ISSN 2079-0023 (print), ISSN 2410-2857 (online)

UDC 519.622.2:004.032.26 DOI: 10.20998/2079-0023.2021.02.13
N. A. MARCHENKO, G. YU. SYDORENKO, R. 0. RUDENKO

USING OF MULTILAYER NEURAL NETWORKS FOR THE SOLVING SYSTEMS OF
DIFFERENTIAL EQUATIONS

The article considers the study of methods for numerical solution of systems of differential equations using neural networks. To achieve this goal, the
following interdependent tasks were solved: an overview of industries that need to solve systems of differential equations, as well as implemented a
method of solving systems of differential equations using neural networks. It is shown that different types of systems of differential equations can be
solved by a single method, which requires only the problem of loss function for optimization, which is directly created from differential equations and
does not require solving equations for the highest derivative. The solution of differential equations” system using a multilayer neural networks is the
functions given in analytical form, which can be differentiated or integrated analytically. In the course of this work, an improved form of construction
of a test solution of systems of differential equations was found, which satisfies the initial conditions for construction, but has less impact on the
solution error at a distance from the initial conditions compared to the form of such solution. The way has also been found to modify the calculation of
the loss function for cases when the solution process stops at the local minimum, which will be caused by the high dependence of the subsequent
values of the functions on the accuracy of finding the previous values. Among the results, it can be noted that the solution of differential equations’
system using artificial neural networks may be more accurate than classical numerical methods for solving differential equations, but usually takes
much longer to achieve similar results on small problems. The main advantage of using neural networks to solve differential equations™ system is that
the solution is in analytical form and can be found not only for individual values of parameters of equations, but also for all values of parameters in a
limited range of values.

Keywords: systems of differential equations, artificial neural networks, multilayer neural network, numerical methods, gradient descent
method, solution’s error function

H.A. MAPYEHKO, I'. 10. CH/JOPEHKO, P. O. PY/IEHKO

BUKOPUCTAHHS BATATOIIAPOBOI HEHPOHHOI MEPEXI 1151 PO3B’SI3AHHSI CHCTEM
JNPEPEHIIAJIBHUX PIBHAHD

B cTaTTi po3riIsaacThes OCHIKESHHS. METOIB YHCEIBHOTO PO3B’SA3Ky CHCTeM ubepeHLiadbHIX PIBHIHD 3 BAKOPUCTAHHIM HEHpOHHHX Mepex. s
JIOCSITHEHHsI TIOCTABJICHOI METH OyJM BHpIIICHI HACTYIHI B3a€MO3AJEKHI 3a1adi: MPOBEICHHI OIS raty3eif, Mo moTpeOyoTh PO3B’sI3aHHSI CHCTEM
nudepeHniaIbHIX PiBHIHB, a TAKOXK Peali30BaHHI METO/ PO3B’sI3aHHS CHCTEM JH(epeHIialIbHIX PIBHSIHB 33 JIONOMOIOI0 0araTomapoBHX HEHPOHHUX
Mepex. B poboti mokasaHo, mo pi3Hi TUmM cucteM audepeHLiaTbHIX PIBHSIHD MOXYTh OYTH PO3B’s3aHi €JHHUM METOJOM, SIKHH MOTpedye Juiie
3aBaaHHs (QyHKUii BTpAT Ui ONTHMI3ALl, 10 [IJIKOM CTBOPIOETHCS 3 AU(EpeHIialbHUX PIBHAHb Ta HEe MOTPeOye pO3B’s3aHHs PIBHSAHB BiAHOCHO
HaiBHIIOi MoXigHOI. Po3B’s130Kk crcteM mu¢epeHmiaNbHIX PIBHSAHB 33 JONOMOTOI0 HEHPOHHUX Mepex € (GyHKHii 3ajaHi y aHamiTH4HIA dopmi, 1m0
MOXYTb OyTH AudepeHniiioBani abo iHTErpoBaHi TakoX aHAIITHYHO. B X0/ BUKOHaHHS HaHOi poboTH Oyia 3HalifeHa MokpaieHa Gpopma mobyaoBu
MpoOHOro po3B’A3Ky cucTeM Au(eEepeHIiaIbHUX PiBHSIHB, 10 330BOJILHIE MOYAaTKOBUM YMOBaM 3a OYIOBOIO, ajle Ma€ MEHIIMH BIUIMB HA TIOMUJIKY
PO3B’s3Ky Ha BiJICTaHi BiJl MOYATKOBUX YMOB Yy IOpIBHSHHI 3 ()OPMOIO MOOYTOBH Takoro po3s’s3Ky. Takox Oymo 3HaiineHo croci® Moxmdikarii
po3paxyHKy OYHKIIi BTpAT [Jisi BUMAIKIB, KOJIHU MPOLIEC PO3B’I3aHHS 3yIHHAETHCS B JIOKATHHOMY MiHIMYMi, IO CIPHYUHSATHCS BETHUKOIO 3aJIEKHICTIO
HACTYIHHUX 3HAYeHb (YHKIH BiJ TOYHOCTI 3HAXOMKEHHs MOMepenHix 3HadeHb. Cepen pe3ysibTaTiB MOKHA 3a3HAYHTH, IO PO3B’SI3aHHS CHCTEM
JudepeHIialbHIX PIBHAHD 32 JONOMOTOI0 INTYYHHX HEHPOHHUX MEpeX MO)Ke MATH TOYHICTh HOPIBHSAHY 3 KJIACHYHHMH YHCEIBHHMH METOIAMH
po3B’si3aHHs qudepeHiabHUX PiBHAHB, ajie 3a3BUYail MoTpedye 3HaYHO OIBLIOro Yacy Ul JOCSTHEHHS OJM3bKUX pe3yJbTaTiB Ha 33j1auax Mallkux
po3MipHocTell. OCHOBHOIO MEpeBarol0 BUKOPUCTAHHS HEHPOHHUX MEPEX Ul PO3B’S3aHHS CHUCTEM IU(EpeHIialbHUX PIBHAHB € Te, IO PO3B’ 30K
3HAXOAUTHCS B AHATITUYHIH (opMi Ta MOxke OyTH 3HAWAEHHI HE TIBKH U OKPEMHX 3HAaUeHb MapaMeTpiB CUCTEMH PiBHSHB, aJie i 11 BCiX 3Ha4YeHb
napameTpiB B 0OMEXeHil 0071acTi 3HAYEHb.

KuaiouoBi ciioBa: cuctemu audepeHiiianbHuX piBHSAHb, INTYYHI HEHPOHHI Mepexi, OaraTomapoBa HEHPOHHA MepeKa, YUCENbHI METOIH, METO.
TPajliEHTHOTO CITYCKY, (yHKIIisl TIOXHOKM PO3B’sA3KY

H.A. MAPYEHKO, A. I0. CH/IOPEHKO, P. A. PY/IEHKO

HUCHOJB30BAHUE MHOI'OCJOMHOM HEMPOHHOM CETH JJIsI PEIIEHUSI CUCTEM
JIAPEPEHIIMAJILHBIX YPABHEHUI

B crathe paccMaTpuBaeTCsl UCCIEIOBaHHE METOIOB YHCICHHOTO PELICHUs CHCTeM An(depeHINaIbHbIX YPaBHEHUH ¢ UCIOIb30BaHHEM HEHPOHHBIX
cereit. I MOCTIDKEHMS MOCTABICHHOM LeMHM OBUIM pelIeHBI ClSAYIOIIHE B3aMMOCBS3aHHBIC 3a/adl: IPOBEICH 0030p OTpaciiel, TpeOyIoImux
pemrenust cucteM AuddepeHINaNbHEIX ypaBHEHHH, a Takke PEeall30BaH METOJ PEIICHUs cucTeM AuG(EepeHIIHAIbHBIX yPaBHEHUH € IOMOIIBIO
MHOTOCJIOWHBIX HEHpOHHBIX ceTell. B pabore mokazaHo, 4YTO pa3iWyYHBIE THIIBI CHCTEM aU((epeHINANBHbIX YPaBHEHUH MOTYT OBITh PEIIECHBI
€[IMHCTBEHHBIM CIIOCOOOM, KOTOpBIi TpeOyeT TONbKO 3ajaHus (YHKIUH IOTEePh IS ONTHMHU3ALHUM, CO3[aBaGMOr0 HANPSIMyI0 H3 CHCTEM
nuddepeHnnanbHbIX ypaBHEHHH ¥ He TpeOyeT pEeIIeHHs CUCTEeM YypPaBHEHHI OTHOCUTENBHO HAaWBBICIICH NPOW3BOAHOW. PemieHnem cucrtem
mudGepeHIHaNbHEIX YPAaBHEHUH C IOMOINBI0 HEHPOHHBIX CETEH SBIIOTCS (YHKIMH, 3aJaHHBIC B aHAJMTHYECKOW Qopme, M MOryT OBITh
nuddepeHInpoBaHbl WIM HMHTETPUPOBAHBI TAKXKE AHAJMTHYECKU. B Xozxe BBINONHEHHS JaHHOW pabOThl Obula HaliJeHa yiydileHHas (opma
MOCTPOEHUSI MPOOHOro pemeHus cucteM IudGhepeHIUanbHbIX ypaBHEHHI, YTO YIOBIETBOPSECT HAYAIbHBIM YCIOBHSAM IIOCTPOEHHUS, HO HMEET
MeHbIIIee BIMSHUE Ha OMIMOKY PEIICHHs] HAa PACCTOSHUM OT HAa4aJIbHBIX YCIOBHIA IO CpaBHEHHIO ¢ JOPMOIl MOCTPOSHUS TaKoro penreHus. Taroke ObuT
HalifleH cnoco0 MogupHKaluy pacdera (QyHKIMH IOTepb UL CIydaeB, KOIZa MPOIECC PEIICHHs OCTAHABIMBACTCS B JIOKAIHHOM MHHUMYME, YTO
IIPUBOJHT K OONBINOH 3aBHCHMOCTH CISAYIONX 3Ha4eHUH (QYHKIUH OT TOYHOCTH HAXOXKACHHUS NPEAbIAyIHX 3HadeHuil. Cpeau pe3yIbTaToB MOXKHO
OTMETHUTH, YTO pEelIeHNe CUCTeM TU(PepeHIIMANBHBIX YPaBHEHHUH ¢ IIOMOIIBIO HCKYCCTBEHHBIX HEHPOHHBIX CeTeil MOXKET HMETh TOYHOCTh CPAaBHUMYIO
¢ KITACCHYECKHMH YHCICHHBIMH METOAAMHU pemeHus IudQepeHInaIbHbIX ypaBHEHUH, HO OOBIMHO TpeOyeT 3HAUUTENbHO OONBIIEro BPEMEHH JUIL
JIOCTIDKEHHSI Ooliee TOUHBIX PEe3yJIbTAaTOB HA 3a/adaX MalbIX pasMepHocTel. OCHOBHBIM HPEUMYIIECTBOM HCIIOIb30BAHUS HEHPOHHBIX ceTeill A
penrennst auddepeHInaIbHBIX ypaBHEHNH SBISIETCS TO, YTO PEIICHHE HAXOAUTCS B aHAIUTHYECKOI (hopMe M MOXKET OBITh HAiJJEHO HE TONBKO IS
OTJIEbHBIX 3HAYCHUI TApaMETPOB YPaBHEHHUIH, HO M /IS BCEX IaPaMETPOB B OTPAHUUEHHON 001aCTH 3HAYCHHH.

KaioueBble cioBa: cucteMbl ubQepeHINaNbHBIX YpPaBHEHHH, HCKYyCCTBEHHBIC HEHPOHHBIE CETH, MHOTOCIOWHAs HeHpoHHas CeTb,
MHOT'OYHCIICHHBIE METOJIbI, METOJ{ IPAJMEHTHOTO CITyCKa, (DYHKIHS MOTPELIHOCTH PELICHHS

© N. A. Marchenko. G. Yu. Svdorenko. R. O. Rudenko, 2021

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XI1». Cepisn: Cucmemmnuii
ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 2 (6) 2021 81



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Introduction. Differential equations and their
systems are widely used in mathematical modeling to
describe a variety of real processes: physical,
environmental, biological, and other. Solving some
equations in partial derivatives in cases that allow the
separation of variables is also reduced to problems for
ordinary differential equations. These are, as a rule,
boundary value problems (problems of natural oscillations
of elastic beams and plates, determination of the spectrum
of natural values of particle energy in spherically
symmetric fields, etc.). In addition, higher-order
differential equations lead to the solution of systems of
differential equations. It is known that solutions of
differential equations and their systems can be found
analytically or numerically. Finding analytical solutions is
a very time consuming process, and in most cases
impossible. Therefore, at present, traditional numerical
methods are widely used to solve differential equations
and their systems, among which the most well-known are
Runge — Kutta methods, finite-difference  methods,
prediction and correction methods [1, 2].

The general problem of classical numerical methods
is the need to choose their parameters to ensure a
compromise between computational costs and the
accuracy of the result. Therefore, in this work it is
forbidden to use artificial multilayer neural networks,
where, in contrast to classical methods, the solution is
presented in analytical form, from which you can
repeatedly take derivatives [3, 4]. Solutions are stored as
neural network parameters, which requires much less
memory than storing a solution as a discrete array in
traditional numerical methods [5, 6]. The method is also
universal and can therefore be used to solve different
types of differential equations and their systems, both
ordinary and partial derivatives [7-8].

The main advantage of using neural networks to
solve differential equations’ systems is that the solution is
in analytical form and can be found not only for individual
values of parameters of equations, but also for all values
of parameters in a limited range of values.

A review of the literature showed the relevance of
the problem and the feasibility of creating software.
Therefore, the aim of this article is to solve systems of
differential equations using a multilayer neural network.

The article’s objective is to study the methods of
numerical solution of ordinary differential equations’
systems and to develop software for their solution using
multilayer neural networks.

The mathematical formulation of the problem.

Suppose we need to solve a system of differential
equations in the form [1, 2]:

F(x,Y(x),Y'(x)) =0, (1)
with initial conditions
Y(xo) = A,

where x is the vector of variable values;

Y(x) = (), y2(x), oo, yn(®))  —
function;

Y(x0) = y1(x0), ¥2(x0), ..., yn(xo) — coordinates of
initial conditions;

A = ay, a4, a, — their matching values.

required

To solve this problem, the solution is presented in
the form [3, 5]:

Y*(x) = N(x,p), 2
where N — neural network function with p parameters and
input values x.

In this case, the initial conditions are not satisfied by
the creation and therefore are studied gradually during the
learning of the neural network.

The construction of the solution of differential
equations’ systems can be written in a form that satisfies
the initial conditions from the beginning:

Yi(x) = A(x) + Z(x)'N(x,p), ®)

where A(x) is a function that satisfies the initial
conditions in advance;

Z(x) — function what construct as the points
corresponding which are equal to zero to the coordinates
of the initial conditions

N(x, p) — output of backforward neural network with
input x the weights p.

The task of a building function A(x) is reduced to
the task of the function that takes a certain values in the
given points, and can take any value at all other points. To
find the function, for example, an interpolation polynomic
of Lagrange can be used in this case that looks like:

Pol(x) = ) i)

i=
where [;(x) - basic polynomials are determined by the
formula:

—-x, x-—

Xi-1 X~ Xjy1 X~ Xp

X
Xi—Xo Xij—Xi—1 Xi—Xj41 X;—Xp

To reduce the influence of the shape of the error of
the approximation of the solution, we write the expression

for Z(x) in the form:
N

0w = | [thex - xpatt @

i=1

A multilayer neural network of direct propagation is
chosen as the structure of the neural network for solving
differential equations’ systems. The number of layers and
the number of neurons in each layer are chosen based on
the structure of the problem and the complexity of the
form of the solution. These parameters are chosen after
the experiments, because it is impossible to know in
advance the optimal parameters of the neural network
structure for each task.

The description of a multilayer neural network.

An artificial neural network is a structure that
consists of a large number of processor elements, each of
which has local memory and can interact with other
elements [3, 4, 6, 9, 12]. This interaction takes place
through communication channels in order to transmit data
that can be interpreted in any way. Processor elements
independently in time process the local data arriving to
them through input channels. Changing the parameters of
the algorithms of such processing depends only on the
characteristics of the data. If we consider an artificial

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
82 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

neural network as an environment for information
processing, then it can be set by defining the elements of
this environment and the rules of their interaction.

Multilayer artificial neural networks can be
considered as a serial connection of single-layer artificial
neural networks of direct propagation. The structure of
weights in these networks is organized in such a way that
more complex classes are processed on layers of high-
level neurons by combining and intersecting simple
classes, which are formed at lower levels of artificial
neural networks. There is strong evidence that two-layer
artificial neural networks are able to recognize any class
of convex shape, provided that it is possible to use a
sufficient number of hidden layer neurons, and the
weights are adjusted accordingly [8-9].

Kt o Z | .y,
&z
/ftrp Z Ly,

Fig. 1. The example of a scheme of a multilayer neural network
of direct propagation

Artificial neural networks of direct propagation with
several hidden layers are potentially capable of
recognizing classes of arbitrary shape. Therefore, setting
the problem on artificial neural networks of direct
propagation includes determining the minimum possible
number of neurons in the hidden layer and choosing an
effective method of adjusting the weights. To date, both of
these problems are not trivial. To explain the basic
principles of building teaching methods with the teacher
we will consider a two-layer artificial neural network. The
zero layer of this network performs the auxiliary function
of signal branching and does not contain neurons. For this
reason, his work does not lead to modification of the input
vector. The last layer of artificial neural networks is called
the source layer. All layers located between zero and
source are hidden layers with nonlinear activation function
of neurons. In this example, we will consider one hidden
layer with m neurons that use the hyperbolic tangent as an
activation function.

It consists of m neurons that are simultaneously able
to receive the input vector of signals X =
(%4, < » X, -, Xy). TO reproduce the elements of this
vector use special devices, which are shown to the left of
the neurons. These devices do not perform information
processing, so they are not considered a layer of the neural
network. According to the model of a formal neuron, each
of its input signals is multiplied by a weighting factor w;;,
where i — the current vector element number X, a j — the

current neuron number. All weights of a single-layer
neural network form a matrix of weights

W= | Wit . Wi Wim |
Wpi o Wyj Wnm

Then the vector of arguments is defined as the
product of ¥ = WX and the vector of output signals is
the vector of values of activation functions:

Iffl(‘ﬁ):
Y =F) = { o)
U (o).

The name of the networks indicates that they have a
dedicated direction of propagation of signals that move
from the input through one or more hidden layers to the
output layer. It is easy to see that a multilayer neural
network can be obtained by cascading single-layer
networks with matrices of weights W3, W2, ..,W?,
where p is the number of layers of the neural network. If
the multilayer neural network is linear, then for activation
functions it can be reduced to the equivalent single-layer
with a matrix of weights W = W « W2 x ..« WP, This
means that the formation of such structures makes sense if
nonlinear activation functions in neurons are used.

The gradient descent method for artificial neural
networks.

The idea of the gradient descent method is to
sequentially change the parameters of the artificial neural
network in a direction that reduces the target function E
[5]. Since the function E is differentiated by each of the
parameters, it is possible to calculate the gradient vector.
Moving in the direction of the negative gradient for each
of the parameters, we find the local minima of the
objective function. The change in the parameter is
expressed by the formula:

N
dE . . .
AW = —n—= Z @ _5@OQ)x® = 5
naw =7, 1(y y®) (5)
i=

N
=7 Z(ya) —WTX®) xO,

i=1

This algorithm is called a batch-type algorithm,
because to determine the magnitude of the step of
changing the parameter, it is necessary to process the
entire training sample.

The training sample ¥ = {(X™,y™)V_,
containing N pairs: x™,y™ respectively, the input and
output vectors and the set of parameters W = {w, v},
which consists of the parameters of the neurons of the
hidden layer w and the parameters of the output layer v.
The method of inverse propagation [13] is to minimize the
objective function:

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XI1». Cepisn: Cucmemmnuii
ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 2 (6) 2021 83



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

N
1
- M — 50 ()12 —> mi 6
E ZNZ[y §O )7 —> min ®)
n=

The parameter v; is searched as (7):

dv, N 22(

J

y (n)

_ __Z(y(n) — ™)y (s(") S @)

N
1
- NZ(}’(") — 7™ (s™)h.
n=1

The step of changing the weights of the source layer
is equal to (8):

Av; = —n i, NZ(y(")—y("))w (s™)h;. (8)

The step of changing the weights of the hidden layer:

dE
mmj:_ndwuz

N
r’ i ! !
= D O = 5 (s (e,
n=1

But in fact, the correct calculation of values at points
closer to the initial conditions is much more important
than the calculation at points further away. To correct the
optimization to take into account the influence of the
values of the functions in the previous points on the values
of the functions in the following points, the calculation of
the loss function was modified to give the greatest weight
to points closer to the initial conditions, keeping the sum
of the loss function.

kx
loss*(x) = loss(x) * e *max, 9)

P loss(x;)

loss™(x) = loss™(x) * o —————
leloss (x;)

(10)

where loss(x) — the loss function;
x — argument of the required function;
— points at which optimization is performed;
— the number of points at which optimization is
performed.

The main results of the work.

The Python and R programming languages were
used for perform this work, the TensorFlow library was
chosen as the machine learning library with neural

network learning support, and the PyCharm environment
was used as the integrated development environment.

1. System of differential equations with constant
coefficients
Consider the problem of solving a system consisting
of three differential equations:

Yi =Y+ y:1(0) = ay,
y2'= y1 =2y, +y3, ¥2(0) = a,, (11)
ys' = Y2 — ¥3, ¥3(0) = as.

Solve the problem at once for many values of the
initial conditions a,, a,, a5 in the value ranges:
€ [114]1 a2 € [0,2],(13 € [012]

The loss function of the differential part of the
equation and the cost of the initial conditions:

def loss pred(y_ true,
vl,y2,y3=ul:,0:1],ul:,

y_pred) :
1:2],ul:,2:3]

t = x

dyl dt = tf.gradients(yl, t) [0]
dy2 dt = tf.gradients(y2, t)[0]
dy3 dt = tf.gradients(y3, t)[0]
eql r = - yl + y2

eqz2 r = yl - 2*y2 + vy3

eq3 r = y2 - y3

eql = dyl dt - grad k(egl r, 0.1)
eg2 = dy2 dt - grad k(eg2 r, 0.1)
eg3 = dy3 dt - grad k(eg3 r, 0.1)

loss _diff=tf.reduce mean(egl**2+eqg2**2+
eq3**2)

initial loc = (t - 0) ** 2 < le-7

loss _initial=tf.reduce_ sum/(
(yl[initial loc] - al) ** 2 +
(y2[initial loc] - a2) ** 2 +
(y3[initial loc] - a3) ** 2) /
reduce sum (tf.cast(initial loc,
yl.dtype)) + le-10)

return loss diff + loss initial

Neural network transformation function to meet the
initial conditions for construction:

def initial condition(x, u):
def fn(v):
x = v[0]
u = vi[l]
def ths(z):
return tf.tanh(z)
return ths(x) * u + tf.constant([al,
a3l)
u = Lambda (fn
return u

az,

) ([x,u])

When using the model with the satisfaction of the
initial conditions for construction, the cost function is
simplified to:

def loss pred(y true, y pred):

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
84 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

vl,y2,y3=ul:,0:1],ul:,1:2],ul:,2:3]

t = x

dyl dt = tf.gradients(yl, t) [0O]
dy2 dt = tf.gradients(y2, t) [0]
dy3 dt = tf.gradients(y3, t) [0]
eql r = - yl + y2

eq2 r = yl - 2*y2 + y3

eq3 r = y2 - v3

eql = dyl dt - grad k(eqgl r, 0.1)
eq2 = dy2 dt - grad k(eg2 r, 0.1)

eq3 = dy3 dt grad k(eg3 r, 0.1)
loss _diff=tf.reduce mean (egl**2+eg2**2+
eq3**2)

return loss diff

The results of solving the problem are shown in
fig. 2-5.

ao{ =
3.5 \
3.0 4

2.5 4

2.0

////

1.5

-]
N
&
o
]

10

2.0

)

£

1.0 e_/j/

&
as{ X

o 2 a 5 8 10
2.0
18
164 %
1.4

e ———

1.2 4

o 2 a 5 8 10

Fig. 2 The solving of the differential equations’ system (11)
as (2)

0.004

0.002

0.000

—0.002

—0.004

0.004

0.002

0.000

—0.002

—0.004

0.004

0.002

0.000

—0.002

—0.004

o 2 a 6 8 10

Fig. 3 The error function of the solving (2) for the differential
equations” system (11)

The obtained optimization result in the basic form:
10000/10000-8s-10ss:0.9901-rmse:0.0017-
val 1o0ss:1.0000-val rmse:7.7629e-04

The root mean square error is 7.7629-107*
compared to the implicit solution of the 4-th order Runge
— Kutta method in steps of 1073, The error in half of the

points closer to the boundary conditions is 4.16 times
greater than the error in half of the points at a distance
from the boundary conditions.

The obtained optimization result in a form that
satisfies the initial conditions for construction:
10000/10000 - 9s - loss: 4.3334e-07 -

rmse: 1.5741le-04 - val loss: 2.5469e-07
- val rmse: 1.6917e-04.
The root mean square error is 1.6917 -107*

compared to the implicit solution of the 4-th order Runge
— Kutta method with step 1073, The error in half of the
points closer to the boundary conditions is 1.06 times less
than the error in half of the points at a distance from the
boundary conditions.

3.5

3.0

3
I AN

1.5

2.00

1.75 -

1.50 /
1.25 A /
s
’

1.00 -

0.75 A i_-'
0.50 g
o 2 a 6 8 10
'
1.8 3%
3
N /
1.4 o
2

o 2 a 6 8 10

Fig. 4 The solving of the differential equations’ system (11)
as (3)

0.004 -

0.002 -

0.000 |

—0.002 4

—0.004

0.004

0.002 -

0.000 -

—0.002 4

—0.004 {

0.004 |

0.002

0.000 -

—0.002

—0.004

o 2 a 6 8 10

Fig. 5 The error function the differential equations™ system (11)
of the solving (3)

2. The system of nonlinear differential
equations
Consider the problem of solving a system consisting
of two differential equations:
{Y1’:2()’1_3’1*YZ)' Y1(0)= 1, (12)

Y2 =—Y2+t Vi *y2  2(0) =3.
The loss function of the differential part of the

equation and the loss of the initial conditions:
def loss pred(y true, y pred):

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XI1». Cepisn: Cucmemmnuii
ananis, ynpasgiinua ma ingopmayiiuni mexnonoeii, Ne 2 (6) 2021 85



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

yl = ufl:, 0:1]

y2 = ul:, 1:2]

t = x

dyl dt = tf.gradients(yl, t) [0]
dy2 dt = tf.gradients(y2, t) [0]

eql r = 2* (yl - yl*y2 )

eq2 r = - y2 + yl*y2

eql = dyl dt - grad k(eqgl r, 0.02)
eq2 = dy2 dt - grad k(eg2 r, 0.02)

loss diff=tf.reduce mean (eql**2+eg2**2)
initial loc = (t - 0) ** 2 < le-7
loss_initial=tf.reduce_ sum/(
(yl[initial loc] - 1) ** 2 +
(y2[initial loc] - 3) ** 2) /
(tf.reduce sum(tf.cast(initial loc,
yl.dtype)) + 1le-10)
return loss diff + loss initial

The neural network transformation function to
satisfy the initial conditions of construction:

def initial condition(x, u):
def fn (v):
x = v[0]
u = v[l]
def ths(z):
return tf.tanh(z*4)/4
return ths(x)*u+tf.constant([1.0,3.0])
u = Lambda (fn) ([x,u])
return u

When a model with satisfying conditions uses to
construct the initial loss function extends to:

def loss pred(y true, y pred):
yl = ufl:, 0:1]
1:2]

y2 = ul:,

t = x

dyl dt = tf.gradients(yl, t) [0O]
dy2 dt = tf.gradients(y2, t) [0]

eql r = 2* (yl - yl*y2 )

eq2 r = - y2 + yl*y2

eql = dyl dt - grad k(egl r, 0.02)
eq2 = dy2 dt - grad k(eg2 r, 0.02)

loss _diff=tf.reduce mean (egl**2+eg2**2)
al loc, yl.dtype)) + le-10)
return loss diff

The obtained optimization result in the basic form:

10000/10000 - 1s - loss: 0.0055 - rmse:
1.1408 - val loss: 0.0064 - val rmse:
1.1348

Medium-square error is 1.1348.

The result of the optimization for the viewer (4) is
shown in fig. 6-7, the result for the viewer (3) is similar. It
can be seen that both options stopped at the local
optimization minimum, this is due to the fact that the
optimization of the neural network in the region t €
[2.5,3.5] significantly increases the error in the region

t € [3.5,10], although the value the loss function is
calculated for all points of equal weight.

\ ,
z: 1\ 2 4 /f\i 8 10

TN

04 e
0 2 2 6 8 10
Fig. 6 The solving of the differential equations™ system (12)
as (2)
4 ~
2 _:
7’ '.‘ J
o ______“___,// N———e”
0 2 a 6 8 10
3 N\
21 bR
\
1 ; h "~
e : B ——
0 2 4 6 8 10

Fig. 7 The error function the differential equations’ system (12)
of the solving (2)

With the addition of the redistribution of the error
function, the loss function is written as follows:

def loss pred(y true, y pred):
yl = ufl:, 0:1]
y2 = ufl:, 1:2]
t = x
dyl dt = tf.gradients(yl, t)[0]
dy2 dt = tf.gradients(y2, t)[0]
eql r = 2* (yl - yl*y2 )
eqz2 r = - y2 + yl*y2

eql = dyl dt - grad k(eql r, 0.02)
eq2 = dy2 dt - grad k(eg2 r, 0.02)
eq err = eql ** 2 + eqg2 ** 2
eq_err norm= g _err*K.exp (-

10* (t/K.max(t)))
eqg err norm = eg_err norm *

K.stop gradient (K.sum(eq err) /

K.sum(eq_err norm))
loss diff =

tf.reduce mean(eq err norm)
return loss diff

After modifying the loss function, the problem was
successfully solved. An example of the redistribution of
the error function is shown in fig. 8-9.

The final result of solving the problem is shown in
fig. 10-11. The obtained optimization result in a form that
satisfies the initial conditions for construction:
10000/10000-18s-loss: 3.3917-107%-rmse:
1.2223-107%- val loss: 2.3906-107%7 -
1.3370 - 107°4,

val rmse:

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
86 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

The solution has a root mean square error 1.3370 -
107%* in comparison with the solution of the implicit
Runge — Kutta’s method of the 4th order with the step
10793,

Conclusions. The system (12) is difficult to solve
with neural networks and could not be solved without
additional changes to the loss function, regardless of the
form of solution. The applied modification can be used in
other cases, when the solution of differential equations by
optimization methods coincides to the local minimum.

When solving the system (11), the accuracy of the
reproduction of the initial conditions had a significant
effect on the whole solution. The error of the solution in
the basic form was 4.59 times higher than the error of the
solution in the form with satisfaction of the initial
conditions for construction.

N /s
f o
* F !
. / /
/ v
S // p
0 T T —" T T T T
1] 2 4 6 8 10
3]
24 i \\
. \ \_/i k/
N -
14 . ‘ ‘ . .
0 2 4 6 8 10

Fig. 8 The intermediate solution of the differential equations’
system (12)

151
1.0
0.5 4
0.0 A N A P V.
———— e
—0.5
] 2 4 6 8 10
125
1.00
0.75
0.50
0.25 A
e L e T Qe
0.00 S e~ ——
~
T
] 2 4 6 8 10

Fig. 9. The solution error’s function and the redistributed
solution error function

Based on the results, we can say that the choice of
the form of the solution and the construction of the loss
function depends on the differential equations system and
the needs of the problem to be solved. Some differential
equations require special forms of construction of the loss
function to be solved.

A
4 '
3 ,"/ i P
i !
2 f 4 !
/ /
1 \ / \ -/
I N
0 é 4 IIS é lID
3.0 4
\\ '{“\
2.5 4 \ N \
209\ ro\
154 \‘ .,‘ '-.\
10 \ :'. \\
o N S
N———
0.0 T T T T T T
0 2 4 6 8 10
Fig. 10 The final solution of the differential equations system
(12)
0.0010
0.0005
L e
—0.0005
=0.0010
o 2 4 (] 8 10
0.0010
0.0005
0.0000 { === — . e
-0.0005
=0.0010 . . . . i i
o 2 4 6 8 10

Fig. 11. The final solution error’s function and the redistributed
solution error function of the differential equations system (12)

References

Bamayun B. M. Konromenko I. I'. Yucenvni memoou: nasuanvhui
nocionux. Xapkis: Bun. XHEVY im. C. Kysnens, 2014. 180 c.

Xaitep O., Heccepr C., Bauep I'. Pewenue obvikHO8eHHbIX
ouepenyuanvuoix  ypasuenuu. Heowecmrue 3adauu. Mocksa:
Mup, 1999. 685 c.

Lagaris I. E., Likas A., Fotiadis D. I. Artificial Neural Networks for
Solving Ordinary and Partial Differential Equations. |EEE
Transactions on Neural Networks. 1998. Vol. 9. No. 5. P. 987-1000.
Devipriya R., Selvi S. Modelling and Solving Differential Equations
using Neural Networks: A Study. International Journal of
Computational Intelligence and Informatics. 2020. Vol. 10. No. 1.
P. 18-23.

Okereke R. N., Maliki O. S, Oruh B. I. A novel method for solving
ordinary differential equations with artificial neural networks.
Applied Mathematics. 2021. No. 12. P. 900-918. DOI:
10.4236/am.2021.1210059.

Tsoulos I. G., Gavrilis D., Glavas E. Solving differential equations
with constructed neural networks. Neurocomputing. 2009. Vol. 72.
No. 10-12. P. 2385-2391.

Kopokas JI. 1. Mcnonb30BaHKue HEHPOHHBIX CETEH NPU YHUCIEHHOM
pEIICHHH HEeKOTOphIX au(depeHIanbHbIX ypaBHeHuid. Eastern
European Journal of Enterprise Technologies. 2011. Vol. 3.
No. 4(51). P. 24-27. ISSN 1729-3774.

Henuctok O.P.  OnpeneneHue  palMOHAJIbHBIX  MAapaMeTpoOB
YHCJICHHOTO peIIeHHs CHCTeM Iu((EpeHINaIbHBIX ypaBHEHUI
HEKOTOPBIX  KJIaCCOB. BecTtauk XepCOHCKOFO HaIlMOHAJIBHOI'O

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XI1». Cepisn: Cucmemmnuii

ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 2 (6) 2021

87



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

TexHuueckoro ynusepcurera. Ne 3(58), 2016. C. 208-212. ISSN Applied Mathematics. 2021, issue 12, pp. 900-918. DOI:
2078-4481. 10.4236/am.2021.1210059.

9. Aarts L. P.,, Van Der Veer P. Neural network method for solving 6. Tsoulos I. G., Gavrilis D., Glavas E. Solving differential equations
partial differential equations. Neural Processing Letters. 2001. with constructed neural networks. Neurocomputing. 2009, vol. 72,
Vol. 14. No. 3. P. 261-271. issue 10-12, pp. 2385-2391.

10. Sirignano J, Spiliopoulos K. DGM: A deep learning algorithm for 7. Korotkaya L. I. Ispol’sovanie neyronnyh setej pri chislennom
solving partial differential equations. Journal of computational reshenii differentsyal’nyh uravneniy [The use of neural networks in
physics. 2018. Vol. 375. P. 1339-1364. the numerical solution of some systems of differential equations].

11. Baymani M., Kerayechian A., Effati S. Artificial Neural Networks Eastern European Journal of Enterprise Technologies. 2011, issue
Approach for Solving Stokes Problem. Applied Mathematics. 2010. 3, no. 4(51), pp. 24-27. ISSN 1729-3774.

Vol. 01(04). P. 288-292. DOI:10.4236/am.2010.14037. 8. Denisyuk O. R. Opredelenie ratsyonal’nyh parametrov chislennogo

12. Marchenko N. A, Sydorenko G. Yu, Rudenko R.O. Using neural reshenia system differencial’'nyh uravneniy nekotoryh klassov
networks to solve the differential equation. Inghopmayiiini cucmemu [Determination of rational parameters for the numerical solution of
ma mexuonozii: npayi 10-i Midxcnapoonoi Haykogo-mexmiuynoi systems of differential equations of some classes]. Visnyk of
kougepenyii, / nayk. pea. A.Jl. Tessuues, JL.B. IMerpummn, B.B. Kherson National Technical University [Bulletin of the Kherson
Beskoposaiinnii, B.I'. Ko63es. Xapkis: XHYPE, 2021. P. 125-129. National Technical University]. Kherson Publ., 2016, no. 3 (58), pp.

208-212. ISSN 2078-4481.
References (transliterated) 9. Aarts L. P., Van Der Veer P. Neural network method for solving

. . partial differential equations. Neural Processing Letters. 2001, Vol.
1. Zadachyn V. M., Konyushenko I. G. Chysel’ni metody: Navchal’nyi 14, no. 3, pp. 261-271.
posibnyk  [Numerical methods]. Kharkiv, KhNEU Publ., 2014. 44 Sirignano J, Spiliopoulos K. DGM: A deep learning algorithm for
180 p. . . . solving partial differential equations. Journal of computational
2. Hayrer E., Wanner G. Reshenie obyknovennyh uravnenij. Nezhestkie physics. 2018, vol. 375, pp. 1339-1364.
sadachi. [Sqlving ordinary differential equations. Non-rigid tasks]. 11. Baymani M., Kerayechian A., Effati S. Artificial Neural Networks
MOSC(.)W' Mir P.Ubl" 1999. 585_ P. . Approach for Solving Stokes Problem. Applied Mathematics. 2010,
3. Lagaris I. E., Likas A., Fotiadis D. I. Artificial Neural Networks for no. 01(04), pp. 288-292. DOI:10.4236/am.2010.14037..
Solving Ordinary and Partial Differential Equations. IEEE 15 parchenko N. A, Sydorenko G. Yu, RudenkoR.O. Using neural
I(r)ggsactlons on Neural Networks. 1998, vol. 9, issue 5, pp. 987~ networks to solve the differential equation. Informaciyni systemy ta
- . . . . . . tehnologii: praci 10th Mighnarodnoii konferencii [Information
4. Devipriya R., Selvi S. Modelling and Solving Differential Equations systems and technologies IST-2021 Proceedings of the 10-th

using Neural Networks: A Study. International Journal of International  Scientific and Technical Conference]. Kharkiv,

Computational Intelligence and Informatics. 2020, vol. 10, issue 1, KhNURE Publ., 2021, pp. 125-129
pp. 18-23. A '
5. Okereke R. N., Maliki O. S, Oruh B. I. A novel method for solving Received 05.09.2021

ordinary differential equations with artificial neural networks.

Bioomocmi npo asmopis / Ceedenusi 06 asmopax | About the Authors

Mapuenko Hamana Anopiiena — xaHIUAAT TEXHIYHUX HAyK, JDOLCHT, JOLEHT KadeIpu CUCTEMHOro aHaiizy Ta
inopmaniiiHo-ananiTuaanx texnonorii HTY «XIIl», m. Xapkis, Ykpaina; ORCID: https://orcid.org/0000-0001-9889-
3713; e-mail: natalia.marchenko@khpi.edu.ua

Cuoopenxo I'anna IOpiisna — xaHIMOAT TEXHIYHMX HayK, JOLEHT, JOLUEHT KadeIpu CHCTEMHOro aHalizy Ta
iHpopMmaniiiHo-aHaniTHuHuX TexHouoriit HTY «XIII», nouent xadeapu MonentoBanHs cucreM i TexHousoriid XHY im.
B. H. Kapasina, M. XapKiB; VYkpaiua; ORCID: https://orcid.org/0000-0002-0761-2793; e-mail:
ganna.sydorenko@khpi.edu.ua

Pyoenxko Poman Onexcandposuu — wmarictp, imxeHep-porpamict; M. XapkiB, Ykpaina; ORCID:
https://orcid.org/0000-0002-9424-6639; e-mail: roman.rudenko.a@gmail.com

Mapuenxko Hamanvsa Anopeesna — KaHIUIAT TEXHAYECKUX HAYK, TOICHT, IOICHT KadeAphl CHCTEMHOTO aHAaJH3a
u uHpopManMoHHO-aHanuTHYeckux texunonoruit HTY «XIIU, r. Xapskos, Ykpauna, ORCID: https://orcid.org/0000-
0001-9889-3713; e-mail: natalia.marchenko@khpi.edu.ua

Cuoopenxo Anna IOpveena — KaHAUIAT TEXHUWYECKUX HAYK, JOIEHT, HOIEHT KadeIpbl CHCTEMHOTO aHaIW3a U
nHpopMannoHHO-aHAIUTHIecKuX TexHoynornid HTY «XI1W», gonieHT kadeapsl MOASTUPOBAaHUS CHCTEM U TEXHOJOTHI
XHY wum. B.H.Kapasuna, r.XapekoB, VYxpauna, ORCID: https://orcid.org/0000-0002-0761-2793; e-mail:
ganna.sydorenko@khpi.edu.ua

Pyoenxo Poman Anexcandposeuuy — Maructp, HHXeHep-porpaMMmucT; T. XapbkoB, YkpaunHa, ORCID:
https://orcid.org/0000-0002-9424-6639; e-mail: roman.rudenko.a@gmail.com

Marchenko Natalia Andriyivna — Candidate of Technical Sciences, Docent, Associate Professor at the Department
of analysis of systems and information-analytical technologies NTU "KhPI", Kharkiv, Ukraine; ORCID:
https://orcid.org/0000-0001-9889-3713; e-mail: natalia.marchenko@khpi.edu.ua

Sydorenko Ganna Yurijivna — Candidate of Technical Sciences, Docent, Associate Professor at the Department of
analysis of systems and information-analytical technologies NTU "KhPI", Associate Professor at the Department of
Modeling of systems and technologies KhNU by V. N. Karazin, Kharkov; Ukraine; ORCID: https://orcid.org/0000-
0002-0761-2793; e-mail: ganna.sydorenko@khpi.edu.ua

Rudenko Roman Oleksandrovych — Master, Software engineer; Kharkiv, Ukraine; ORCID: https://orcid.org/0000-
0002-9424-6639; e-mail: roman.rudenko.a@gmail.com

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIIy. Cepisn: Cucmemnuii
88 ananis, ynpasninusa ma ingopmayiini mexnonozii, Ne 2 (6) 2021


mailto:roman.rudenko.a@gmail.com

