eCIIedeHUsT CKOPOCTH H Ka4eCTBA BHITOIHEHHUS CIIOKHBIX 3a[IPOCOB JUTS HACH TH(QUKAIINY AaHTHIIATTEPHOB HCIIONIb3 yETCs
KOHBEPTALMsT MOJEIH KadeCTBa MMEHHO B rpadoBoe MpeacTaBieHHe. HemocpencTBeHHO MACHTH(UKAINS aHTHIIATTCPHOB C IIOMOIIBIO 3alpOCOB
HCIIOJB3YET B Ka4eCTBE OCHOBBI Pa3iHYHbIC MAa0IOHHBIC MPaBmiIa, B TOM 4ducie npasmia Katomuxo. [t MpeAcTaBIeHNs MPaBII B BHJE 3aIIpoO COB
HCIIOJIB3YIOTCS BOSMOXHOCTH npuMeneHus si3pika Cypher k rpadoBoii 6a3e gaHHBIX. Pe3ymbraTel paboThl MOIyT OBITh HCIIOJIB30BAHBI PH Pa3paboTKe
POrPaMMHOr0 00eCredeH s 1UI UACHTU(HKAIMN HEKa4eCTBEHHOr0 Ko/ia B MOOMIBHBIX TIPHIOKEHHUSX, HaMCAHHBIX s13bikoM Kotlin, a Taxke mpu
HCCIIEIOBAaHUSIX aHTHIIATEPHOB B MOOHIIBHOI Pa3paboTKe ¢ HCIIOIb30BAHUEM yKa3aHHOT'O SI3bIKa.
KiioueBble cJI0Ba: aHTUNATTEPH, HACHTH(UKALNS, TpadoBast MOJelb, HeKauecTBeHHBIH Ko, Kotlin, Android, marrepr Anantep

©1.Y. Malik, V. Y. Volovshchykov, V. F. Shapo, M. A. Grinchenko, 2020

Bicnux Hayionanvnozo mexuiunozo yuieepcumemy «XIl». Cepis: Cucmemnuii
ananis, ynpagiinns ma ingopmayiini mexronoezii, Ne 1 (3) 2020 117

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Introduction. The field of information systems
development has existed for a long time. There are
currently projects that have been supported for over 10
years and systems are being developed that will be
maintained for a long time to come. In such circumstances,
it is important to maintain the quality of the software
product consistently. One of the main characteristics of
quality software (SW) is the quality of the source code. Its
readability, ease of understanding, simplicity of support
and refactoring play an important role in supporting the
project [1]. Therefore, writing quality code is an important
task of software engineering (SE).

Poor quality code characteristics are programming
patterns that indicate potential source code issues [2]. These
characteristics are different from software errors because
they do not affect the correctness of the application.
However, these patterns provoke the creation of a system
that is more difficult to develop and maintain, which can
make the software more vulnerable to errors.

At present, most studies related to the characteristics
of low-quality code focus on desktop and web-based
applications. However, nowadays, mobile platforms are
becoming more popular [3]. Therefore, it is an important
task to investigate the characteristics of poor quality code
specific to mobile development. It follows that one of the
most important tasks is to develop a detector that can
identify the flaws in the source code of mobile projects.

Analysis of literature and major achievements.
With the advent of mobile applications as new software
systems, many authors have begun to study mobile-specific
code problems. Reimann [4] proposed a directory of 30
high-quality factors of poor quality code for Android.
These factors cover various aspects such as software
implementation, user interface, and database usage. After
these, characteristics were identified and described by
Reimann. Scientists began to propose tools and approaches
for their detection [5, 6, 7].

Much of the research on code defects in Android
applications focuses on examining the effect of basic
factors of problematic code [2]. For example, Linarez-
Vasquez [8] used the DECOR tool [9] to detect object-
oriented antipatterns in mobile applications developed with
J2ME. DECOR, in turn, is based on peer inspections, DSL,
and automatic generation of identification algorithms.

Rasool [10] examined the existence of traditional
poor-quality code criteria [2] in Android applications
written in Java to determine whether they are more
common in the mainstream classes. Mainstream classes are
classes in the Android project that are inherited from
Android SDK classes, such as Activity, Fragments,
Services. The author states that the basic classes tend to
suffer from God class, Long method and Switch operator
because of their character, since they perform most of the
functionality of the software. The author also found that a
Long list of methods is less likely to appear in basic classes
because their methods are inherited from classes defined in
the Android SDK.

Hecht [5] developed a tool to detect poor-quality
Paprika code for 8 features for the Java programming

language. He created his own approach using a graph
model. The author searched for defects in 15 popular
Android applications, including Facebook, Skype and
Twitter. The author claims that traditional code smells are
as common in Android as non-Android applications.

Mannan [11] conducted a large-scale empirical study
to compare the prevalence and impact of antipatterns on
mobile and desktop applications. The author found that
while the density of code problems is the same in both
mobile and desktop systems, some of them are more
common in mobile applications. For example, Data class is
more common in mobile applications, while duplication of
code is more inherent in desktop systems.

Mohammed Ilyas Azeem in his work [12] analyzed
machine learning techniques that were investigated to
identify low-quality code. He concluded that most existing
studies use decision trees or the support vector method as
machine learning algorithms. However, the problem of
creating the optimal configuration has not been properly
solved.

Problems of identifying low-quality code in
Android projects. Analysis [5-9] found a large number of
studies devoted only to the Java programming language.
Java remains one of the most popular programming
languages in the world and for Android projects in
particular. However, nowadays, Kotlin programming
language is also becoming popular [13], which is being
developed rapidly and is supported by many developers all
over the world. Kotlin is included in the list of officially
supported languages for developing Android applications.
Since May 7, 2019 it is the recommended language for
Android application development. However, no tools were
found that could detect low-quality code written on Kotlin.
There is still a problem with the lack of methods,
technologies or algorithms for detecting poor quality code
characteristics for projects created using Kotlin. The main
cause of this problem can be considered the relative youth
of the language. The stable version was released only 4
years ago. Research into identifying code issues for Kotlin
is very important.

Another problem is the presence of non-identifiable
characteristics. Since the beginning of antipatterns studies
and their classification, there have been various attempts to
identify the characteristics available. However, a review [5,
6, 8, 10] confirmed that developed applications can only
detect some of the code issues described. Fig. 1 shows how
often different antipatterns have been studied in the
literature. From fig. 1 it follows that some characteristics
are studied more frequently, while there are still poor
quality code factors for which no relevant studies have been
conducted. Of all the characteristics of the bad quality code
identified by Fowler [2], there are still those that are not
determined by any identification technique. There are more
than thirteen different techniques in the literature regarding
21 code defects, and 16 methods have been developed for
the God class only. However, none of them shows the
above mentioned defects. It can be concluded that not all
code flaws are currently identifiable.

Bicnux Hayionanenoeo mexuiunozo ynigepcumemy «XI1Iy. Cepis: Cucmemnui

118

ananis, ynpaguinns ma ingopmayitini mexnonozii, Ne 1 (3) 2020

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Large class

_— Feature en
Shotgan Duplicated code v

25%

Other antipatterns

50% .ong

method

Fig. 1 Study frequency of individual characteristics

Analysis of existing methods. The literature [5, 9]
describes two main approaches to identifying the
characteristics of low-quality code in Android applications.
The first one is used in software called DECOR. Its main
idea is to use the expertise knowledge to build the
classification and taxonomy that generates the
identification algorithms. Another method was developed
for Paprika SP. It is based on the metrics of the application
being analyzed and the construction of quality and graph
models. Based on the latter, source code defects are
detected.

Fig. 2 illustrates a common algorithm for identifying
antipatterns in code. A key element is the identification
approach, which varies by tool. However, it receives input
on the characteristics of poor-quality code and software
metrics generated from source or compiled code.

Source code Anthattems
specification
2 Y
S Identification Identified
Compilation .
approach entities
2 A
Compilated code »Software metrics

Fig. 2 General identification algorithm

The antipattern detection technology in DECOR uses
a four-step algorithm. At the first step, the experts analyze
the subject domain and identify the key concepts on the
basis of which the classification and taxonomy of all
characteristics of poor quality code are made. The second
step is the specification of factors using domain-specific
language (DSL). The key concepts are formalized in the
form of rule cards, where a card is a set of rules which
contains characteristics that describe a particular
antipattern. DSL allows to determine the links, properties,
and internal structure of the antipattern using metrics. The
rule cards then automatically generate an algorithms for
issue identifying with code using DSL and the source code
parser. In the last step, the generated algorithms are
automatically applied to system models and identify
suspicious classes.

DECOR is designed with features of Java language,
its syntax and corresponding code-writing convention.
Therefore, in the study [9], all metrics are calculated

according to this programming language. In addition, the
vocabulary and taxonomy were developed for only four
antipatterns. This means that DECOR can only identify
them. The disadvantage of this approach is a great
dependence on peer inspections. The first two steps of the
algorithm are not automated, and adding a new antipattern
for identification will be time-consuming and will require
experts.

The approach used in the Paprika tool contains a
three-step algorithm. The first step is to collect metrics.
Input is one APK files and related metadata. Output is a
Paprika quality model that includes entities, metrics, and
properties. At this step generates a mobile app model and
removes quality metrics from the input artifact. Paprika
builds the model based on 6 entities. 17 properties describe
entities and attach to them as attributes. Properties and
entities are united by connections. Paprika also pulls
metrics for each entity. There are currently 34 metrics
available. The method uses 2 types of metrics: object-
oriented and Android-specific. Unlike properties, metrics
require the calculation or processing of byte-code. The
quality model is built using the described parameters. The
second step is the conversion of the quality model into a
graph model. The input is a model received at the previous
step. The output is a graph model stored in the database.
Because graph databases are independent of the rigid
scheme, the graph model is almost the same as the first step
model. All entities are represented as vertices of a graph.
Attributes and metrics are properties of vertices. The
connections between the entities are represented by
unidirectional edges. The last step is the identification of
antipatterns. Input is a graph database containing a quality
model. Output is vertices, and therefore entities containing
antipatterns. Once the model is downloaded and indexed by
the graphical database, you can use the database query
language to identify common characteristics of poor-
quality code.

Because Paprika analyzes byte-code, this means that
this tool can only analyze Java-written applications. In
addition, the byte-code often fails to get accurate metric
estimates. This was stated by the author himself in his
research [5].

Formulation of the problem. An analysis of works
[5-10] designates two major problems with identifying
poor-quality code in Android projects: the lack of methods
and tools for Kotlin and the presence of unexplored
programming antipatterns. Kotlin [13] has been identified
by Google as being a recommended development tool for
Android, which is rapidly developing and gaining
popularity. Considering also that there are only four poor-
quality code unexplored factors, it can be concluded that
the first problem is more critical. In addition, it should be
noted that more than 8% [13] of all developers use Kotlin
all the time. Thus, it can be said that the topic of research
of the identification of problem code for Android projects
written in Kotlin is relevant.

According to the analysis [5-9], two main methods
for identifying poor-quality code were determined.
Because the DECOR approach is not fully automated, the
authors will not rely on it for research. The approach used
in Paprika is more promising, as the author revealed not

Bicnux Hayionanvnozo mexuiunozo yuieepcumemy «XIl». Cepis: Cucmemnuii
ananis, ynpagiinns ma ingopmayiini mexronoezii, Ne 1 (3) 2020 119

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

only general characteristics, but also Android specific ones.
However, the results of the metric calculation, and
therefore the identifications will be more accurate when
analyzing the source code. It will also expand the list of
used metrics. This approach will increase the number of
identifiable antipatterns. Therefore, it is proposed in the
future to improve the Paprika technique by analyzing the
source code and to use it to identify Kotlin code flaws.

Thus, the purpose of the work is to investigate and
improve the method of identifying poor-quality code for
Android projects written in Kotlin.

Low-quality code identification technology.
Identification technology developed by the authors builds
on four-step approach. Generalized scheme of it is shown
in fig. 3. First step includes syntax analysis of project
source code. In contrast to Paprika [5], where byte code is
analyzed, it was decided to work with source code. This has
the following advantages: elimination if information loss,
higher accuracy of obtained results, ready-made source
code metrics can be used, original names of components are
preserved. In addition, byte code is stored in archives,
which imposes additional restrictions on operation with
system. Source data can be both a link to a project directory
and a link to a web hosting service where project is stored
(GitHub, Gitlab, Bitbucket etc.). It is suggested to use the
KASTree library for syntax analysis. It allows to present
the source code as an abstract syntax tree (AST). On the
next stage quality model is constructed based on the
obtained AST. The syntax tree provides information about
classes, methods, variables and relationships between
them. Unlike the Paprika quality model this approach also
includes object-oriented Chidamber and Kemerer metrics
[14]. In the third step after building quality model, it is
converted for saving into graph DB. On the last stage
identification is performed by calling prepared queries to
DB. Queries are needed for searching antipatterns. After
that, a report is created listing found code flaws and their
location. We briefly describe content of each of the steps in
the next sections.

Syntax analysis is a process of converting source code
into structured representation. It is needed for building an
AST, which can help quickly get needed metrics for
generating the quality model. AST is a tree representation
of the abstract syntactic structure of source code written in
a programming language.

AST is atree data structure which is a finite set T with
the following properties:

e There is only one root T of the tree — project
directory;

e Other nodes T; are syntactic constructions found
in the source code;

e All non-root nodes are distributed among disjoint
sets and each set is a subtree;

m m
r=Jn. [n=0

i=1 i=1

where m — number of syntax constructions.

AST can be obtained from a Kotlin project using
KASTree library. However, the result of this tool is a
syntax constructions list that are not a unified data format.

It is suggested to use Adapter design pattern to
provide flexibility and extensibility of the system, which is
shown in fig. 4. It converts KASTree library output to a
common JSON data format. In case of changing syntax
parsing instrument it is not needed to change logic of using
AST on the next stage.

QualityModel —> <<interface>>
AstConverter
- coverter : AstConverter
+ getJsonAst() : JSON
1
1
1
NodeListToJsonAdapter | _ _ _ _ 1 KASTreeParser
- kastreeParser: KASTreeP
1
+ getTsonAst(): ISON + parseFile(String file): List

Fig. 4. Adapter design pattern for converting AST

Quality model generation. This model is based on
the quality model which used in Paprika instrument [5]. It
includes 6 entities: Package, Class, Method, Attribute,
Variable and Argument. Each entity is described by
attributes, such as full name, access modifier, type and
others. The model provides 7 types of relationships
between entities: Package Has Class, Class Has Method,
Class Has Attribute, Method Has Argument, Inherits, Calls,
Uses. Relationships exist between two determined types of
entities. For example, relation Inherits can exists only
between two entities of type Class. In addition to attributes
entities has source code metrics. Model provides 34
metrics. They are dived into object-oriented (OO) and
Android-specific metrics. OO metrics consists of simple

I Prepared Cypher :

2. Quality model
generation

1. Syntax
analisys

3. Model conversion

4. Antipattern
detection

Convert Convert
entities

metrics

|

Extract metrics
b 4

Execute
ueries

' Android- 1 | Chidamber and

ispecific metrics: |[Kemerer metrics
|
1

Fig. 3. Low-quality code identification technology for Android projects written in Kotlin

Bicnux Hayionanenoeo mexuiunozo ynigepcumemy «XI1Iy. Cepis: Cucmemnui

120

ananis, ynpaguinns ma ingopmayitini mexnonozii, Ne 1 (3) 2020

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

and computational values. Simple measures can be
obtained directly from the AST, e. g. number of methods in
a class, number of parameters in a method and so on. On
the other hand, computing metrics requires additional
calculations.

Authors propose to supplement this data with
Chidamber and Kemerer metrics. Their usage expands the
range of code flaws that can be identified and improves the
accuracy of the results. We briefly describe these metrics.

Weighted Methods per Class (WMC). Consider class
C with set of methods m,,m,, ...m,,, which are defined in
this class. Let cy,c,,...c, cyclomatic complexity of

methods. Then:
n
WMC = Z C; .
i=1

Cyclomatic complexity is computed using the control
flow graph of the program: the nodes of the graph
correspond to indivisible groups of commands of a
program, and the directed edge connects two nodes if the
second command might be executed immediately after the
first command. Then:

Ci=Ei_Ni+29iEHy

where E; —number of edges in graph for i-th method;

N; — number of nodes in graph for i-th method.

Depth of Inheritance (DIT). This metric is used to
determine the location of a class in the inheritance
hierarchy. DIT shows how many class ancestors can
potentially affect the class. DIT is defined as a maximum
number of ancestral classes per class. It is needed
recursively bypass the inheritance tree before reaching the
first ancestor class to find this metric. The number of
attended classes is DIT.

Coupling Between Objects (CBO) for a class is a
count of the number of other classes to which it is coupled.
Coupling between two classes is said to occur when one
class uses methods or variables of another class. COB is
measured by counting the number of distinct non-
inheritance related class hierarchies on which a class
depends. Let class C with set of methods m,,m,, ...m, and
set of variables p,,p,, ... px, Which are used in this class.

Herewith m; & C,p; € C, i = 1,n, j = Lk. Then:

n k
i=1 j=1

Response for a Class (RFC) is the count of the set of
all methods that can be invoked in response to a message to
an object of the class or by some method in the class. This
includes all methods accessible within the class hierarchy.
RFC is defined as follows:

rrc = 3| Jr,

where {R;} — set of methods called by i—th method;
{M} — set of methods, which belong to class.

Lack of Cohesion in Method (LCOM) measures the
extent to which methods reference the classes instance data.
Consider a class C with set of methods m,,m,, ...m,,. Let
{I;} is set of instance variables used by method m;. There
are n such sets {I;,1,I,}. Let P = {(I.;|; n I; = 9)},
and Q = {(I.;|I; n I; # @)}. If all n sets are empty then let
P also is empty. Then:

IPl = 1QL.IP] > @l

LCOM ={
0, 1P| < 1Ql.

Catolino described [15] rules for determining code
flaws using described metrics. As shown below, it is
possible to identify code smells by converting these rules
into database queries.

Transformation into a graph representation.
Model must be presented as a graph for convenient and
efficient operation of it. If entities of the quality model are
considered as vertices of the graph, relationships between
entities as edges, and attributes and entity metrics as
properties of vertices, then the quality model can be
converted to graph form. This graph is stored in memory
using a graph DB. This solution is flexible and efficient,
because such approach of data storage does not depend on
a rigid scheme. Thereby converted model (fig. 4) is the
same as that described in previous section. In addition,
graph repositories show high performance with datasets up
to 235 nodes and relationships. This allows to identify
antipatterns even on large systems.

Method Has Variable i
— »| Variable

Class_Haf Method

Method

Method Has Argument

Class

Full name
Number of methods
WMC

Fig. 4. Schematic representation of a graph model

Antipatterns search. It is suggested to identify code
smells based on the model stored in DB. Information about
the structural parts of the code which implement
antipatterns can be obtained by querying graph DB. A
report is built based on this information. Let show
searching code flaws on two widespread antipatterns: God
Class as object-oriented and Internal getters and setters as
Android specific.

God class is a class that contains a large number of
fields and methods. It is responsible for different logic, its
attributes are related to different processes, which implies
strong connection with other classes. Such classes are
difficult to maintain and increase the complexity of
software modification. Author [15] proposes to use metrics
such as WMC, LCOM, number of methods (NM) and
number of fields (NF) for identification God Class cases. If
for any class € LCOM > 15 and WMC > 9 or NM > 12
and NF > 8, then it is considered as God Class. The graph

Bicnux Hayionanvnozo mexuiunozo yuieepcumemy «XIl». Cepis: Cucmemnuii

ananis, ynpagiinns ma ingopmayiini mexronoezii, Ne 1 (3) 2020

121

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

DB query in Cypher notation for identification such
antipatterns is shown in fig. 5.

MATCH (cl:Class)
WHERE
cl.lack of cohesion_in methods > 15
AND cl.weighted methods per class > 9
OR cl.number of methods > 12
AND cl.number of attributes > 8
RETURN cl

Fig. 5. Cypher query to search for God class

In Android, class fields should be available directly
for performance reasons. Usage of internal getters and
setters turns into a virtual call, making the operation three
times slower than direct access. Internal getters and setters
can be identified using the graph model. Query for this
antipattern is shown in fig. 6. This query looks for two
methods from one class, when one calls the other,
designated as a getter or setter.

MATCH (ml:Method)-[:CALLS]->(m2:Method),
(cl:Class)
WHERE
(m2.1is setter OR m2.is getter)
AND cl-[:CLASS OWNS METHOD]->ml
AND cl1-[:CLASS OWNS METHOD]->m2
RETURN ml

Fig. 6. Cypher query to identify Internal getters and setters

Conclusions. This work describes a technology of
identifying poor-quality code for Android projects written
in Kotlin. It is based on the work of Hecht [5] and is an
option to improve the Paprika tool and adapt it to the Kotlin
programming language. The proposed approach uses
source code instead of byte-code and complements the
object-oriented metrics offered by Hecht. This will increase
the number of antipatterns of identification and, using the
work [14, 15], improve the accuracy of the results. The
implementation of the described technology will
effectively identify both object-oriented and Android-
specific characteristics of poor quality code. As a future
extension of the study, authors suggest to use proposed
approach in developing software of antipatterns
identification in Kotlin web-based applications or adapt it
for Swift language, which is used in developing projects for
iOS platform.

References

1. Counsell S.,Rob M. H.,HamzaH., Black S. Exploring the eradication
of code smells: An empirical and theoretical perspective. Advances in
Software Engineering. 2010, vol. 2010, p. 12.
doi:10.1155/2010/820103.

2. Fowler M. Refactoring: Improving the Design of Existing Code.
Boston: Addison-Wesley Professional, 2018. 448 p.

3. Rashedul 1., Rofiqul I., Tahidul Arafhin M. Mobile application and its
global impact. International Journal of Engineering and Technology.
2010, vol. 10, iss. 6, pp. 72-78.

4. Reimann J., Brylski M. A tool-supported quality smell catalogue for
Android developers. Softwaretechnik-Trends. 2015, vol. 34, no. 2,
pp. 44-46.

5. Hecht G., Rouvoy R., Moha N., Duchien L. Detecting antipatterns in
Android apps. Lille: INRIA, 2015. 24 p.

10.

11.

12.

13

14

15

10.

11.

12.

13

Kessentini M., Ouni A. Detecting Android smells using multi-
objective genetic programming. ICMSES. 2017, pp.122-132.
doi:10.1109/MOBILES0ft.2017.29.

Palomba F., Di Nucci D., Panichella A. Lightweight detection of
Android-specific code smells: the aDoctor project. ICSAER. 2017,
12 p. doi:10.1109/SANER.2017.7884659.

Linarez-Vasquez M., Klock S., McMillan C. Domain matters:
bringing further evidence of the relationships among antipatterns,
application domains, and quality-related metrics in Java mobile apps.
ICPC. 2014, pp. 232-243. doi: 10.1145/2597008.2597144.

Moha N., Duchien L., Gueheneuc Y. DECOR: a method for the
specification and detection of code and design smells. IEEE
Transactions on Software Engineering. 2010, vol. 36, pp. 20-36.
doi: 10.1109/TSE.2009.50.

Rasool G., Ali Arab A. Recovering Android Bad Smells from
Android Applications. Springer Berlin Heidelberg. 2020, pp. 1-27.
doi: 10.1007/s13369-020-04365-1.

Mannan A. M., Ahmed I., Almurshed R. A. M. Understanding code
smells in Android applications. ICMSES. 2016, pp.225-236.
doi: 10.1109/MobileSoft.2016.048.

Azeem M.l,, Palomba F., Shi, L., Wang, Q. Machine learning
techniques for code smell detection: A systematic literature review
and meta-analysis. Information & Software Technology. 2019,
vol. 108, pp. 115-138.

Kotlin 2019 the state of Developer Ecosystem in 2019 Infographic.
URL: https://www.jetbrains.com/Ip/devecosystem-2019/kotlin/ (nata
3BepHennst 04.02.2020).

Chidamber S. R., Kemerer C. F. A metric suite for object oriented
design. IEEE Transactions on Software Engineering. 1994, vol. 20,
pp. 476-493.

Catolino G. Improving change prediction models with code smell-
related information. Empir Software. 2019, p. 42.

References (transliterated)

Counsell S., Rob M. H.,Hamza H., Black S. Exploring the eradication
of code smells: An empirical and theoretical perspective. Advances in
Software Engineering. 2010, vol. 2010, p. 12.
doi:10.1155/2010/820103.

Fowler M. Refactoring: Improving the Design of Existing Code.
Boston: Addison-Wesley Professional, 2018. 448 p.

Rashedul I., Rofiqul I., Tahidul Arafhin M. Mobile application and its
global impact. International Journal of Engineering and Technology.
2010, vol. 10, iss. 6, pp. 72—78.

Reimann J., Brylski M. A tool-supported quality smell catalogue for
Android developers. Softwaretechnik-Trends. 2015, vol. 34, no. 2,
pp. 44-46.

Hecht G., Rouvoy R., Moha N., Duchien L. Detecting antipatterns in
Android apps. Lille: INRIA, 2015. 24 p.

Kessentini M., Ouni A. Detecting Android smells using multi-
objective genetic programming. ICMSES. 2017, pp.122-132.
doi:10.1109/MOBILESoft.2017.29.

Palomba F., Di Nucci D., Panichella A. Lightweight detection of
Android-specific code smells: the aDoctor project. ICSAER. 2017,
12 p. doi:10.1109/SANER.2017.7884659.

Linarez-Vasquez M., Klock S., McMillan C. Domain matters:
bringing further evidence of the relationships among antipatterns,
application domains, and quality-related metrics in Java mobile apps.
ICPC. 2014, pp. 232-243. doi: 10.1145/2597008.2597144.

Moha N., Duchien L., Gueheneuc Y. DECOR: a method for the
specification and detection of code and design smells. IEEE
Transactions on Software Engineering. 2010, vol. 36, pp. 20-36.
doi: 10.1109/TSE.2009.50.

Rasool G., Ali Arab A. Recovering Android Bad Smells from
Android Applications. Springer Berlin Heidelberg. 2020, pp. 1-27.
doi: 10.1007/s13369-020-04365-1.

Mannan A. M., Ahmed I., Almurshed R. A. M. Understanding code
smells in Android applications. ICMSES. 2016, pp.225-236.
doi: 10.1109/MobileSoft.2016.048.

Azeem M.l., Palomba F., Shi, L., Wang, Q. Machine learning
techniques for code smell detection: A systematic literature review
and meta-analysis. Information & Software Technology. 2019,
vol. 108, pp. 115-138.

Kotlin 2019 the state of Developer Ecosystem in 2019 Infographic.
Available at: https://www.jetbrains.com/Ip/devecosystem-
2019/kotlin/ (accessed 04.02.2020).

Bicnux Hayionanenoeo mexuiunozo ynigepcumemy «XI1Iy. Cepis: Cucmemnui

122

ananis, ynpaguinns ma ingopmayitini mexnonozii, Ne 1 (3) 2020

https://www.jetbrains.com/lp/devecosystem-2019/kotlin/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

14 Chidamber S. R., Kemerer C. F. A metric suite for object oriented 15 Catolino G. Improving change prediction models with code smell-
design. IEEE Transactions on Software Engineering. 1994, vol. 20, related information. Empir Software. 2019, p. 42.
pp. 476-493.
Received 22.04.2020

Bioomocmi npo asmopis / Ceedenust 06 asmopax | About the Authors

Manix Ilean IOpitioguny — OakanaBp, HamioHanbHHH TeXHIYHWH yHiBepcUTET «XapKiBCHKHH IONITEXHIYHUH
iHCTHUTYT», cTymeHT; M. XapkiB, Ykpaina; ORCID: https://orcid.org/0000-0003-1015-0603; e-mail:
malik.ivan.yurich@gmail.com

Bonoswuroe Banepiii IOpiiiosuy — kannuiaT TeXHIYHUX HayK, JOUEHT, HallloHa bHUI TEXHIYHUN yHIBEpCHUTET
«XapKiBCbKUI MONITEXHIYHUH 1HCTHTYT», JOLUEHT Kadeapu MporpaMHoi imkeHepii Ta iH(OpMauidiHUX TEXHOJOTIH
ynpasiiaasa; M. Xapkis, Ykpaina; ORCID: https://orcid.org/0000-0003-4454-2314; e-mail: valera@kpi.kharkov.ua

Llano Bnaonen @enikcosuy — KaHIUIAT TEXHIYHUX HAYK, AoLeHT, HamionansHuii yHiBepcuTeT «Oecbka MOpChKa
aKaJieMis», JIOICHT Ka(eapyu aBTOMATHYHOTO YIPaBIiHHA 1 oOuucaroBanbHOI TexHiku;, M. Omeca, Ykpaina; ORCID:
https://orcid.org/0000-0002-3921-4159; e-mail: stani@te.net.ua

Tpunuenko Mapuna Anamoniigna — KaHAUAAT TEXHIYHUX HAyK, NOUEHT, HalioHalbHUI TEXHIYHUN YHIBEPCHTET
«XapKiBChKUI MONITEXHIYHUH 1HCTHTYT», Ipodecop Kadeapy cTpaTeriyHoro ynpasiinHs; M. XapkiB, Ykpaina; ORCID:
https://orcid.org/0000-0002-8383-2675; e-mail: marinagrunchenko@gmail.com

Manux Hean FOpbvesuu — Gaxanasp, HalmoHanbHBIN TEXHUYECKUIH YHUBEPCUTET « XapbKOBCKUH MONNTEXHUYECKUH
HHCTUTYT», CTyaeHt, T. XapbkoB, VYkpaumna, ORCID: https://orcid.org/0000-0003-1015-0603; e-mail:
malik.ivan.yurich@gmail.com

Bonoswuxoe Banepuit IOpveeuu — KaHIUAAT TEXHUYECKUX HAyK, JOLEHT, HallMOHANbHBIM TEXHUYECKUH
YHUBEPCUTET «XapbKOBCKUH IOJMTEXHMYECKHH HMHCTUTYT», JOUCHT Kadeapsl NpPOrpaMMHOM HH)XXEHEPUH |
UH(POPMAIMOHHBIX TEXHONOTHIA yrpasieHus; T. Xapbkos, Ykpauna,; ORCID: https://orcid.org/0000-0003-4454-2314; e-
mail: valera@kpi.kharkov.ua

Hlano Bnaonen ®enukcoeuy — KaHAUIAT TEXHUYECKUX HayK, HOIEHT, HarmonanbHeli yHUBepcuteT «Opecckas
MOpCKasi aKaJIeMHsD», IOLEHT Kadeapbl TEOPUU aBTOMATHYECKOTO YIpaBIICHNs! U BRIYUCINTENbHON TexHUKH; T. Onecca,
VYxpauna; ORCID: https://orcid.org/0000-0002-3921-4159; e-mail: stani@te.net.ua

T'punuenko Mapuna Anamonveéna — KaHIUNAT TEXHUYECKUX HAyK, JOLECHT, HalMOHAIBHBIA TEXHUYECKHMA
YHHBEPCHUTET «XapbKOBCKHI IOMMTEXHWYECKUI MHCTUTYT», mpodeccop Kadeapsl CTPATErHMYECKOTO YIPABICHHUS; T.
Xapbkos, Ykpanna; ORCID: https://orcid.org/0000-0002-8383-2675; e-mail: marinagrunchenko@gmail.com

Malik Ivan Yuriyovich — bachelor, National Technical University "Kharkiv Polytechnic Institute”, student; Kharkiv,
Ukraine; ORCID: https://orcid.org/0000-0003-1015-0603; e-mail: malik.ivan.yurich@gmail.com

Volovshchykov Valeriy Yuriyovich — Candidate of Technical Sciences, Docent, National Technical University
"Kharkiv Polytechnic Institute”, Associate Professor of the Department of Software Engineering and Management
Information ~ Technologies; Kharkiv, Ukraine; ORCID: https://orcid.org/0000-0003-4454-2314; e-mail:
valera@kpi.kharkov.ua

Shapo Vladlen Felixovitch — Candidate of Technical Sciences, Docent, National University "Odessa Maritime
Academy", Associate Professor of the Theory of Automatic Control and Computing Machinery Department; Odessa,
Ukraine; ORCID: https://orcid.org/0000-0002-3921-4159; e-mail: stani@te.net.ua

Grinchenko Marina Anatoliyvna — Candidate of Technical Sciences, Associate Professor, National Technical
University "Kharkiv Polytechnic Institute”, Professor of the Department of Strategic Management; Kharkiv, Ukraine;
ORCID: https://orcid.org/0000-0002-8383-2675; e-mail: marinagrunchenko@gmail.com

Bicnux Hayionanvnozo mexuiunozo yuieepcumemy «XIl». Cepis: Cucmemnuii
ananis, ynpagiinns ma ingopmayiini mexronoezii, Ne 1 (3) 2020 123

https://orcid.org/0000-0001-2345-6789
mailto:IvLV@mail.ua
https://orcid.org/0000-0001-2345-6789
mailto:IvLV@mail.ua
https://orcid.org/0000-0003-4454-2314
mailto:valera@kpi.kharkov.ua
mailto:stani@te.net.ua
https://orcid.org/0000-0001-2345-6789
mailto:IvLV@mail.ua

