ISSN 2079-0023 (print), ISSN 2410-2857 (online)

UDC 004.415.53 DOI: 10.20998/2079-0023.2021.02.02
0. V. SHEPELIEV, M. O. BILOVA

SOFTWARE TESTING RESULTS ANALYSIS FOR THE REQUIREMENTS CONFORMITY USING
NEURAL NETWORKS

The relevance of scientific work lies in the need to improve existing software designed to analyze the compliance of the results of software testing of
the stated requirements. For the implementation of this goal, neural networks can be used by quality control specialists to make decisions about
software quality, or project managers as an expert system, for one of the quality indicators for the customer. The article deals with software testing
which is a process of validation and verification of compliance of the software application or business program with the technical requirements that
guided its design and development, and work as expected, and identifies important errors or deficiencies classified by the severity of the program to be
fixed. Existing systems do not provide for or have only partial integration of systems of work with the analysis of requirements, which should ensure
the formation of expert assessment and provide an opportunity to justify the quality of the software product. Thus, a data processing model based on a
fuzzy neural network was proposed. An approach to allow determining the compliance of the developed software with functional and non-functional
requirements was proposed, taking into account how successfully or unsuccessfully implemented this or that requirement. The ultimate goal of
scientific work is the development of algorithmic software analysis of compliance of software testing results to stated requirements for support in the
decisions taken. The following tasks are solved in scientific work: analysis of advantages and disadvantages of using existing systems when working
with requirements; definition of general structure and classification of testing and requirements; characteristic main features of the use of neural
networks; designing architecture, the module of research of conformity of results of testing software to the stated requirements.
Keywords: quality; requirement; testing; pipe-line; machine learning; CI/CD; Google; ANFIS.

O. B. IIIEITEJIEB, M. O. BIV/IOBA

JOCIIKEHHSA BINITIOBIIHOCTI PE3YJIBTATIB TECTYBAHHSA TIPOT'PAMHOTI'O
3ABE3NEYEHHS 3ASABJIEHUM BUMOI'AM 3 BUKOPUCTAHHAM HEMPOHHUX MEPEX

AKTyalbHICTh HAYKOBOI POOOTH MONSra€ B HEOOXIZHOCTI BIOCKOHAJEHHS ICHYIOUOTrO MPOTPaMHOr0 3a0e3leueHHs, MPU3HAYCHOTO Ul aHAIi3y
BIZINIOBITHOCTI Pe3yJbTAaTiB TECTYBAHHS NPOrPaMHOrO 3a0e3NedeHHs 3asBICHUM BHMoOraM. JlIs MOCSATHEHHs Li€i METH MOXYTh OyTH BHKOPHUCTaHI
HEUPOHHI Mepexi, mo Oyae KOPUCHO CIemialicTaM 3 KOHTPOJIO Uil MPHUHATTS PillleHb MIOA0 SKOCTI MPOrpaMHOro 3adesmedeHHs abo KepiBHUKAM
MPOEKTIB SIK €KBIBAJICHT €KCIIEPTHOI CHCTEMH, IO CIYTyBaTHME OIHHM 3 iHAMUKATOPIB SKOCTI sl 3aMOBHHUKA. Y CTATTI PO3IIAAETHCS TECTYBAHHS
MPOrpaMHOro 3a0e3MeueHHs, Ke MPECTaBIsie COOOK MpOLEC MEePEeBipKH BiAMOBIAHOCTI MPOrpaMHOro JoAatka abo Oi3Hec-NporpaMu TEXHIYHUM
BUMOTaM, sIKi BU3Ha4YaJl O0COOJIMBOCTI HOTrO MPOEKTYBAHHAM i po3poOKH, PyHKI[IOHYBaHHS fOr0 HAJIGKHUM YMHOM, @ TaKOX BHSBJICHHS BaXKIHBHX
MOMUJIOK ab0 HEeMOMIKiB, KIAacH(IiKOBAaHMX 3a iX cepilo3HicTio. ICHyIOYi mporpaMHi OPOAYKTH HE mepenbdavarTs abo MAaloTh JIHIIE YacTKOBY
IHTerpamilo cUcTeM Ul poOOTH 3 aHAIi30M BHMOT, IO Mac 3a0e3neunT (OpMyBaHHS €KCIIEPTHOI OL[IHKY Ta JJATH MOJIMBICTh OOIPYHTYBATH SKICTh
MPOrPaMHOTO NPOAYKTY. TaKMM YMHOM, 3alIPOIIOHOBaHA MOAENL 0OPOOKH JaHUX HA OCHOBI HEUYITKOI HEHPOHHOI Mepexi. 3alpONOHOBAHO MiAXij, 10
JI03BOJISIE BU3HAYMTH BiAMOBIAHICTH PO3pOOJICHOTO MPOrpaMHoro 3abe3nedyeHHs (YHKIIOHATFHUM 1 He()YHKI[IOHAJbHUM BHMOTAaM 3 ypaxyBaHHSIM
TOT0, HACKIIBKM YCIIIIHO peaji3oBaHa Ta UM iHIIA BUMora. KiHIEBOIO METOI0 HayKoBoi poOOTH € po3poOka alrOpHTMIYHOTO Ta IPOTrPaMHOTO
3a0e3neyeHHs BiIIOBITHOCTI pe3yJIbTaTiB TECTyBaHHS 3asiBICHUM BUMOTaM JUISl T ITPUMKH MPUIHATTS pillleHb. Y HAyKOBil poOOTi BUPIIIYIOTHCS TaKi
3aBJIaHHI: QHAITI3 TepeBar Ta HeJOIIKiB BUKOPHCTAHHS iICHYIOUHX CHCTEM MPU POOOTi 3 BUMOraMu; BU3HAUCHHsI 3arajbHOI CTPYKTYpHU Ta Kiacudikarii
TECTYBaHHS BHMOI; OCHOBHI OCOOJIMBOCTI BHKOPHCTaHHS HEHPOHHUX MepeX; apXiTeKTypa IpOrpaMHOro 3abe3ledeHHs Ta po3poOKa MOIYII0
JIOCIIIJPKEHHS BiJINOBITHOCTI PE3yJIbTaTiB TECTYBAHHS MPOrPAMHOT0 3a0€3MeUeHHS 3asBJICHUM BUMOTaM.
Kui040Bi ciioBa: sIKicTh, BUMOTa, TECTYBAHHS, Naiin-Jaii, Mamnnne Hagyauns, CI/CD, Google, ANFIS.

A. B. HIETIEJIEB, M. A. BEJIOBA

MCCJIEJOBAHUE COOTBETCTBUS PE3YJbTATOB TECTUPOBAHUS TIPOTPAMMHOI'O
OBECIEYEHUS 3ASIBJEHHBIM TPEBOBAHUSM C UCTOJb30BAHUEM HEMPOHHBIX
CETEHR

AKTyaJqbHOCTh HAy4HOH pabOTBI 3aKJIOYaeTcsi B HEOOXOAMMOCTH YCOBEPIICHCTBOBAHMS CYIIECTBYIOLIErO0 IPOTPAMMHOIO OOECHedeHHs,
NpeHa3HAaYeHHOTO JUI1 aHaJH3a COOTBETCTBHS pE3yJbTaTOB TECTHPOBAHHS IIPOTPAMMHOIO OOECIICUeHHs 3asBICHHBIM TpeOoBaHHAM. Jlist
JIOCTHKCHHMS ATOH 1IeJIM MOTYT OBITh HCIOJB30BAHBI HEHPOHHBIE CETH, YTO Oy/ET MOJE3HO CIICHMAINCTaM 0 KOHTPOIIO JUIS TPUHSTHS PELICHUH O
KauecTBe MPOrPaMMHOTO OOCCIHEUCHHsS WM PYKOBOAMTEIAM IIPOCKTOB KaK HSKBHBAJICHT OKCIIEPTHOH CHCTEMbI, KOTOpas CIYKHT OAHHM W3
HWHJMKATOPOB KadecTBa JUI 3aKa3yMka. B craThe paccMaTpHBaeTcsi TECTHPOBAaHHE NPOIPaMMHOTO OOECIeYeHHs, KOTOpOe HPeNCTaBisieT coOol
HPOLIECC TPOBEPKU COOTBETCTBHS MPOrPAMMHOIO IIPUIIOKEHUS MM OU3HEC-POrPaMMbI TEXHHYECKUM TPEOOBAHHSM, OMPEACISIONINM OCOOCHHOCTH
€ro MPOCKTHPOBAHMS M Pa3pabOTKH, (yHKIMOHMPOBAHMS €ro JOJDKHBIM 00pa3oM, a TAKKe BBIIBICHHE BAXKHBIX OMIMOOK HJINM HEJOCTATKOB,
KJIaCCU(UIINPOBAHHBIX COIVIACHO MX cepbhe3HOCTH. CyIIeCTBYIONIME NMPOrpaMMHbBIE NPOAYKTHI HE NMPEIyCMaTPUBAIOT WIM UMEIOT JIMIIb YACTHIHYIO
HHTETPaLfIO CHCTeM I paboTHI ¢ aHAIM30M TPeOOBaHMIl, 00eCTIeUNBAIOIINX ()OPMUPOBAHHIE FKCIIEPTHOH OIIEHKH U IaTh BO3MOXKHOCTH 00OCHOBATh
Ka4yeCTBO MPOTrPaMMHOTO MpojaykTa. Takum o0pa3zoM, MpeayokeHa Mojellb 00padOTKH JaHHBIX HAa OCHOBE HEYETKOH HeipoHHOU ceru. [Ipemioxen
TIOIXOJ], TO3BOJISIONIMII ONpPENENHTh COOTBETCTBHE Pa3pa0OTaHHOIO MPOTrPaMMHOrO oOOecHedeHHs (YHKIMOHAJIBHBIM W He(pYHKIHOHAIEHBIM
TpeOOBaHUSM C YYETOM TOTO, HACKOJBKO YCIEIIHO PEaM30BaHO TO WIM HHOoe TpeOoBanue. KoHewyHas Ienp HaydHOH paboOThl - pa3paboTka
ITOPUTMHYECKOTO M POTPAMMHOTO 00ECIICYCHHSI COOTBETCTBUS PE3YJIbTATOB TECTUPOBAHMS 3asIBJICHHBIM TPEOOBAHMSIM ISl HOJICPKKH MPHHSATASL
penrennii. B Hay4HO# paboTe permaroTcs CIeyIOIINe 33Jaud: aHAIN3 NMPEHMYLIECTB U HEIOCTATKOB HCIIONB30BAHHS CYLIECTBYIOIIMX CHCTEM IIpU
pabote ¢ TpeGOBaHHUIMU; ONPEIENeHNe O0IIel CTPYKTYPHI M KiIacCH(HKAs TpeOOBAHMUIH; apXUTEKTypa MPOrpaMMHOT0 00eCIIedeHus 1 pa3paboTKa
MOJyJIsL HCCIICJOBAaHHUSI COOTBETCTBHS PE3y/IbTATOB TECTHPOBAHMS POTrPAMMHOIO 00ECIICUCHH S 3asIBJICHHBIM TPEOOBAHUSIM.
KuroueBble ciioBa: KauecTBO, TpeGOBaHUE, TECTHPOBAHHKE, Main-JaiiH, MamrHHOE 06yueHue, CI/CD, Google, ANFIS.

Introduction. The urgency of the work lies in the  requirements. To achieve this goal, neural networks can
need to improve existing software designed to analyze the  be used by quality control specialists to make decisions
compliance of software testing results with the stated about software quality, or by project managers as an

© O.V. Shepeliev, M. O. Bilova 2021

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
8 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

expert system, as one of the quality indicators for the
customer. Existing systems do not provide or have only
partial integration of requirements analysis systems, which
should ensure the formation of expert assessment and
provide an opportunity to justify the quality of the
software product.

The object of research is the process of analyzing the
compliance of software testing results with the stated
requirements.

The subject of research: conformity analysis of the
software testing results to the declared requirements with
use of neural networks

The science work solves the following tasks: ana-
lysis of the advantages and disadvantages of using exis-
ting systems for the requirements analysis; determination
of the general structure and classification of testing and
requirements; main features characteristics of the neural
networks use; design of module architecture for the
conformity of software testing results to the declared
requirements.

The ultimate goal of the science work is to develop
algorithmic software for the software testing results
analysis to the stated requirements to support decision-
making.

General theory of testing. Software testing is the
process of validating and verifying the compliance of a
software application or program with the business and
technical requirements that guided its design and
development, as well as working as expected, and
identifies important errors or deficiencies classified
according to the severity of the program [1]. Software
testing is also used to identify other software quality
factors, such as reliability, usability, integrity, security, ca-
pability, efficiency, portability, maintainability, compatib-
ility, and so on. The approach to testing differs for differ-
rent programs, levels of testing, and purpose of testing.

Software testing should be conducted within budget
and planning limits. Due to a large number of limitations
on testing, such as comprehensive (general) testing, it is
impossible to find a compromise between diligence, time,
and budget — it is impossible to be sure that every mistake
in the program has been eliminated [2]. Adherence to
established principles can make testing simpler and more
effective, as well as ensure maximum achievement of
testing objectives, despite certain limitations. They also
ensure the repeatability of the process. Software testing is
a very important quality filter and should be planned with
its goals, principles, and limitations in mind.

The purpose of testing is the predicted state of affairs
that a person or system plans or intends to achieve. The
goal must be achievable and measurable. It is good if all
the goals are interconnected. During testing, goals can be
described as the planned results of the software testing
process.

Thus, software testing is a vital element of systems
development life cycle (SDLC) and can provide excellent
results if done correctly and effectively. Unfortunately,
software testing is often less formal and rigorous than it
should be, and the main reason for this is that the team has
tried to identify best practices, methodologies, principles,
and standards for optimal software testing. For effective

and effective testing, everyone involved in testing should
be familiar with the basic goals, principles, limitations,
and concepts of software testing. Much work has already
been done in this area and even continues today.
Implementing real-world testing principles of software
development to achieve testing goals to the fullest extent,
given the limitations of testing, will validate research as
well as pave the way for future research [3].

Types of requirements and their formation. Defi-
nition, analysis, verification, and management of require-
ments are constantly recognized as key areas of business
analysis and are one of the target areas of software testing.
Requirements are needs-oriented; solutions-oriented de-
signs. The difference between requirements and design is
not always clear. The same methods are used to identify,
model and analyze both. The requirement leads to a
design that, in turn, can help identify and analyze more
requirements [4].

In software engineering, a functional requirement
defines a system or its component. It describes the
functions that the software should perform. A function is
nothing but inputs, its behavior, and results. This can be
computing, data processing, business process, user
interaction, or any other specific functionality that
determines what function the system can perform.

Functional software requirements help determine the
predicted behavior of the system. Such behavior can be
expressed as functions, services, or tasks or what system
needs to be performed.

A non-functional requirement defines an attribute of
software system quality. They are a set of standards used
to assess the specific performance of the system. For
example, how fast does a website load?

A non-functional requirement is important to ensure
the convenience and efficiency of the entire software
system. Failure to meet non-functional requirements may
result in systems not being able to meet user needs.

Non-functional requirements allow you to impose
restrictions or restrictions on the design of the system in
different flexible lags. For example, a site should load in 3
seconds when the number of concurrent users is > 10,000.
The description of non-functional requirements is as
important as the functional requirement [5].

Approaches to the analysis of software
compliance with the stated requirements. The purpose
of verification of requirements is to ensure that the
requirements and specifications of the design and models
meet quality and suitability standards for the purposes
they serve.

Verification of  requirements  ensures  that
requirements and designs have been correctly defined.
Requirement’s verification is the verification by a
business analyst and key stakeholders of whether the
requirements and designs are ready for verification, and
provides the information needed for further work to be
performed.

The most important characteristic of quality
requirements and designs is suitability for use. They must
meet the needs of stakeholders who will use them for a
specific purpose. Ultimately, quality is determined by
stakeholders [5].

Bicnuk Hayionanvnozo mexuniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 2 (6) 2021 9



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Requirements (verified): a set of requirements or
designs that are of sufficient quality to be used as a basis
for further work.

The purpose of validation requirements is to ensure
that all requirements and designs meet business
requirements and support the required value provision.

Requirement validation is an ongoing process that
ensures compliance with the requirements of stakeholders,
decisions and the transition to the requirements of the
business, and the compliance of structures with the
requirements [5].

If the design cannot be verified to support the
requirement, there may be a lack or misunderstanding of
the requirement, or the design must change.

Approved requirements and designs are those that
can be demonstrated to benefit stakeholders and agree on
business goals and objectives for change. If a requirement
or project cannot be verified, it either does not benefit the
organization, does not fall within the scope of the
decision, or both.

Algorithmic implementation of the outcome
conformance analysis algorithm. From the characte-
ristics of the subject area, we can conclude that the results
obtained in the testing process are reduced to the
conclusion: passed tests (pass) or not passed (fail) [6].

Such an assessment is relatively superficial and does
not accurately define how well the developed software
meets its requirements. Therefore, recognized as high-
quality software can be a source of failure when changing
the configuration or operating conditions.

The development of a method for determining the
level of compliance software with functional and non-
functional requirements would further provide a greater
depth of measurements, and, accordingly, increase the
efficiency of testing.

Since the input data for the software's assessment
problem meets with the requirements of the test findings,
mathematical approaches for solving it are not applicable.

Formalization of the input data of the above problem
would simplify the solution and, as a result, improve the
quality of the software. For formalization, it is expedient
to use methods of fuzzy logical inference, which allow
operating of numerical values of their belonging to the
corresponding sets instead of non-numerical values.

We will assume that each requirement is met by a
separate test. For the result of each test, we define its
belonging to two fuzzy sets “execution” and ‘“non-
execution”.

Depending on the objectives of the test, a test is
considered to have been completed if all or more of half of
its runs have been successful. The test is considered as
failed if one, all, or more of half of its runs have failed.

Therefore, the fuzzy set of “execution” will consist
of three subsets: “fully executed”, “partially executed”
and “more executed than not executed”. The fuzzy set
“non-execution” will consist of the following subsets “not
executed completely”, “partially executed” and “no more
executed than executed”.

Let’s determine u]"- and u; u;'- is the degree of
affiliation of the test to each of the subsets of the set

“execution”, and — the ordinal number of the test, j — the
number of fuzzy subset (1 — “completed”, 2 — “partially
failed”, 3 — “more than not fulfilled”), u§- € [0,1], these
degrees are determined by experts, based on the results of
evaluation of test results by software developers. u; is the
degree of belonging of the test to each of the subsets of
the set “failure”, and — the ordinal number of the test, j —
the number of fuzzy subset (1 — “not fully performed”, 2 —
“partially performed”, 3 — more not performed than
performed”), uj'- € [0,1], these degrees are also determined
by experts, based on the results of evaluation of test
results by software developers.

To determine the general correspondence of each test
to the corresponding requirement uf, we use the rule of
difference of fuzzy sets [6]

ph= kA (1 - (ué A1 - ué))),u" efo1]. (1

Similarly, we find the value of the general non-
compliance of each test with a specific requirement

wh=wi A (1 —(wia(1- u‘é))).u‘i e[01]. (2

Test results are not interdependent and cannot
compensate for worse values of some tests with better
values of others.

The general compliance of the developed software
with the requirements M can be found by the formula of
the additive criterion and the difference between the sets
of compliance and non-compliance, where N is the total
amount of subsets

?’:1 /J‘i
N ) 3)

év=1 ut
M= N A <1

The proposed method allows to determine the
compliance of the developed software with functional and
non-functional requirements, taking into account how
successfully or unsuccessfully implemented a particular
requirement, but it has a number of significant
shortcomings.

First, its application can ignore important but
isolated facts that do not fit into the proposed formulas.

Second, the mathematical apparatus provides only
approximate calculations of compliance, as it does not
take into account the nonlinear relationships between the
input data of the problem of assessing the conformity of
the test results of critical application software to the
requirements and its initial result.

As a result, to increase the quality of analyzing the
compliance of software test results with requirements, it
will be more practical to design a fuzzy neural network
based on the method described above [7].

The structure of the fuzzy neural network to solve
the problem of assessing the compliance of the
application test results to the requirements. An ANFIS
(adaptive neuro-fuzzy inference system) [8] can assist us
in determining the optimal distribution of membership
functions by determining the mapping relation between
input and output data via hybrid learning. This inference
system is made up of five levels. The node function
describes numerous nodes in each tier. Fixed nodes,

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
10 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

shown by circles, represent parameter sets that are fixed in
the system, whereas adaptive nodes, represent parameter
sets that are adjustable in these nodes. The current layer's
input will be the output data from the preceding levels
nodes. Created ANFIS structure is shown in fig. 1.

ANFIS consists of inputs, that equal to the number of
tests, four layers, an output that carries out the defuzzifi-
cation process.

Layers of ANFIS consist of

Layer for calculating the membership of input
variables. On this layer, membership in one of the sets is
calculated — the test is passed or not.

The second layer aggregates the prerequisite values
for each rule in accordance with the selected T-norm [9].

Thus, there is compliance of the developed software
with the “execution” and “non-execution” and determine
how the developed software does not meet the
requirements.

The diagram of activity of the developed software
for research of testing conformity results of the software
to the declared requirements with use of neural networks
is given in fig. 2.

The starting point of the model of research of
conformity of testing conformity results of the software to
the declared requirements with use of neural networks is
an initialization of a pipeline in GIT Actions.

Next, if the tests that were marked as required were
positive, i.e. the expected result corresponds to the actual
result, a webhook is passed on the software API to study

In the third layer, the values received as input are
normalized; normalization is carried out using the z-

normalization method [10].

The fourth layer forms the output value.

The last layer performs defuzzification. The purpose
of defuzzification is to obtain the usual (not fuzzy) value
of each of the output variables using the results of the
accumulation of all output linguistic variables.
Defuzzification is also called clarity reduction [11].

The proposed method based on a fuzzy neural
network allows to eliminate this shortcoming by replacing
the non-numerical results of tests with numerical values of
their belonging to the corresponding fuzzy sets of
requirements. If the response from the API is negative,
then the next step — the deployment of the system is not
possible.

If the answer from the API came in the affirmative,
then the deployment of the system on the stands is
possible and is performed using the last step in the system.

Overview of system functionality. The software
works at the level of an automated system integrated into
the life cycle of the task, or branch.

For a full understanding, let's look at the stages of
the life cycle of the problem.

Backlog — the task is created and moved to the
backlog, from where it gets to the stage of work.

To do — the task is moved from the backlog and
taken to work.

In progress — the task is under development.

Run Autotests — the task is in the state of passing
automatic tests.

For review — the task is reviewed — evaluated by
another developer, for better code quality.

Fig. 1. The structure of a fuzzy neural network

Bicnuk Hayionanvnozo mexuniunozco ynisepcumemy «XI11». Cepia: Cucmemnuii
ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 2 (6) 2021 11



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

’:

Build artifact Mo

Report to BOQ:

Istests
pazzed

*

Yes
¥

Webhookto API

|= positive

I} =

Fig. 2. Diagram of activity

For testing — the task is in a state of testing, or
writing auto tests Ready for merge — a task tested, and
ready for release into the product environment.

On Prod — the task is tested and is on the product
environment.

Closed — the task is closed, i.e. it is executed or the
decision to stop development is made.

From the reference stage it is seen that to improve
the process it is necessary to implement the created
software at the stages of transition from one state to
another, and more precisely at the stages that are more
vulnerable to system error. That is why it is advisable to
implement the software in stages Run Autotests, For
testing, Ready for merge, On Prod.

To better understand what is happening at these
stages, we need to consider the reference process of
working with a branch in the pipeline.

The CI / CD pipeline is the most important
component of automated software development. Although
the term has been used to describe many different aspects
of computer science, git Actions and in most areas of
DevOps use pipeline to illustrate the widespread use of
behaviors and processes involved in continuous
integration (ClI).

Cl is a software development strategy that increases
the speed of development while ensuring the quality of the
deployed code. Pipeline Cl / CD is a complete set of
processes that run projects start. Conveyors cover
workflows, which coordinate tasks, and this is all defined
in the project configuration file [12].

Examining the reference process, we can understand
that automatic processes, such as unit testing, API testing,
Ul testing, static code analysis — requires process
improvement, and therefore it is advisable to use the
developed software product.

Example of the software work is given for a branch
in the project. Pipeline was started by an automatic action
from the bot — service on the side of the project
management system.

The pipeline for a branch is based on the reference
process of working with a branch in the pipeline. Pipeline
is shown in fig.3.

As can be seen from the figure and based on the
reference process, we see the following stages:

1. Stage of compiling and assembling docker images.
There are two steps to build tests at this stage, namely the
construction of the image with the solved project task.

2. Stage of passing self-tests. At this stage following
is happening: static code analysis, automatic unit tests,
automatic API tests, automatic Ul tests, as well as the
stage of analysis of passing tests and their compliance
with the set of requirements.

3. Stage of data collection and import to Google
BigQuery, Google Data Studio. At this stage, data is
aggregated and imported into data storage and analysis
systems.

Pipeline results can be found in Allure report format
or in aggregate data format using Google Data Studio.
Aggregate results for the period are shown in fig. 4.

Thus, an example of software operation for compli-
ance of test results with the stated requirements was given.

Conclusions. To achieve the goal of the work, the
following tasks were performed. Based on the analysis of
the subject area, the advantages and disadvantages of
using modern systems are determined and the conclusion
is made about the need to develop algorithmic software to
meet the results of software testing to the stated
requirements. A data processing model based on a fuzzy
neural network is proposed. A method has been developed
that allows determining the compliance of the developed
software with functional and non-functional requirements,
taking into account how successfully or unsuccessfully
implemented this or that requirement, but it has a number
of significant shortcomings. Therefore, the information
and algorithmic software of the solution was designed to

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
12 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

m = = #193467
Pipeline #199467 triggered 7 hours ago by e Wenenes AnekcaHap @!
GEE" B B R ol T R T L

@ 11 jobs for in 3 minutes and 51 seconds {queued for 19 seconds)

R latest

< i

4 No related merge requests found.

Pipeline MNeeds Jobs 11 Tests 0
Build Test Deploy Report
(®) buid (@. (©) testanalyse u‘@\a (@) deploy 7 . (E) (@) iirabot w@\‘u
@ build lié:l @ test-api I:é) @ deploy = \:E) @ report (.;:l

£ 7
@ test-unit (=) @ deploy- L

(¥)
\_/

=
® tests-to-bq \\G/"

Fig. 3. Pipeline

- QA Autotests results

£ Panrarane TecTon (Grpames 203 2 3

a Copoces || B¢ Mpeacctasats goctyn =

Nooest - TetTomnd nasce wetol - e . Sayin - e, 02 £ - 1 oo, 2O 1.

Brcm  Gecm Mmgm Tlwgm Timgs T3ece Tdes

10

o
B g b g ) > y ) gy L B e 3 b o S gt i gl o
e e e o e e e e e e i e e e e e e e e S e e

Ton caama mecTabubins TecTon Ton caunx goarks TecTos

I
i

]

il || B

i
i
i
i

Fig. 4. Aggregate results

implement the analysis of the compliance of the software https://support.sas.com/resources/papers/proceedings/proceedings/s
testing results with the stated requirements, which will ugi30/141-30.pdf (access date: 18.10.2021).

R . 2. Farooq Sh. U., Quadri S. M. K. Effectiveness of Software Testing
allow forming an expert assessment of the quality of the Techniques on a Measurement Scalel. Oriental Journal of Computer

software. Science & Technology. 2010. Ne 3(1). P. 109-113.
3. Jenkins N. A Software Testing Primer v.2. OPENLIBRA, 2017. 55
References p.
4. Mpyers G. J. The art of software testing 3rd edition. New York:
Wiley, 2011. 256 p.
BABOK V3 a guide to the business analysis body of knowledge
Available at

1. BentleyJ., Bank W., Charlotte N. C. Software Testing Fundamentals
— Concepts, Roles, and Terminologyl. Planning, Development and g
Support. Available at '

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIy. Cepis: Cucmemnuil
ananis, ynpasgiinua ma ingopmayiiuni mexnonoeii, Ne 2 (6) 2021 13



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

https://book.akij.net/eBooks/2018/September/5b8a80dd494ce/BAB 3. Jenkins N. A Software Testing Primer v.2. OPENLIBRA, 2017.

OK_Guide_v3_Member.pdf (access date: 29.09.2021). 55p.
6. Kpyrmios B. B, Jlim M. U., Tonyros P. }0. Heuerkas noruka u 4. Myers G. J. The art of software testing 3rd edition. New York:
UCKYCCTBEHHble HeWpoHHble ceTd. Mocksa: ®usmaraut, 2001. Wiley, 2011. 256 p.
224 c. 5. BABOK V3 a guide to the business analysis body of knowledge
7. Kruse R. Fuzzy  neural network. Available at Available at
http://www.scholarpedia.org/article/Fuzzy_neural_network (access https://book.akij.net/eBooks/2018/September/5b8a80dd494ce/BAB
date: 11.09.2021). OK_Guide_v3_Member.pdf (access date: 29.10.2021).
8. Jang JSR. ANFIS: Adaptive-network-based fuzzy inference system. 6. Kruglov V.V., Dli M.l., Golunov R.Yu. Fuzzy logic and artificial
IEEE Trans Syst, Man, Cybernet. 1993. Ne 23(3). P. 665-685. neural networks. Moscow: Fizmatlit, 2001. 224 p.
9. Beg, Ismat & Ashraf, Saminax. Similarity measures for fuzzy sets. 7. Kruse R. Fuzzy neural network. Available at
Applied and Computational Mathematics. 8. 2009 192-202. http://www.scholarpedia.org/article/Fuzzy_neural_network (access
10. DevGoogle. Data Preparation and Feature Engineering for date: 11.09.2021).
Machine Learning. Available at 8. Jang JSR. ANFIS: Adaptive-network-based fuzzy inference system.
https://developers.google.com/machine-learning/data- IEEE Trans Syst, Man, Cybernet. 1993. no 23(3). pp. 665-685.
prep/transform/normalization#z-score (access date: 11.09.2021). 9. Beg, Ismat & Ashraf, Saminax. Similarity measures for fuzzy sets.
11. Chakraverty S., Sahoo D.M., Mahato N.R. Defuzzification. In: Applied and Computational Mathematics. 8. 2009 192-202.
Concepts of Soft Computing. Springer, 2019 Singapore. Available at ~ 10. DevGoogle. Data Preparation and Feature Engineering for
https://doi.org/10.1007/978-981-13-7430-2_7 (access date: Machine Learning. Available at
10.10.2021). https://developers.google.com/machine-learning/data-
12. Fowler, M, Foemmel M. Continuous integration. (2006). Available prep/transform/normalization#z-score (access date: 11.09.2021).
at https://moodle2019-  11. Chakraverty S., Sahoo D.M., Mahato N.R. Defuzzification. In:
20.ua.es/moodle/pluginfile.php/2228/mod_resource/content/2/martin Concepts of Soft Computing. Springer, 2019 Singapore. Available at
-fowler-continuous-integration.pdf (access date: 10.10.2021). https://doi.org/10.1007/978-981-13-7430-2_7 (access date:
10.10.2021).
References (transliterated) 12. Fowler, M, Foemmel M. Continuous integration. (2006). Available
at https://moodle2019-

1. Bentley J., Bank W., Charlotte N. C. Software Testing
Fundamentals — Concepts, Roles, and Terminologyl. Planning,
Development and Support. Available at
https://support.sas.com/resources/papers/proceedings/proceedings/s Received 03.11.2021
ugi30/141-30.pdf (access date: 29.09.2021).

2. Faroog Sh. U., Quadri S. M. K. Effectiveness of Software Testing
Techniques on a Measurement Scalel. Oriental Journal of Computer
Science & Technology. 2010. Ne 3(1). pp. 109-113.

20.ua.es/moodle/pluginfile.php/2228/mod_resource/content/2/martin
-fowler-continuous-integration.pdf (access date: 10.10.2021).

Bioomocmi npo asmopis | Ceedenus 06 asmopax | About the Authors

Illenenee Onexcandp Baoumosuu — GaxanaBp TeXHIYHUX HAyK, CTyJeHT, HarlioHanbHUI TeXHIYHAN YHIBEpCUTET
«XapKiBChKUH TONITEXHIYHHNA THCTHTYT», CcTyIeHT Kadeapu [Iporpamuoi [mkenepii Ta [Hpopmaniiianx TexHomorii
VYupasnians; M. Xapkis, Ykpaina; ORCID: https://orcid.org/0000-0002-6258-3446; e-mail: zirgus1@gmail.com

binosa Mapin Onexciiena — KaHIuIaT TEXHIYHUX HayK, HauioHanbHUI TeXHIYHUIA yHIBepcuTeT «XapKiBCbKUI
MOJITEXHIYHUH THCTUTYT», JNoueHT kadeapu IIporpamuoi Imxenepii ta Indopmauiiinnx TexHosorii YmpapiniHHs,
M. XapkiB, Ykpaina; ORCID: https://orcid.org/0000-0001-7002-4698; e-mail: missalchem@gmail.com

Illenenes Anexcandp Baodumosuu — OakanaBp TEXHHYECKHX HAyK, CTyAEHT, HaloHampHBIH TEeXHMYECKHH
YHHUBEPCUTET «XapbKOBCKHH TOJNTEXHUYECKHUH HWHCTUTYT», CTylaeHT Kadenpsl [Iporpammuoit Wmxenepum wu
Nudopmanmonnpix TexHonoruit Ynpasnenus; r. Xapsko, Ykpauna; ORCID: https://orcid.org0000-0002-6258-3446;
e-mail: zirgusl@gmail.com

benosa Mapusa Anexceeena — KaHIUIAT TEXHUYECKUX HayK, HanuoHanbHBIH TEXHUYECKUH YHHUBEPCUTET
«XapbKOBCKHH TMONUTEXHUYSCKIUA HHCTUTYT», IOUeHT Kadenpsl [Iporpammuoit Mmxenepun n HMHPOpMATHOHHBIX
Texuomornii  Ynpasinenus; r. XappkoB, VYkpamna; ORCID: https://orcid.org/0000-0001-7002-4698; e-mail:
missalchem@gmail.com

Shepeliev Oleksandr Vadymovich — Bachelor of Technical Sciences, Student, National Technical University
“Kharkiv Polytechnic Institute”, student at the Department of Software Engineering And Management Information
Technologies; Kharkiv, Ukraine; ORCID: https://orcid.org/0000-0002-6258-3446; e-mail: zirgusl@gmail.com

Bilova Mariia Oleksiivna — PhD, National Technical University «Kharkov Polytechnic Institute», Associate
Professor of the Department of Software Engineering And Management Information Technologies; Kharkiv, Ukraine;
ORCID: https://orcid.org/0000-0001-7002-4698; e-mail: missalchem@gmail.com

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
14 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021


mailto:missalchem@gmail.com

