ISSN 2079-0023 (print), ISSN 2410-2857 (online)

UDC 004.051 DOI: 10.20998/2079-0023.2021.02.11
A. M. KOPP, D. L. ORLOVSKY]I, D. ERSOYLEYEN

AN APPROACH TO ANALYSIS OF ARCHIMATE APPLICATION ARCHITECTURE MODELS USING
THE SOFTWARE COUPLING METRIC

Applications architecture is the baseline of any organizational activity, which main goal is to provide the executional environment for business
processes in order to deliver products or services to satisfy customer needs and generate revenue. Nowadays, large software engineering projects
always begin with the architecture design phase, despite the waterfall or agile methodology is used by a software development team. Applications
architecture design is the most important and, at the same time, error-prone stage of the whole software engineering project. It is well-known that
design shortcomings made on the design phase may increase drastically to testing and maintenance phases. Further costs to defects fixing may be
hundred times higher in the later project stages in compare to the design stage on which applications architecture is defined. Common system design
solutions, which were proven on practice and used in many projects, are known as architectural patterns. Software architecture patterns are considered
as building block for system implementation. The most popular and efficient way to share architectural patterns are graphical models that used as any
other blueprints of engineering solutions. Applications architecture models are built to represent system design, whereas, such models are already
based on certain patterns as the industry best practices. Hence, in this paper we consider a relevant problem of applications architecture models
analysis, which relevance is defined by those fact that designed blueprints of information systems and other software solutions should be carefully
checked for all presumable inefficiencies in order to avoid extra efforts and related costs for defects fixing in the later project stages. It is proposed to
use ArchiMate enterprise architecture modeling language, since it can be used not only to represent applications architecture, but is connection to
business and technology layers. In order to evaluate applications architecture models, respective ArchiMate metamodel is considered and represented
as labeled directed graph, and coupling software metric is selected for analysis. Sample calculations are demonstrated, obtained results are discussed,
conclusion and future work directions are formulated.
Keywords: applications architecture, software engineering, software design, model analysis, software metrics, coupling metric.

A. M. KOIII, /1. /1. OP/IOBChKHH, /. EPCOHIEEH

MIAXIT IO AHAJI3Y MOJIEJTEA APXITEKTYPH 3ACTOCYHKIB ARCHIMATE 3
BUKOPUCTAHHAM METPHUKH 3B’A3HOCTI IPOI'PAMHOI'O 3ABE3ITEYEHHSA

ApXITEKTypa 3aCTOCYHKIB € OCHOBOIO Oy/b-sIKOI OpraHi3aliifiHOi isTbHOCTI, TOJOBHOK METOIO SIKOi € 3a0e3MeYeHHS CePeIOBHINA s BUKOHAHHSI
0i3Hec-TIpoLEeCiB 3 METOI0 HAaJaHHS NMPOAYKTIB a00 IOCIYT AT 3a{0BOJICHHS ITOTPeO KIIEHTIB 1 OTpuMaHHs npuOyTKy. Ha choropHinmHii JeHb BenHKi
HPOCKTH HPOrpamMHOi iHKEHepil 3aBKIM IMOYMHAIOTHCS 3 (ha3H IMPOCKTYBAHHSA apXIiTEKTypH, HE3BaXAIOYM HAa Te, IO KOMaHJa PO3POOHHMKIB
MPOrPaMHOTo 3a0e3MeUeHHs] BUKOPUCTOBYE BOAOCIAA ab0 kK THYYKYy MeTOHoJorifo. [IpoekTyBaHHs apXiTEKTypH 3aCTOCYHKIB € HAWBAXJIMBILIHNM i,
BOJIHOYAC, HAHOIBII Bpa3IMBMM JIO TIOMUJIOK €TAallOM YChOTO MPOEKTY 3 PO3pOOKM MporpaMHOro 3abesneueHHs. J{oOpe BiIoMO, IO 3HAYYIIICTh
HENIOJIKIB, IPHUITYIIEHUX Ha €TaIl MPOEKTYBaHHS, MOXKE Pi3KO 301IbIIMTHCS IPH IEPEXO/Ii 10 eTaliB TECTYBaHHs Ta cynpoBony. [loganbuni BUTpaTH Ha
BHUIPaBICHHS ne()EeKTIiB MOKYTh OYTH Y CTO pa3iB BHIIUMH Ha OiNbII Mi3HIX CTAIisX MPOEKTY, HIXK Ha €Tami MPOEKTYyBAHHSI, HA SIKOMY BU3HAYAETHCS
apXxiTeKkTypa 3acTocyHKiB. [lommpeni pimeHHs 3 MPOEKTyBaHHS CHCTEM, SIKi TepeBipeHi Ha MPAKTHUIi i BUKOPHCTOBYIOTBCS B 0araTthoX INPOEKTAX,
BiIOMI SIK apXiTeKTypHi mabnonu. 111abnoHM apXiTeKTypH MPOTPaMHOrO 3a0e3NeueHHs] PO3IIANaloThes K OyaiBenbHI OMOKM 1S peanizauii yciel
cuctemu. HalinonynsipHium i epeKTHBHUM crioco00M 00MiHY apXiTEeKTYpHHMH LIa0JIOHAMU € rpadiuHi MOJIEN, IKi BAKOPUCTOBYIOThCA SIK 1 Oyab-sKi
IHII KpecIIeHHs iHKeHEepHUX pileHb. Mofielnti apXiTeKTypH 3aCTOCYHKIB CTBOPEHI JUISl IPEICTABIICHHS MPOEKTIB CHCTEMH, TIPUYOMY TaKi MOJIENI Bike
0a3yroThCS Ha EBHUX IIA0JIOHAX SK HAaHKpAIUX rajly3eBUX npakTtukax. Omke, B JaHiil poOOTi po3riIsiaaeThesl akTyallbHa MpodieMa aHai3y Mojenen
ApXITEKTYpH 3aCTOCYHKIB, BaXIIMBICTh SKOi BH3HAYAETbCS THUM, IO PO3POOJEHI MPOEKTH iH(OpPMAliHHUX CHCTEM Ta IHIIMX MPOTPaMHUX PillIeHb
TIOBHMHHI OyTH pETENTbHO NepeBipeHi Ha HasBHICTh yCiX iMOBIpHIX HeeeKTHBHMX PIillleHb I TOTO, 00 YHUKHYTH JOJJATKOBUX 3yCHIIb i TOB’SI3aHUX
3 UM BUTpAT, CHPSIMOBAHHX Ha YCYHEHHs Ie(eKTiB Ha Mi3HIX cTamisx mpoekTy. [IpomnoHyeThesi BUKOPUCTOBYBATH MOBY MOJCITIOBAHHS apXiTEeKTYpH
nianpuemctBa ArchiMate, ockiIbKY ii MOKHA BUKOPHCTOBYBATH JUISl TIPEJCTABICHHS HE TUIBKH apXiTEKTypH 3aCTOCYHKIB, a i 11 3B’3KYy 3 piBHAMH
Oi3Hecy Ta TexHosorid. [l aHamizy Mojeineil apXiTeKTypH 3aCTOCYHKIB Oyna po3IVIsIHyTa BinmoBigHa meramonens ArchiMate ta 3xificHeHo i
MOJAaHHS y BHIVISII PO3MIUYEHOTO OpIEHTOBAHOrO rpada, a TakoX Ui aHamizy OyJao oOpaHO METPHKY 3B’SI3HOCTI MPOrpaMHOTO 3a0e3neyeHHs.
IIpoieMOHCTPOBAHO TPUKIIAA PO3PAaXyHKIB Ta MPOAHANI30BaHO OTPUMAHI Pe3yabTaTH, CHOPMOBAHO BUCHOBKU Ta BH3HAYCHO HANPSIMKH MOAAIBIIOL
poboTHu.

KurouoBi cjioBa: apXiTekTypa 3aCTOCYHKIB, IPOrpaMHa iHXKEHepis, MPOEKTYBaHHS MPOTPaMHOrO 3a0e3NeyYeHHs, aHali3 MOJeied, METPUKU
MPOrPaMHOT0 3a0€3MEUeHHS, METPUKA 3B’ I3HOCTI.

A. M. KOIII, /1.)I. OP/IOBCKHH, /. 9PCOH/IEEH

MOJIXO0/ K AHAJIN3Y MOJIEJIEM APXUTEKTYPbI IIPUJIOKEHUI ARCHIMATE C
HCITIOJBb30BAHUEM METPUKHU CBA3AHHOCTHU NTPOI'PAMMHOI'O OBECIIEYEHUA

ApXUTEKTYypa MPUIOKEHUH SBISIETCS OCHOBOW JF0O00M OpraHU3allMOHHON JAEATENbHOCTH, TIIaBHOM 1IENIBI0 KOTOPOIl SIBISIETCS 0OECTIeueHne CPebl ISt
BBITIOJIHEHNST OU3HEC-TIPOLIECCOB C LIENBIO NPEAOCTABICHNS MIPOAYKTOB WIIM YCIYT IS YIAOBJICTBOPEHHUS OTPEOHOCTEN KINEHTOB M MONYYEHUS IPH-
Obum. Ha ceromHsamnmii eHb KPyNHBIe IPOEKTHl IPOTPAMMHOI HH)KCHEPHH BCETa HAYMHAIOTCS C (has3bl MPOEKTUPOBAHHS apPXUTEKTYPhl, HECMOTPS
Ha TO, YTO KOMaH/a pa3pab0TINKOB MPOrpaMMHOr0 00ecIedeH s HCIOIb3yeT BOAOMNA MK Jke THOKYI0 MeTogonoruio. [IpoekTHpoBaHHe apXUTEKTY-
PBI TIPHIIOKEHUH SBISIETCS BAKHEHIIMM M OJJHOBPEMEHHO HAMOOJiee YSI3BUMBIM K OIIMOKaM 3TAIlloM BCEro MpOeKTa IO pa3paboTke MpOrpaMMHOrO
obecmeueHus. XOpOIIO H3BECTHO, YTO 3HAYMMOCTh HEJOCTAaTKOB, IPEAINONAracMbIX Ha dTale NMPOEKTUPOBAHHS, MOXET PEe3KO YBEIHIHUTHCS NPU
mepexofie K dTanaM TeCTHPOBAHUS U CONPOBOKACHUS. JlanpHeiue 3aTpaTsl Ha yCTpaHeHHe Ae(peKTOB MOTYT OBITh B CTO Pa3 BBIIIE Ha Ooee MO3IHUX
CTaausX MPOEKTa, YeM Ha 3Tale MPOEKTUPOBAaHMS, Ha KOTOPOM OIpeNeNseTcs apXUTEKTypa IpuWIokKeHHH. PacrpocTpaHeHHblE pelIeHus I10
MIPOEKTUPOBAHHIO CHCTEM, IIPOBEPEHHBIX HA MPAKTUKE H HCIOIb3yeMBIX BO MHOTHMX IPOEKTAX, U3BECTHBI KaK apXHTEKTypHbIe MIa0IoHbL. 111abmoHbI
aPXUTEKTYPhI IIPOIPAMMHOTO OOECIIEUEHHUs] PACCMATPUBAIOTCS KaK CTPOHUTENbHBIC ONOKH IS peanu3aluu Bced cucTeMbl. CaMbIM IOMYISPHBIM U
3 (EKTUBHBIM CIIOCOOOM OOMEHa ApXUTEKTYPHBIMH HIA0JIOHAMH SIBISIOTCS TpaMuecKue MOJENH, KOTOpble UCHOJIB3YIOTCS KaK M JI00bIe Ipyrue
YepTEeXKU HHKCHEPHBIX pelIeHHH. Momemn apXUTEeKTyphl NPUIOKSHUH MpeJHA3HAUCHBI NI HPEICTAaBICHUS NPOEKTOB CHCTEMBI, IPHYEM TaKHe
MozienH yxe 0a3upyloTcsl Ha ONpeleleHHbIX Ma0iIoHaX KaK JTydIIMX OTPAcieBBIX ImpakThkax. ClemoBaTelbHO, B JaHHOH paboTe paccMaTpHBAaeTCs
aKTyaJbHasi TpoOjeMa aHalu3a MOJENel apXUTEKTYphl HPHIOKCHMI, BaKHOCTh KOTOPOH OINpENEeNsercs TeM, 4YTO pa3pabOTaHHBIC MPOEKTHI
MH()OPMALOHHBIX CHCTEM M JPYTHX HPOTPAaMMHBIX PEHICHUH JOJDKHBI OBITh TIIATEIHHO IIPOBEPEHBI HA HAIMYHE BCEX BEPOATHBIX HEI(P(EKTUBHBIX

© A. M. Kopp, D. L. Orlovskyi, D. Ersoyleyen, 2021

Bicnux Hayionanvnoco mexuiunozo ynieepcumemy «XIIIy». Cepis: Cucmemmnuti
ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 2 (6) 2021 67

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

PpelIeHHUIT U1 TOTo, 4TOOBI M30€KaTh JJOMOIHUTEIBHBIX YCUIIMIT U CBA3aHHBIX C 3TUM PACXOJIOB, HANIPABICHHBIX HAa YCTPAHEHHUE JS(EKTOB Ha MO3IHUX
cTaausx npoekTa. [Ipennaraercs HCIONB30BATH SI3BIK MOJCTUPOBAHMS apXUTEKTyphl npeanpusatust ArchiMate, MOCKOIBKY €ro MOXHO HCIIONB30BaTh
JUIS TIPEACTABJICHHUS HE TOJBKO apXUTEKTYPhl NPUIOKEHUH, HO U €€ CBA3U C YPOBHAMM OM3Heca W TexHojoruil. /s aHanu3a Mozeneil apXuTeKTypbl
MPUIOKEHHH ObUIa PaccMOTpeHa COOTBETCTBYOIAs Meramopenb ArchiMate u OCyLIeCTBICHO ee NpPEACTABICHHE B BHIC Pa3MEUYSHHOTO
OPHEHTHPOBAHHOTO Tpada, a Taroke JUIsl aHanu3a ObUIa BEIOpaHa METPHKA CBSI3aHHOCTH IIPOrpaMMHOrO obecriedeHus. IIpogeMoHCTpupoBaH mpuMep
pacyeToB M IPOAHATN3UPOBAHBI MIOJIyYCHHbBIC PE3YJIbTaThl, CHOPMUPOBAHBI BEIBOIBI M ONPE/ICIICHBI HAIIPABIICHUS JaJIbHEHIIeH paboThl.

KuroueBble c10Ba: apxXuTeKTypa NPUIOKEHUH, IPOrpaMMHas MHXEHEPHs, IPOCKTUPOBAHUE IPOIrPAMMHOI0 00CCIICYEHH s, aHAIIN3 MOJIEIICH,

METPUKHU ITPOTrPaMMHOT'O O6BCHC‘{GHI/I$[, METpHKa CBA3aHHOCTH.

Introduction. Application architecture designs can
be evaluated to ensure that quality attributes are met. Pre-
implementation architectural approaches are used by
system architects during the initial design and preparation
stages before actual implementation begins. In contrast to
implementation-oriented architecture compliance appro-
aches, it is assessed whether the implemented system
architecture matches the intended system architecture.
Architectural conformance approach evaluates whether
the implemented architecture is consistent with the
proposed architecture specification and the objectives of
the proposed architecture [1].

Architectural styles, approaches, or techniques are
used within the software system design process to
evaluate the software architecture in the pre-imple-
mentation phase. Approaches or techniques are design
decisions that affect the control of the quality attribute
response. Architectural styles or patterns describe the
structure and interactions between system components [1].

There are software architecture methods in the
systems design based on their quality attributes, such as
Attribute Driven Design (ADD) [2] (see fig. 1).

by

Step 1. Confirm there is sufficient requirements
information

Step 2. Choose an element of the system
to decompose

(Step 3. Identify candidate architectural drivers

¥

[Step 4. Choose a design concept that satisfies)
A

the architectural drivers

Step 5. Instantiate architectural elements and allocate
responsibilities

[Step 6. Define interface for instantiated elements)

Step 7. Vernfy and refine requirements and make them
constrains for instantiated elements

Fig. 1. ADD method steps [9].

The ADD method is an approach to the definition of
software architecture, in which the design process is based
on software quality attributes. ADD complies with the

recursive design process that decomposes the system or
system element by applying the architectural tactics and
models that satisfy its driving requirements. As shown in
fig. 1 above, adding essentially follows the “plan, do, and
check” cycle [3]:

o plan: quality attributes and design constraints are
considered to select which types of elements will be used
in the application architecture;

e do: elements are instantiated to satisfy quality
attribute requirements (also referred as nonfunctional
requirements) as well as functional requirements;

e check: the resulting design is analyzed to
determine if the requirements are met.

This process is repeated until all architecturally
significant requirements are met.

Also there are methods for assessing the conformity
of quality attributes to software architecture design, such
as the Architecture Tradeoff Analysis Method (ATAM)
[4] (see fig. 2).

PHASE I: Scenario &)

. (" PHASE II: Architectural
Requlrements

auer Views & Scenario
athering Realization

tm”en SEendnos Describe Architectural Views J

Collect Requirements, 3 h
Constraints, Environment J \r_ieallze SGENanos

|
| |

(PHASE IV: Tradeoffs } [PHASE Ill: Model Bundmg]

& Analysis
Identify Sensitivities Y
Identify Tradeoffs

J @ttribute Specific Analyses)

Fig. 2. ATAM method steps [11].

ATAM is a method for evaluating architecture-level
designs that considers multiple quality attributes such as
modifiability, performance, reliability and security in
gaining insight as to whether the fully fleshed out
incarnation of the architecture will meet its requirements.
The method identifies trade-off points between these
attributes, facilitates communication between stakeholders
(such as user, developer, customer, maintainer) from the
perspective of each attribute, clarifies and refines
requirements, and provides a framework for an ongoing,
concurrent process of system design and analysis [5].

Problem statement. It is well known that different
architectural solutions have their strengths and
weaknesses, which may affect development, testing, and
maintenance stages of a software system. Therefore, the
problem of applications architecture models analysis
become relevant, since designed blueprints of the software
system should be carefully checked for all presumable
inefficiencies in order to avoid extra efforts and related
costs for defects fixing in the later project stages.

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
68 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

This study aims on detection of strong and weak
spots of software design solutions by analyzing
applications architecture models. Research objective
includes the process of applications architecture models
analysis. Research subject considers the method for
applications architecture models analysis. In order to
achieve research goal, there should be selected
applications architecture modeling language, defined its
metamodel, and proposed measures for structural analysis
of designed models.

Materials and methods. Methods ADD and ATAM
follow a recursive process based on the quality attributes
that the system must meet. At each stage, techniques and
architectural patterns (or styles) are selected in case they
satisfy certain qualities [1].

More holistic approach to architecture design and
analysis (fig. 3) is proposed by the TOGAF (The Open
Group Architecture Framework) [6]. The Architecture
Development Methodology (ADM) is used to develop
enterprise architecture (EA), which meets the needs of the
organization of business and information technologies

(IT).
?

Strategy & Motivation
Preliminary "
H. Architecture Change Management
A Architecture Vision

Core Layers

B. Business Architecture A
C. Information Systems Architecture
D. Technology Architecture

~

>
Implementation & Migration
E. Opportunities and Solutions
F. Migration Planning
. Implementation Govemance

Fig. 3. TOGAF ADM method steps [13].

TOGAF is a mature approach for enterprise
architecture and framework used by leading world
organizations to improve business efficiency. This is the
most outstanding and reliable architecture of the enterprise
to ensure consistency of standards, methods and
communications between professionals of the enterprise
of architecture. Professionals working in TOGAF
standards enjoy a higher sectorial reputation, efficiency
and career capabilities. TOGAF helps practitioners, avoid
entering patented methods, achieve more efficient use of
resources and achieve a higher return on investment [6].

IT (Information Technology) architecture should
carefully reflect the business goals of the organization. In
fact, specific technologies (business scenarios) should be
used to ensure that it is to correctly understand the
business goals and are reflected in the IT architecture
designed using TOGAF [6].

ADM is the result of a constant contribution of a
large number of practicing architecture in the following
goals [6]:

e it describes a method for developing and
managing the life cycle of EA and forms the TOGAF
core;

e it can be configured in accordance with the needs
of the organization, and then used to implement measures
for planning the management system structure.

Even though TOGAF ADM is not that different from
the previously considered ADD and ATAM approaches,
especially considering the cyclic nature of all of referred
methods including ADM, it has significant advantages:

e ADM considers business architecture, strategy,
and implementation activities, focusing not only on the
software quality and functional attributes, but also taking
into account the real business needs of customers
therefore providing more holistic and reliable approach to
application and IT architecture development;

e ADM could be formalized using the architectural
modeling language proposed by TOGAF — ArchiMate [7].

In order to ensure a single presentation of
architectural descriptions, the ArchiMate modeling
language was developed, offering an integrated approach
to the description and visualization of various
organizational regions, their relationships and
dependencies. The aim of the ArchiMate project is to
provide architects to support tools and improve the
process of developing an enterprise architecture.
Currently, ArchiMate is the Open Group standard.
Organizational areas in ArchiMate are associated with the
help of a service-oriented paradigm, where each layer
provides the functionality of the preceding layer in the
form of services. As a formal language of visual design,
ArchiMate supports different points of view for individual
stakeholders, and is quite flexible for subsequent
expansion. For example, for a more complete covering of
the TOGAF methodology, in the second version of the
ArchiMate language, were introduced new viewpoints —
Motivation Extension and Implementation and Migration
Extension (see fig. 3) [7].

Metamodel of ArchiMate active structure
applications architecture elements, as well as their inter-
relationships are demonstrated in fig. 4. All of the propo-
sed elements and relationships are sufficient to design
application and IT architectures.

@Application Collaboration

aggregates v ‘;v;f‘

Application Internal
@ Active Structure
Element

.A.

T realizes

@Application Component| ™

J

"

Fig. 4. Metamodel of ArchiMate active structure applications
architecture elements [8].

Bicnux Hayionanvnoco mexuiunozo ynieepcumemy «XIIIy». Cepis: Cucmemmnuti
ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 2 (6) 2021 69

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

In general ArchiMate metamodel [8] includes two
main types of elements:

e structure elements that can be subdivided into
active structure elements and passive structure elements:
active structure elements can be further subdivided into
external active structure elements (also called interfaces)
and internal active structure elements;

e Dbehavior elements that can be subdivided into
internal behavior elements, external behavior elements
(also called services), and events.

Let us clarify on this ArchiMate behavioral and
structural building blocks [8], [9]:

e active structural elements to which interfaces as
external active structure elements (e.g. application and
generic or domain-specific internal active structure
elements (e.g. application components) belong;

e behavior elements include services as external
behavior elements (e.g. application services) and generic
or domain-specific internal behavior elements (e.g.
application functions);

e passive structure elements are structural elements
that cannot perform behavior, they are often information
or data objects, but they can also represent physical
objects.

Results. Since ArchiMate language has its own
specification and metamodel, architectures of application
and IT systems described using this language could be
formally described.

Generic framework for EA modeling [9] focused on
behavior, active structure, and passive structure elements
demonstration is shown in fig. 5.

Active

Behavior

o
Application Service

Application Interface

s £]
[Applicaticn Functicn)" * Application Component

Passive
«" Composition
- & Assignment
- A Realization
Data Object TAccess

Fig. 5. Essential ArchiMate cross-layer reference model [9].

Outlined reference model demonstrates not only
elements of different prospects (passive structure and
behavior) together with active structure elements men-
tioned in fig. 4 earlier, but also possible types of rela-
tionships between such elements (e.g. composition,
assignment, realization, and access) [8], [9].

In general ArchiMate model could be formally
described using the following tuple [10]:

AM =(V,E,C,R,vc,er), (D)

here V —is the set of vertices (define and describe
architectural elements of applications and IT);

E c V xV —is the set of edges (define and describe
relationships between architectural elements);

C —is the set of types of architectural elements
defined by the ArchiMate metamodel;

R —is the set of types of relationships between
architectural elements;

vc:V — C —is the function that maps types of
architectural elements to the vertices of the graph AM (1);

er:E - R —is the function that maps types of
relationships to the edges of the graph AM (1).

Hence, using this reference model (see fig. 5) and
equation (1) for the first time shown in [10], we can easily
apply software metrics to evaluate applications architect-
ture models given in ArchiMate language.

A software coupling measure reflects the strength of
interconnection between modules by considering
incoming and outgoing connections [11]. As we know
from software engineering basics [12]:

o “weak” or “low” coupling is a feature of
software components that have small amount of external
connections (both incoming and outgoing), since they
autonomously solve distinct tasks, being efficient for
modification, re-using, and testing; “low” coupling is a
property of well-structured and properly designed system;

e “strong” or “high” coupling in contrast could be
considered as a serious shortcoming; “high” coupling is a
of bad-structured and poorly designed systems, which are
hard for understanding and modification, while distinct
components cannot be autonomously tested and re-used.

Therefore, we can formulate the following equation
in order to calculate coupling of each applications
architecture components:

1
,V E
1+ dip(v) + doye(v)

Cw)=1- v, (2)
here d;,(v) — is the number of incoming connections of a
certain architecture component v € V;

dgy: (v) — is the number of outgoing connections of a
certain architecture component v € V.

Proposed metric (2) ranges approximately from 0 for
“weak” coupling, see fig. 6, to 1 for “strong” coupling, see
equations (3) and (4).

LT
s é e
G e e Tt s 7
frary .#-ﬁ- e Ay . iy’
e
Aty iy Lo e
L .%%@-‘-’
e

Fig. 6. Minimum of C(v) with d;,(v) = 0 and dy,;(v) =0

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
70 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

1
tim (1-)=1 @
din(gr_l"*‘oo 1+ din(v) + dout(v) ()
m (1 -)=1 @
d::;11.t(117r§1—"*‘oo 1+ din (U) + dout (17) -

Let us also provide the following generalized metric
that could be used in order to measure coupling of the
whole applications architecture rather than for a distinct
software component at is done by (2):

1
Cavg = m ’ Z C(),Cnax = IBSVX Cw), (5)

VeV

here C,,4 — is the generalized coupling measure that can
be used if compensation of certain poor-structured
application components of “high” coupling by other well-
structured application components of “low” coupling is
allowed:;

Cmax — 18 the generalized coupling measure that can
be used if compensation of bad applications architecture
decisions by good ones as it is mentioned above for Cy,,
is denied to achieve modifiable, maintainable, and re-
usable software systems.

As well as (2), proposed generalized metric (5)
ranges approximately from 0 for “weak” coupling to 1 for
“strong” coupling of the whole applications architecture.

In order to verify proposed coupling metrics, let us
analyze web presentation patterns presented in Martin
Fowler’s “Catalog of Patterns of Enterprise Application
Architecture” [13]:

e Model View Controller (MVC);

Page Controller (PC);

Front Controller (FC);
Template View (TPV);
Transform View (TFV);
Two-Step View (TSV);
Application Controller (AC).

Results obtained for each of these web presentation
enterprise application architecture patterns are shown in
table 1 below.

Table 1 — Coupling of web presentation patterns.

Pattern | Size | Min.C(v) | Max. C(v) | Avg. C(v)
MVC 3 0.67 0.80 0.71
PC 3 0.00 0.80 0.49
FC 4 0.00 0.86 0.21
TPV 3 0.00 0.67 0.44
TRV 3 0.00 0.67 0.44
TSV 5 0.00 0.80 0.43
AC 4 0.67 0.80 0.70

Analysis and discussion. According to the obtained
results (see table 1 above), the “Model View Controller”
web presentation pattern demonstrates the ‘“highest”
coupling, while the “Front Controller” web presentation
pattern (which is considered as implementation of MVC
pattern) shows the “lowest” coupling among application
architecture components.

Therefore, the “Front Controller” pattern could be
recommended as the best solution for enterprise web

application architecture design because of its low coupling
and, hence, better modifiability, maintainability, and re-
usability.

Obtained results are proved by almost twenty years
of MVC and, in particular, FC dominance in enterprise
applications development (see table 2) thank to its concept
of never mixing data with presentation.

Table 2 — MVC-based development frameworks support [14].

Language Frameworks

PHP Codelgniter, Laravel, Symfony, Yii, Zend etc.
Java Spring

Python Django, Flask

JavaScript Angular, Express, React etc.

NET ASP.NET, Silverlight

Conclusion and future work. In order to
summarize, we need to state that ADM and ArchiMate
language are more preferable ways to describe and
analyze software application and IT system architectures
rather than ADD and ATAM methods, since the TOGAF
baseline of ArchiMate considers all of the valuable
aspects of customer’s business giving more holistic
description that takes into account not only software
attributes, but also their connections to the goals and
strategy of a particular organization, which requires
improvement through IT services implementation.

Introduced formalisms (1), (2), and (5) could be used
to process ArchiMate models metadata in order to analyze
applications architecture domain models, identify poorly-
designed architecture fragments, and resolve inefficiencies
in order to avoid further software implementation, testing,
and maintenance errors, as well as related expenses caused
by “strongly” coupled application components that cannot
be properly modified, tested, and re-used [12].

Moreover, graph-based description of applications
architecture models allows to use propagation cost
analysis (i.e. which percent of all IT landscape will be
affected by error fixing or other re-design efforts) used
earlier in [15] for business architecture.

Future work in this field includes extension of the
proposed approach in order to consider other ArchiMate
enterprise architecture domains, such as business and
technology layers, as well as information technology
design and development in order to implement proposed
approach as a tool for practicing system and software
architects, researchers, and other stakeholders.

References

1. Tekinerdogan B. et al. Quality concerns in large-scale and complex
software-intensive systems. Software Quality Assurance. Large
Scale and Complex Software-Intensive Systems. 2016. P. 1-17.

2. Attribute Driven Design. URL:
http://safordevs.blogspot.com/2015/07/attribute-driven-design.html
(accessed 10.02.2021).

3. Wojcik R. et al. Attribute-Driven Design (ADD), Version 2.0.
Carnegie Mellon University, 2006. 55 p.

4. Making Tradeoffs and Choices. URL:
https://www.evolute.be/thoughts/atam.html (accessed 18.02.2020).

5. Kazman R. et al. The Architecture Tradeoff Analysis Method.
Proceedings of ICECCS98. 1998. P. 1-11.

6. Read TOGAF Enterprise Architecture.
https://developpaper.com/read-togaf-enterprise-architecture
(accessed 03.03.2021).

URL:

Bicnux Hayionanvnoco mexuiunozo ynieepcumemy «XIIIy». Cepis: Cucmemmnuti
ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 2 (6) 2021 71

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

7. Vicente M. et al. Using ArchiMate and TOGAF to Understand the 4. Making Tradeoffs and Choices. Auvailable at:

Enterprise Architecture and ITIL Relationship. Lecture Notes in https://www.evolute.be/thoughts/atam.html (accessed 18.02.2020).
Business Information Processing. 2013. No. 148. P. 134-145. 5. Kazman R. et al. The Architecture Tradeoff Analysis Method.

8. ArchiMate Specification. URL: Proceedings of ICECCS98. 1998, pp. 1-11.
https://pubs.opengroup.org/architecture/archimate3- 6. Read TOGAF Enterprise Architecture. Available at:
doc/chap04.html#_Toc10045299 (accessed 04.03.2021). https://developpaper.com/read-togaf-enterprise-architecture

9. Aulkemeier F. et al. A Service-Oriented E-Commerce Reference (accessed 03.03.2021).

Architecture. Journal of Theoretical and Applied Electronic 7. Vicente M. et al. Using ArchiMate and TOGAF to Understand the
Commerce Research. 2016. Vol. 11. No. 1. P. 26-45. Enterprise Architecture and ITIL Relationship. Lecture Notes in

10. Klimek R., Szwed P. Verification of ArchiMate process Business Information Processing. 2013, no. 148, pp. 134-145.
specifications based on deductive temporal reasoning. Federated 8. ArchiMate Specification. Available at:
Conference on Computer Science and Information Systems. 2013. https://pubs.opengroup.org/architecture/archimate3-

P. 1103-1110. doc/chap04.html#_Toc10045299 (accessed 04.03.2021).

11. Ingeno J. Software Architect’s Handbook: Become a successful 9. Aulkemeier F. et al. A Service-Oriented E-Commerce Reference
software architect by implementing effective architecture concepts. Architecture. Journal of Theoretical and Applied Electronic
Packt Publishing Ltd, 2018. 594 p. Commerce Research. 2016, no. 1 (11), pp. 26-45.

12. Software Engineering — Coupling and Cohesion. URL: 10. Klimek R., Szwed P. Verification of ArchiMate process
https://iwww.geeksforgeeks.org/software-engineering-coupling-and- specifications based on deductive temporal reasoning. Federated
cohesion/ (accessed 20.04.2021). Conference on Computer Science and Information Systems. 2013,

13. Catalog of Patterns of Enterprise Application Architecture. URL: pp. 1103-1110.
https://martinfowler.com/eaaCatalog/ (accessed 26.04.2021). 11. Ingeno J. Sofiware Architect’s Handbook: Become a successful

14. Languages and Frameworks for Programming in 2021. URL: software architect by implementing effective architecture concepts.
https://www.whoishostingthis.com/compare/languages-and- Packt Publishing Ltd, 2018. 594 p.
frameworks/ (accessed 28.04.2021). 12. Software Engineering — Coupling and Cohesion. Available at:

15. Orlovskyi D., Kopp A. Enterprise architecture modeling support https://www.geeksforgeeks.org/software-engineering-coupling-and-
based on data extraction from business process models. CEUR cohesion/ (accessed 20.04.2021).

Workshop Proceedings. 2020. Vol. 2608. P. 499-513. 13. Catalog of Patterns of Enterprise Application Architecture.
Available at: https://martinfowler.com/eaaCatalog/ (accessed
References (transliterated) 26.04.2021).

14. Languages and Frameworks for Programming in 2021. Available at:

1. Tekinerdogan B. et al. Quality concerns in large-scale and complex https://www.whoishostingthis.com/compare/languages-and-

software-intensive systems. Software Quality Assurance. Large frameworks/ (accessed 28.04.2021).
Scal_e and Complex _Software-lntenswe Systems. 2016’ pp. 1-17.) 15. Orlovskyi D., Kopp A. Enterprise architecture modeling support
8 ﬁttttrz!?/lsj;iordevs bli)rg;;lsgt com/ZO?S?(IJ%r/];.attribute clia;\i/\?(lelr?tzjl:sign htm;lat. based on data extraction from business process models. CEUR
; y :) ; : Workshop Proceedings. 2020, vol. 2608, pp. 499-513.
(accessed 10.02.2021). p g pp
3. Wojcik R. et al. Attribute-Driven Design (ADD), Version 2.0. Haoiiuna (received) 20.06.2021

Carnegie Mellon University, 2006. 55 p.

Bioomocmi npo asmopis / Ceedenusi 06 asmopax | About the Authors

Konn Andpiiic Muxaiinoeuuy — nokrop ¢imocodii, HamioHanpHHH TEXHIYHUA YHIBepCHUTET «XapKiBCHKHHA
MOJITEXHIYHUHN 1HCTUTYT», NOUEHT KadenpHu MporpaMHOi iHkeHepii Ta iHQOPMAIiHHUX TEXHOJOTIH YIpaBIiHHS; M.
Xapkis, Ykpaina; ORCID: http://orcid.org/0000-0002-3189-5623; e-mail: kopp93@gmail.com

Opnoscokuii /Imumpo Jleonioosuy — xauaunatT TeXHIYHUX HAyK, HOLEeHT, HalioHanbHU TeXHIYHUN YHIBEPCUTET
«XapKiBChbKHI TONITEXHIYHUHA IHCTHTYT», NOLEHT Kadeapu NporpaMHoi imxeHepii Ta iH(opMmaumifHUX TEXHOJIOTIi
ympasiiass; M. Xapkis, Ykpaina, ORCID: http://orcid.org/0000-0002-8261-2988; e-mail: orlovskyi.dm@gmail.com

Epcoiineen Jlopykxan — HauioHanpHul TeXHIYHMH YHiBepcuTeT «XapKiBCbKMH MONITEXHIYHUHA IHCTUTYTY,
CTyIeHT Kadempu MpOrpamMHOI imKeHepii Ta iHpOpMAaIiffHINX TEeXHOJIOTIH ympaBiiHHS;, M. XapkiB, Ykpaina;, e-mail:
ersoyleyen_l1@hotmail.com

Konn Anodpeit Muxaiitnosuu — noxtop ¢unocodun, HarmoHaIbHBIA TEXHUYSCKUNA YHHBEPCUTET «XapbKOBCKHIA
MOJUTEXHUYECKUI HMHCTHTYT», MAOLEHT Kadeapbl MPOrpaMMHON HH)KEHEPHUH W WH(QOPMAIMOHHBIX TEXHOJIOTHI
ynpasienus; r. Xapekos, Ykpanna; ORCID: http://orcid.org/0000-0002-3189-5623; e-mail: kopp93@gmail.com

Opnosckuit /Imumpuii Jleonudoeuy — KaHIUIAT TEXHUYECKUX HAYK, NOIEHT, HalMOHAIBHBIM TEXHUYECKHUI
YHUBEPCUTET «XapbKOBCKUH MOJIMTEXHUYECKHH WHCTUTYT», MHONEHT Kadeapbl MNPOrpaMMHON WHXCHEPHH U
nH(pOpPMAMOHHBIX TEXHOJIOTHI yrpaBieHus; T. Xappkos, Ykpanna; ORCID: http://orcid.org/0000-0002-8261-2988; e-
mail: orlovskyi.dm@gmail.com

Ipcoineen Jlopykxan — HanuoHanbHBIH TEXHUUYECKUH YHUBEPCUTET «XapbKOBCKUH MNOIMTEXHUYECKHI
HWHCTUTYT», CTYIEHT KadeIpbl MPOrpaMMHON WHXKEHEpUH W MH(OPMAMOHHBIX TEXHOJOTHH YNpaBJIeHHS; I. XapbKoB,
Vkpauna; e-mail: ersoyleyen_l@hotmail.com

Kopp Andrii Mykhailovych — PhD in Computer Sciences, National technical university «Kharkiv polytechnic
institute», Associate Professor of the Department of Software Engineering and Management Information Technologies;
Kharkiv, Ukraine; ORCID: http://orcid.org/0000-0002-3189-5623; e-mail: kopp93@gmail.com

Orlovskyi Dmytro Leonidovych — PhD in Technical Sciences, Docent, National technical university «Kharkiv
polytechnic institute», Associate Professor of the Department of Software Engineering and Management Information
Technologies; Kharkiv, Ukraine; ORCID: http://orcid.org/0000-0002-8261-2988; e-mail: orlovskyi.dm@gmail.com

Ersoyleyen Dorukhan — National technical university «Kharkiv polytechnic institute», Student of the Department
of Software Engineering and Management Information Technologies; Kharkiv, Ukraine; e-mail:
ersoyleyen_1@hotmail.com

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
72 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021

