ISSN 2079-0023 (print), ISSN 2410-2857 (online)

UDC 519.248, 303.724.32 DOI: 10.20998/2079-0023.2022.02.08

0. B. AKHIIEZER, G. L. GRINBERG, L. M. LYUBCHYK, K. S. YAMKOVYI

FAILURE RATE REGRESSION MODEL BUILDING FROM AGGREGATED DATA USING KERNEL-
BASED MACHINE LEARNING METHODS

The problem of regression model building of equipment failure rate using datasets containing information on number of failures of recoverable systems
and measurements of technological and operational factors affecting the reliability of production system is considered. This problem is important for
choosing optimal strategy for preventive maintenance and restoration of elements of process equipment, which, in turn, significantly affects the efficiency
of production management system. From a practical point of view, of greatest interest is the development of methods for regression models building to
assess the impact of various technological and operational factors controlled during system operation on failure rate. The usual approach to regression
models construction involves preselecting the model structure in the form of a parameterized functional relationship between failure rate and affecting
technological variables followed by statistical estimation of unknown model parameters or training the model on datasets of measured covariates and
failures.The main problem lies precisely in the choice of model structure, the complexity of which should correspond to amount of data available for
training model, which in the problem of failure rate modeling is greatly complicated by lack of a priori information about its dependence on affecting
variables. In this work, such a problem is solved using machine learning methods, namely, kernel ridge regression, which makes it possible to effectively
approximate complex nonlinear dependences of equipment failure rate on technological factors, while there is no need to pre-select the model structure.
Preliminary aggregation of data by combination of factor and cluster analysis can significantly simplify model structure. The proposed technique is
illustrated by solving a practical problem of failure rate model building for semiconductor production equipment based on real data.

Keywords: dependability, factor analysis, failure rate, kernel methods, machine learning, production processes, preventive maintaince, ridge
regression, regression model.
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MOBYJIOBA PET'PECIMHOI MOJIEJI IHTEHCUBHOCTI BIIMOB 3A ATPETOBAHUMHA
JAHUMU 3 BUKOPUCTAHHAM METOAIB AAEPHOT'O MAIIMHHOT'O HABYAHHSA

Po3misiHyTO 33724y MoOyIOBU perpeciiHoOl MOJIeii IHTEHCUBHOCTI BiZ]MOB 00JIaTHAHHS 3 BUKOPHCTAHHAM HAOOPIB AaHUX, 1[0 MICTATh iIHPOPMALIiIO PO
KiJIBKICTB BiJIMOB BiZHOBJIFOBaHMX CHCTEM Ta BUMIPHOBAaHHS TEXHOJOIIYHUX 1 €KCIUTyaTal[iiHUX (haKTOpiB, IO BILIMBAIOTh HA HAMIMHICTH BHPOOHUIOT
cucremu. Lls npoGiemMa € BaXJIMBOIO Uil BHOOPY ONTUMAIBbHOI cTparerii mpodiJakTHYHOrO PEMOHTY Ta BiJHOBICHHS €JIEMEHTIB TEXHOJIOTIYHOIO
o0JIaIHAHHS, 1[0, ¥ CBOIO YEPry, CYTTEBO BIUINBAE HAa €(PEKTUBHICTH CHCTEMH YIPABIIHHS BHPOOHHIITBOM. 3 MPAKTHYHOI TOYKH 30py HAWOIMBIINIA
iHTepec MpeICTaBIsIe PO3po0Ka METO/IIB MOOYIOBH PErpeCciiHUX MOJIesel /1S OLIHKH BILIMBY Ha IHTEHCHBHICTb BiZIMOB Pi3HOMaHITHUX TEXHOJIOTTYHHUX
Ta eKCIUTyaTalidiHuX (haKTOpiB, KOHTPOJIBOBAHUX IIiJ Yac POOOTH CHCTEMH. 3BMYAWHMM MiAXix 10 moOymoBH perpeciiiHux mojelnei nepenbauvae
MoTiepe Hii BUOIp CTPYKTYpH MoZeNi y GopMi HapaMeTpru30BaHOTO (hYHKIIOHAIBHOTO 3B’ 3Ky MiXK iIHTEHCHBHICTIO BiJIMOB 1 TEXHOJIOTTYHUMH 3MiHHUMH
3 HACTYIHOIO CTAQTHCTUYHOIO OLIIHKOK HEBIJIOMHUX MapaMeTpiB Mojeni abo HaBYaHHSAM MOJENi Ha HabOpax JaHHX BHMIPSHHMX KOBapiaT i BiIMOB.
OcHOBHa npo0JemMa Noysrae came y BUOOpi CTPYKTYpH MOJIENi, CKIAIHICTh SIKOI MOBUHHA BiJIIOBIIATH KUIBKOCTI JaHUX, JAOCTYIHUX JUIS HaBYAHHS
MoOgieNi, 0 B 3aJadi MOJENIOBAHHS IHTEHCHBHOCTI BiIMOB 3HAUHO YCKIAIHIOETHCS BIICYTHICTIO ampiopHoi iH(popMmamii mpo ii 3aexHicTh Bix
BIUTMBAIOYMX 3MiHHUX. Y JaHiii poOOTi Taka 3a7aya BUPIIIYETHCS 3a JOMOMOTOI0 METO/IiB MAIIIMHHOTO HABYaHHSI, a caMe siIepHOT TpeOHeBOI perpecii,
110 J]a€ 3MOT'Y e()eKTUBHO allpOKCUMYBATH CKJIAJIHI HENIHIMHI 3aJIe)KHOCTI iIHTEHCHBHOCTI BiIMOB 00JIaIHAHHS B/l TEXHOJIOTTYHUX (haKTOPIB, IPH LILOMY
HeMae HeoOXiJHOCTI MOIepeHbOro BUOOPY CTPYKTYpH Mozeni. IlonmepenHe arperyBaHHs JaHUX IULIXOM HOETHAHHS (DPAKTOPHOTO Ta KIACTEPHOTO
aHaJTi3y MOXe 3HA4HO CIPOCTUTH CTPYKTYpY Mozeni. [IporoHoBaHa METOIMKA MPOLTIOCTPOBAaHA PO3B’SI3aHHAM MPAKTUYHOI 3a1a4l TOOYI0BH MOJENi
IHTEHCHBHOCTI BiZIMOB 00JIaJHAaHHS JUIsl BAPOOHHIITBA HAIIBIIPOBIIHUKIB HA OCHOBI pEANIbHUX JaHHX.

Kurouosi cioBa: HafiitHicT, QakTOpHMI aHANI3, iBEHB BiIMOB, SJIEPHI METO/IN, MAaIIMHHE HABYAHHS, BUPOOHNYI ITPOIIECH, TPOTHO3HE TEXHIUHE
o0cITyroByBaHHs, XpeOTOBA perpecis, perpeciiiHa Moaenb.

Introduction. Among the problems of production
management, an important place is occupied by preventive
maintenance, which is an effective tool for reducing costs
associated with failures and interruptions in production, its
repair and restoration, as well as maintenance costs [1].
Preventive maintenance ensures to determine when
maintenance should be carried out by estimations and
predictions of degradation state of production items and
expected time for occurrence of failures. Preventive
maintenance is also play in important role for production
and information and control system dependability ensuring.

In preventive maintenance implementation, failure
rate is widely used as important metric for evaluating
equipment reliability, wherein failure rate prediction is an
effective way to maintaince decision making [2].

The problem of estimating and predicting failure rate
using statistical data of failure streams has been studied in
detail in the literature. From a practical point of view, of
greatest interest is the development of methods for
predicting failure rate using their models, which take into
account the influence of technological and operational
factors controlled during the operation of the system. This
approach is implemented by building multivariate
regression models to estimate the relationship between
affecting factors (predictors or covariates) and failure rate.
A common approach to building regression models
involves preselecting of model structure as a parameterized
functional relationship between the output variable and the
affecting variables, followed by statistical estimation of
unknown model parameters or model training model on
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datasets of measured covariates and outputs. The main
problem lies precisely in the choice of model structure, the
complexity of which should correspond to the amount of
data available for training model, which in the problem
under consideration is greatly complicated by the lack of a
priori information about the dependence of failure rate from
affecting factors.

In this paper, the problem of failure rate regression
model building is solved in machine learning framework
using kernel regression method, which makes it possible to
effectively approximate nonlinear dependences of
equipment failure rate from technological factors. The
advantage of proposed approach is the possibility of
effective approximation of complex failure rate
multivariable dependence from affecting factors, while
there is no need to pre-select model structure, complexity
of which under such an approach is determined only by
amount of training data available.

Preliminary data aggregation using factor and cluster
analysis can significantly simplify regression model
structure. At the same time, the use of learning on clusters
method made it possible to significantly reduce the
complexity of resulting model and ensure its smoothing to
prevent the effect of “spatial oscillation”.

The proposed technique is illustrated by solving a
practical problem of failure rate model building for
semiconductor production process based on real data.

State of the art. The problems of failure rate model
building have been considered in detail in literature; the
main attention was paid to the development of methods for
constant or slowly changing over time failure rate
estimating using only data on failure statistics, building
models of the change in the failure rate over time and its
trend prediction using time series models [3].

A further development of such an approach was
development of methods for failure rate predicting using
their models, which take into account various affecting
technological and operational factors controlled during
production system operation. This approach is
implemented by building regression models of failure rate,
the foundations of which were laid in fundamental work
[4]. Subsequently, methods for failure rate regression
models building were studied in works [5-6]. Regression
analysis provides a set of statistical methods to estimate the
relationship between affecting (explanatory) variables and
failure rate as a model outcome. Explanatory variables
(predictors or covariates) are variables which might affect
a response variable, in reliability context, failure rate.

The usual approach to building regression models
includes a preliminary selection of model structure in the
form of a parameterized functional dependence between
output variable and explanatory variables (covariates),
followed by unknown models’ parameters statistical
evaluation or model training using datasets of measured
covariates and failures. The main problem lies precisely in
the choice of model structure, the complexity of which
must be consistent with amount of data available for model
training, which in the problem under consideration is
greatly complicated by the lack of a priori information
about the dependence of failure rate on affecting variables.
Recently, to building regression models, methods of

machine learning and neural networks have begun to be
used [7]. In this paper, to solve this problem, we use kernel-
based machine learning method [8] developed to build
high-dimensional ~ multivariate  nonlinear  regression
models.

Problem statement. Consider the problem of
building a regression model of failure rate using dataset,
containing information on the number of failures of
recoverable systems in certain time intervals and the results
of measurements of technological and operational factors
affecting system reliability. A set of of restored items are
considered, moreover, on each time interval n with length
7 the number of failures {f,(t), n=0,12,...}is observed.
At the same time, a set of technological and/or operational
factors (covariates in terminology of reliability regression

analysis) x" :[x1 X2 ... xN], that affect the failure rate

A(X) is measured; measurements are made at successive
times instances Xx(t, ) during a certain observation time

interval.

It is assumed, that at each observation interval
affected factors relative variations are insignificant and
they can be replaced with a sufficient degree of accuracy
by their average value over the interval, thus

X,T = [x% xrz] xr',\‘]will be considered as feature vector.

We will interpret the number of failures at current
observation interval as the results of “measurements” the
failure rate for corresponding value of feature vector at this
interval. In this way, the problem of failure rate model
building is reduced to restoring unknown dependence
A(x), using measurements dataset {f,, x,3™,, where M

is a number of observations intervals. In what follows, we

will denote X,\TA =[X; Xy ...Xy] the matrix of feature

measurements (training dataset) over entire observation.
Let’s take failure rate multivariable regression model
in parametrized quasi-linear form

AW, x) =" (x)w,

T 1 2 N (1)
9’ (x)=[¢ (x), 0" (x),...0" (x)],

where WT = [W1 W2 WN ] — model’ parameters vector;

o(x) — vector of coordinate functions,

T —sign of transposition.
Then measurement model taking into account (1) in
turn can be represented as

yn=¢T(xn)w+gn, n=1M, 2

where y, = f,/t — number of failures per time unit in
n -th observation interval,

&, — failure rate measurement error, which is, in
fact, the deviation of recorded number of failures on time
interval from their predicted by model (1) value.

In matrix-vector form measurement equation (2) may
be represented as
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Ym =DuW+ey,
T (3)
Dy =[o(x1) p(x3) ... p(xp )],

where y,\T/. =[y; Yo - Ym]and &) =[&1 &5 ...e ] are

vectors of measurements and errors respectively.

Using the ordinary least squares (OLS) method,
model (1) parameters estimate can be obtained as a solution
of following optimization problem:

(Ym — @y W) (ym — Dy ) = min, @)

which is well known Wy, = (@ @y ) 2Oy Yy -
Meanwhile, the use of such traditional approach in the
case under consideration encounters significant difficulties
connected with the necessity of rational choice of
coordinate functions ¢(x) and their number, which, in the

absence of a priori information about unknown restored
dependence, is a difficult problem. In addition, the possible
ill-conditionality of measurement’s matrix @@y,

which occurs with a relatively slow change in affected
factors, leads to a significant increase in estimation error.
Materials and methods. In this regard, to solve the
problem of failure rate model building, it is advisable to use
kernel-based machine learning method [8], which removes
the problem of choosing of a system of coordinate
functions. Let us choose coordinate function such that their

scalar products ¢ (x;)-p(x;) = x(x;, x;), i,j=1M are

kernel functions; for definiteness, choose a system of
kernels in the form of radial basis functions (RBF)

k(%X ) =exp(=o - (x=x )T (x=x")), o>0.
In accordance with kernel-based learning technique,

introduce kernel matrix Kn:CDMCDI,,,Which may be
found directly without reference to coordinate vector
functions, because Ky, =[k;; 1, kjj =x(x;,x;), i, j=1M.

We find model (1) parameters, in according to OLS
kernel approach [8] by regularized functional minimization
with linear constraints

81|\;|8M +yww —> min, em =ym —Ouw, (5
W,e
where  y > 0 —regularization parameter.
Introduce Lagrange function
Aley o w, p) =
T T T (6)
=emem Tyw wp (&g —ym +Dyw),
we obtain optimization problem (5) solution in the form
A T T \-1
Wy =@y (I + @y Py ) "y - ()
Taking into account that
@, @, =K, =[x(x;, x))], ®)
0 (x) Dy =[x(x,x;) K(x,X,) ... (3, x3)] = 5y, (%),
we get final expression for failure rate model XM (x)

obtained by training data {f,, X}, n =1LM

A () = 1y ()T + K)o ©
Note that regression model (9) depends only from

elements of kernel matrix K,; and vector k) (x),
calculated at the points of training sample and does not
require a preliminary choice of coordinate functions.
Regularization ensures stability of computational
procedure even for ill-conditioned kernel matrix Ky, .

Using kernel approach allows approximating complex
multidimensional dependencies, however, since the
number of kernels used is determined by number of points
in training dataset, the resulting restored dependency may
have the property of “spatial oscillation”. To prevent this
undesirable effect, it is advisable to carry out additional
smoothing of restored dependence on data cloud.

To do this, we use an additional regularization of
optimization problem (5), using data graph model [9],
described by adjacent graph, consists of nodes, that are all
observed data points, and matrix V =[v;], i,j=1M
determines edge weights v, in adjacency graph, wherein
the edge, connecting two data graph nodes (x;,x.),Iis

i
weighted by kernel function
2
vy =x(x, %) =exp{-o[x - x|} ©>0, (10)

defined over graph nodes [10] and reflect data cloud
geometric structure.

In this way, additional regularization term, smoothing
the evaluated function A(w,x)on training dataset with

edge weights V;; is the following:

QW X, ) = 3% (1w, x) - 20w, %) (1)

i, j=1
Thus, graph regulariser (10) ensures to find restored
function A(w,x)which has similar values for close data

points from training dataset.
In accordance with [11] approach, let’s take manifold
regularization term as data depended semi-norm

Qw, X,,)=4"(w, X,, ) LA(w, X,,),

A(w, X,,) =[A(w,x.), A(w, x,) ..y MW, 2, D], (12
where L —graph Laplacian matrix,
L=D-V,
(13)

M
D = diag[d,; d,, ... dyy ], dj = >V
i=1

At that, to construct a smoothing regulariser, we will
use data-depended kernels, corresponding to semi-norm
Q(w, X,,); explicit form of transformed reproducing

kernel £(x,x"), derived in [11], are given by:

k(X X)) =x(X,X)+

(14)
+ky ()(Iy + LKy, )" Lky, (),

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XI1l». Cepis: Cucmemmnuii
ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 2 (8) 2022 53



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

where K, ,K,, (X) defined by (8).

Such a choice of kernel functions implements the
smoothness assumption with respect to training dataset
geometric structure.

Obtained transformed kernels can be used to modify
failure rate kernel-based regression model:

- T N

Wy =@y (I + Ky ) "M

= T =1
Am (X)=ky ()7 Iy +Ky) “ym s

e () =[R(x, %) £(x, xp) .. £(x, )],

(15)

where K, =[x (x;, x;)] is transformed kernel matrix.

Thus, dependence (15) describes obtained smoothed
kernel-based regression model, that determines relationship
between failure rate and affecting factors.

Case study. The proposed technique was investigated
using real data from semiconductor manufacturing
industry, which was provided by Michael McCann and
Adrian Johnston [12]. The study uses Semiconductor
Manufacturing (SECOM) dataset available from
University of California, Irvine Machine Learning
Repository UCI Machine Learning Repository: SECOM
Data Set. The SECOM dataset contains data collected du-
ring semiconductor manufacturing process and represents a
series of monitoring signals from sensors at process mea-
surement points. Each example of SECOM dataset repre-
sents a single production entity with associated measured
features (affected technological factors), the labels
represent a simple pass/fail Yield in production quality
control (Yield = —1, pass, no failure, and Yield = +1, fail),
and associated date time stamp.

Training dataset contains 1567 examples, each with
590 measured features, and only 104 themes represent yield
failures.

Two datasets are provided [12]:

— secom_data.csv, contains time series of features
measurements from sensors;

— secom_labels.csv, contains time units and for each
time unit output result (yield pass/fail).

— Calculations for numerical experiments were
carried out using free software machine-learning library
Scikit https://scikit-learn.org/stable/.

The presence of a large number of observations and
their heterogeneous structure and statistical properties
predetermine the need of preliminary data cleaning and
preprocessing.

Some results of preliminary analysis of SECOM data
are illustrated in fig. 1. Proportion of failures in total set of
observations (fig. 1, a) indicates, that dataset is unbalanced,
there are only 7% “failed” items. Analysis of statistics of
failures distribution at fixed time intervals (fig.1, b)
confirms the hypothesis of its Poisson distribution, and
founds the assumption of failure rate constancy at certain
time intervals.

Analysis of empirical distributions of affecting
technological factors showed that in the most cases features
are distributed approximately normally, for example,
histograms visualization of measurements from first 9
sensors are presented at fig. 2.

a) b)

Fig. 1. Training dataset properties:
a — diagram of proportion of failures in total observations;
b — histogram of the daily distribution of failures

1th Sensor 2nd Senser

- 1 ]

g

o
L I T T

T ok oW e oW w0 ek ol

Fig. 2. Measured signals from first 9 sensors histograms

Features covariance matrix heatmap is presented at
fig. 3, the number of factors having positive or negative
covariance values of more than 70% is equal to 262. At the
stage of data cleaning, pairs of features with a covariance
of more than 70% were removed; after this manipulation,
we get a total of 212 features.

Fig. 3. Features covariance matrix heatmap

Preliminary analysis showed that training dataset has
significant redundancy and contains many collinear feature
vectors. Thus, there is a need to aggregate data, which is a
prerequisite to reduce model complexity and training time
and increase model performance.

Data aggregation was carried out in three stages. At
the first stage, the entire set of observations was divided
into successive intervals, for each of which the observed
number of failures was fixed, and the feature vectors were
replaced by their current average value over the intervals.
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At the second stage, the reduction in the number of
features was performed by method of factor analysis, which
performs a linear transformation of original feature vectors
into the space of hidden factors of a smaller dimension.
Experimentally, the number of hidden factors, which
aggregate original features, was chosen as 5, the structure
of correlations between the initial features and found
hidden factors is illustrated by corresponding covariance
matrix, which is shown in fig. 4.

°

@208 S SR BN ROBY AR ALK EENENE T oo

it

Fig. 4. Features-factors covariance matrix heatmap

Fig. 4 clearly shows, that each of hidden factors
correlates well with a certain group of initial features, while
obtained factors themselves do not correlate (fig. 5).

-100
20.05
075

31e05  0.00048

Fig. 5. Hidden factors covariance matrix

At the third stage of preprocessing, the clustering of
reduced dataset in factor space was carried out in order to
reduce the number of kernel functions in resulting failure
rate model, while centers of clusters were chosen as centers
of the kernel components of regression model, and average
values of number of failures for each cluster were used as
measured response function. At that, the construction of a
regression model on clusters in hidden factors space
provides its additional smoothing as a result of number
reduction of kernel functions used.

On fig 6, 7 the results of model training are presented,
regression model surface is given in projections on axes
corresponding to hidden factors (a — X1-X2 projection, b —
X1-23 projection, ¢ — X1-X4 projection, d — X1-X5
projection). Fig 6 shows visualization of base regression
model, trained on dataset constructed from original

features, averaged over the intervals, fig. 7 shows cluster-
based regularized smoothed model.

< d

Fig. 7. Failure rate smoothed regression model visualization

As a performance metric for built regression models
mean absolute mean absolute error (MAE) was chosen. The
results of computational experiments show that cluster-
based smoothed model demonstrates slight decrease in
accuracy (MAE=0.0211 compared to MAE=0.0199 for
base model), but avoids “spatial oscillation” as well as
overfitting, and is more stable to outliers and noise.

Conclusions. The results obtained indicate, that
proposed method for failure rate kernel-based regression
model building using machine learning technique provides
an opportunity to analyze the influence of a large number
of technological and operational affecting factors and to
successful approximate complex dependences of reliability
indicators with high accuracy. Further development of
proposed approach is expedient in terms of developing
methods and algorithms for failure rate and failures
themself forecasting based on time series of affecting
factors measurements in real time. To build a predictive
time-series model, it is also advisable to use kernel machine
learning methods.
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