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MATHEMATICAL MODELING OF THE QUASI-STATIONARY PROCESSES OF VISCOUS
MIXTURE MIXING IN A RECTANGULAR AREA BY THE R-FUNCTIONS METHOD

Mixing processes are found in the chemical, pharmaceutical and food industries. Fluid mixing is one of the fundamental scientific problems
associated with modern concepts of regular and chaotic dynamics. The paper considers the problem of mathematical modeling of the quasi-stationary
process of mixing a viscous mixture. This problem consists of two sub-problems: determination of the velocity field in the flow region (Eulerian
formalism) and investigation of the trajectories of individual fluid particles (Lagrange formalism). To solve the first subproblem, it is proposed to jointly
use the principle of superposition, the structural method (method of R-functions) and the Ritz variational method. The methods of nonlinear dynamics
and qualitative theory of differential equations are used to solve the second subproblem. A plane quasi-steady flow is considered in a rectangular region
and it is assumed that the side walls are at rest, and the upper and lower walls move alternately according to the given laws. According to the method of
R-functions, the structures of the solutions were built and the use of the Ritz variational method for the approximation of the uncertain components of
the structures was justified. The operation of the proposed method is illustrated by the results of a computational experiment, which was conducted for
different modes of wall motion. The practical interest of the considered regimes is due to the fact that they lead to the emergence of chaotic behavior
when mixing occurs most efficiently. Using the methods of nonlinear dynamics, the location of periodic (hyperbolic and elliptical) points was
investigated and the Poincaré section was constructed. Further research with the help of the method proposed in the work can be related to the
consideration of flows in more geometrically complex regions and more complex mixing regimes, as well as in the application to the calculation of
industrial problems.
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H. B. THBKIHA, M. B. CH/]OPOB, I'. B. CTA/THIKOBA

MATEMATHUYHE MOJEJIOBAHHA KBA3ICTAHIOHAPHHUX ITPOLECIB HEPEMIIITY BAHHSA
B’SI3KOI CYMIIII Y IPSIMOKYTHIA OBJIACTI METOJIOM R-®YHKIIIA

Iporniecu mnepeminryBaHHS 3yCTPiYalOThCS B XIMiuHIH, (apMalleBTHYHIM Ta Xap4oBii HPOMHUCIOBOCTAX. IlepeMillyBaHHS DPIIMHH € OXHIEI0 3
(yHIAMEHTAIbHUX HayKOBHX IPOOJIEM, IIOB’I3aHHX 3 Cy4aCHHMM KOHLCTIISIMH PEryJIIpHOI Ta XaOTHYHOI AMHAMIKK. Y PoOOTI PO3IIIHYTO 3aady
MaTeMaTHYHOrO MOJIEIIOBAHHS KBa3iCTAI[IOHAPHOTO MpPOLeCy MepeMinryBaHHs B’ s3K01 cymimni. L[st 3aqada ckimagaethes 3 IBOX MiA3aad: BU3SHAYCHHS
nonst mBHAKocTell B obmacti Tewii (dpopmaniam Eiinepa) Ta DociimkeHHS TpacKTOpii okpeMuX 4acTHHOK pimmHH (popmamizm Jlarpamxka). st
PO3B’s13aHHS TIEPILIOT MTi/13a1ati IPOMOHYETHCS] CYMICHO BUKOPUCTATH IPUHIIMII CYIIEPHO3HLT, CTPYKTYpHHA MeToA (MeTon R-dyHKii) Ta BapiamiiHuit
merox Pitua. s pos3s’si3aHHs APYroi mig3agadi BUKOPHCTOBYIOTHCS METOIM HETiHIMHOI AMHAMIKK Ta SKICHOI Teopii AudepeHIianbHuX PiBHIHb.
ITnocka kBa3icTamioHapHa Tedist pO3IIILAAEThCS B MPAMOKYTHIH o0JacTi 1 BBaXkaeThes, MO Oi4HI CTIHKH Nepe0yBaroTh y CTaHi CIIOKOIO, a BEPXHS Ta
HIDKHS CTIHKH PYXalOThCs 110 Yep3i 3a 3aJaHiMH 3aKOHaMH. BigmosinHo g0 Metoxy R-byHKLi# moOyI0BaHO CTPYKTYpH PO3B’SA3KIiB Ta OOIPYHTOBAHO
3aCTOCYBaHHS JUISl allpOKCUMaLlil HEBU3HAYEHUX KOMIIOHEHT CTPYKTYp Bapiawiinuii Meros Pitia. Po6oTy 3anpornoHOBaHOTO METOY MPOLITIOCTPOBAHO
pe3ynbTaTaMu O0YHCITFOBAIEHOTO EKCIIEPHMEHTY, SIKHH OYJI0 IPOBEISHO UL PI3HUX PEXUMIB pyXy CTIHOK. [IprKiaHui iHTEpeC pO3IIITHYTHX PEXUMIB
00yMOBJIEHHH THM, 1110 BOHU ITPU3BOATH 10 BAHUKHEHHS XaOTUYHOI [TOBE/IiHKH, KOJIM TIepeMilllyBaHHS Bi10yBaeThcsl HAWO1Ib1I eheKTHBHO. MeTogamu
HEJNHIMHOT AMHAMIKY JTOCHIXKEHO PO3TallyBaHHS NepioANYHUX (TinepOoNiyHUX Ta eNNTHYHUX) TOUOK Ta moOynoBaHo nepepi3 [lyankape. [Toganbun
JIOCIII [UKEHHS 3a JOTIOMOTOI0 3aIIPOIIOHOBAHOTO Y POOOTI METOYy MOXKYTh OYTH MOB’s13aHI 3 PO3IIISIOM TeUil y OLIBII TeOMETPHYHO CKIIAJIHUX 00JIaCTSX
Ta OLIBII CKIIAHUX PEXUMIB EPEMIIIyBaHHS, a TAKOXK y 3aCTOCYBAHHI 10 PO3paxyHKy IPOMHUCIIOBUX 3a/1au.
KurouoBi ciioBa: kBasicTaiioHapHa Tevis B’SI3KOi piivHHU, epeMilryBanHs, GpyHkuis Tedii, meron R-dynkuiit, meron Pitia, nepionuyHi Touku

Introduction. Mathematical modeling of viscous
flows is widely used in investigation of mixing processes
in chemical, pharmaceutical and food industries, etc. [1-3].
On the other hand, the problem of liquids mixing research
is a fundamental scientific problem associated with chaotic
dynamics [2-5]. There are several methods that are used for
numerical simulation of these processes. But they do not
have the universality property and can be only used to
investigate processes in geometrically simple areas. In
particular, in J. M. Ottino, H. Aref, V.V. Meleshko, T.A.
Dunaeva, T.S. Krasnopolskaya [1, 6-8] and others works,
the mixing problem was solved in a circle, a semicircle and
a circular sector, etc. The methods proposed in these works
cannot be applied to studying of mixing processes in more
complex areas.

The geometric information included in the problem
formulation can be taken into account accurately. This can
be achieved by the usage of the constructive apparatus of
the R-functions theory. The theory was proposed by V.L.

Rvachev, Academician of the National Academy of
Sciences of Ukraine [9]. Thus, it is a relevant scientific
problem to develop new methods of numerical analysis of
mixing processes based on the application of the R-
functions theory. For instance, the R-functions method was
applied to study the viscous fluid flows in [10-14]. This
work continues the research initiated in [15, 16].

Problem statement. Let’s consider a flat quasi-
stationary flow of viscous incompressible fluid that fills Q

, the inside of a rectangle Q =[0,a]x[0,b]. We assume
that the side walls Q are at rest and the top and bottom
walls take turns move with speeds v, (t) = (v, (t), 0) and
Vot (1) = (v, (1), 0) , respectively. Fig. 1 illustrates the

scheme of such flow.
To solve the first part of the mixing problem we need
to obtain the velocity field (v,,v,) in the flow area Q.

Let’s assume that the considered flow is creeping. Then the
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nonlinear terms in the Navier — Stokes system of equations
can be neglected and the flow can be described using the
Stokes approximation [17].

Vi (1)

—

0 —— a
Vbot(t)
Fig. 1. Flow scheme
It is convenient to describe plane flows using the
stream function w(x, y,t) associated with the components
of the velocity vector (v,,v,) by the relations [17]
x = % ' Vy
Under such conditions, we can set the following
boundary-value problem for the stream function w(x, y,¢)

in the Stokes approximation:

__

Y = .
OX

Ny =0 in Q, 1)
V] =0,
P _VtOp (t)! (X, y) € 691 = {y = b},
% I V® (R Y)edQ={y=0}, (2

0, (X, y)edQ, ={x=0}u
woQ, ={x=a},

where n — is the external normal to the boundary 06Q of the
flow area Q;
A? — biharmonic operator,

4 4 4
A = 6—4 + 2% + 8—4 .
OX ox‘oy: oy
The solution of the second part consists of solving the
initial problem for the equations system of Lagrangian
particle motion:

oy Ovnyit) L Op(x )
X(t)——ay ;Y@ R

X(to) =Xos y(to) =Y, (4)

and constructing and analyzing the motion trajectories.
Basic Information on R-Function Theory. Let’s

consider the basics of the R-functions theory and the

general application scheme of this theory methods in

, ®3)

mathematical modeling of physical and mechanical fields
[0
A function f:R" — R is called the R-function that

corresponds to the three gradations partition of the set
x = (—OO, +OO) =R

$;'(0)=X(0)=(-,0), S;'(1)=x(1)={0},

$,"(2)=%(2)=(0,+),

if such a three-valued logic function Y =F(X,,..., X,)
exists, that
SHRECTRERS) Ll EACHIRRENC NI ®)
where
0, t<0,
S;(t)=41 t=0,
2, t>0.

The three-valued logic function F that satisfies
condition (5) is called accompanying for R-function f .

Thus, the definition (5) points out a functions class
among the continuous argument functions. They have
properties of the logic algebra functions (a discrete
argument functions). In the R-functions theory, it is proved
that this class has a nonempty intersection with the set of
elementary functions. One of the most used in practical
applications is the following R-functions system

_ . 2 2 .
G=-0; 0,A,0,=0,+0,—+l0} +0, ;
0,V 0, =0, +0, ++J0] +0) (6)
1V 0, =0, 10, 1170, -

Accompanying functions for the R-functions of
system (6) are three-valued negation, disjunction, and
conjunction, respectively.

The application of the R-functions is primarily
associated with an analytical description of geometric
objects (solving the inverse problem of analytic geometry).
Itis also used to form structures for solving boundary value
problems of mathematical physics (structural method).

One can describe an application scheme for the R-
functions theory apparatus to solve the inverse problem of
analytic geometry in the plane. Let a geometric object
Qc R? be constructed from  support  sets
%, =(o;(x,y)=0), i=1..m, using algebra of logic
operations —, A, v inthis form

Q=F(,...%,). @

We assume that o,(x,y), i=1..,m, are simple
continuous (elementary) functions, i.e. at the same time
o,(x,y)=0 is the boundary of sets o;(x,y)>0 and
o,(x,y)>0.Ifin (7) we carry out a formal substitution for
set Q with w(x,y), X, with o, (x, y) , and the logic algebra
symbols —, A, v with the corresponding R-functions
symbols, we obtain an elementary function w(x, y) in the
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form of a single analytical expression that is equal to zero
on the boundary 0€2 . Moreover, the inequality w(x,y)>0

is true for the internal points Q.
Thus, the implicit equation w(x,y) =0 defines the

locus, which is the boundary of Q.
Also, this function w(x, y) can be subordinated to the

normalization conditions:

o(x,y)=0 at 0Q; w(x,y)>0 in Q;

@l -, ©
on|.q
where n —external normal to o6Q .

For boundary-value and initial-boundary-value
problems of mathematical physics, the R-function method
allows to construct general structures for solving. These
structures are bundles of functions that exactly satisfy all
the boundary conditions of the problem.

The application of the R-functions structural method
for the numerical study of physical-mechanical fields
consists of the following steps:

1) an exact analytical geometric description of the
area Q in which the field is considered, i.e. the
construction of a function w(x, y) with properties (8);

2) continuation of the boundary conditions into the
area, i.e. until the functions and operators become defined
on the boundary at internal points of the area Q;

3) the construction of the general solution structure,
i.e. such formula that depends on one or more indefinite
functions and which, with any choice, exactly satisfies all
boundary problem conditions;

4) the construction of an approximate solution, i.e. the
approximation of the indeterminate components of the
structure by some numerical method (grid method, Ritz
method, Galerkin method, etc.).

The following two approaches are the most common
ways to extend the boundary conditions within the area [9].

Let the function ¢, at the points 6Q be defined as

composite like this

Py (s), s,
Py (S) =

o)(s), seaq,,

where the border sections 0Q,, ..., 0Q, are pairwise

different, they do not have common internal points and
=00, U...uQ, .

If functions o,(x,y), are such that
Ol =00, and  o(x,y), that
w;(x,y)=0 at 0Q, and w;(x,y)>0 in QuU(OEQL\Q,),
then the function

i=1..r,

i=1..r, such

(0,050, F Q0,00 F ... F PO,

o) C))

0, Wy... 0 + O 03...00, + ...+ O, 005...00,

has a property q0|m = @,. We will mark this continuation as

ECoy=0.

The second approach is connected to the continuation
of the differential operators into the area Q. These
operators are defined on the boundary 0Q . Let w(x,y)=0
be the normalized equation of the boundary 0Q of the area
Q (i.e. the function w(x, y) satisfies conditions (8)). Then

the operator D, , that behaves according to the rule

=, oot (10)
OX OX oy oy

at regular points of 0Q satisfies the equality

ou
_Dlu|ag = % !

where n —external normal to 0Q. The expression Du

makes sense everywhere in QU 0Q.
In particular [10], the structure of the problem
solution

Au=F in Q, (11)
; au ~
ul,,=1(s), —| =4d(s), seoQ, (12)
oQ an o
can be represented as follows
u=f—o(Df +g)+0°®, (13)

where f=ECf and g=EC§ - are extensions of
functions f and § in Q which are constructed using
formula (9);

the operator D, is determined by equality (10);

® is the indefinite component of the structure, and
the function w(x, y) satisfies conditions (8).

Method of Numerical Analysis of Quasi-Stationary
Viscous Fluid. In accordance with the principle of
superposition, the solution of problem (1), (2) is
represented in the form

w(x, y,8) = v, Oy (X, 3) + v (D, (x, ), (14)
where y, (x,y) —is the solution of the problem
Ny, =0in Q, (15)
Vilo =0,
| _ {1, (X, y) € 0Q,, (16)
onl, 10, (Xy)edQ,uiQ,uiQ,,
and w, (x,y) —is the solution of the problem
Ny, =01in Q, 17)
Yalog =0,
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(x,y) € 0Q,,

O, _]L
o 0 (xy)ean, uan,uaQ,.

n (18)

To solve problems (15), (16) and (17), (18), we use
the R-functions method and Ritz method.
Let’s introduce the following functions

w=b-y, w,=x, w;=y, w,=a—x.
Each of these functions w,(x,y), 1=1,2,3,4, has
properties:
1) o, =0 at 0Q;;

2) ;>0 in QU(Q\QY,);
3) ?:—1 at 0Q,, n —external normal to 0Q; .
n

Then the function

1 1
0=| 2xta=2) |no| 220-3)|.
a b
where A, — the R-conjunction sign, satisfies the conditions
(8).
Each of problems (15), (16) and (17), (18) can be

reduced to the form (11), (12) if (according to (9)) we
choose

(19)

W, Ny Wy Ng (0 W) Ny 0y Ny 0O

9, =

1 2 = .
W+, Ny W3 Ny O Wy + W Ny 0, Ny O

Then by formula (13) we obtain the solution structures
for the problems (15), (16) and (17), (18) in the form

Y, =—0g, +0°®,, =12, (20)

where the function @ is (19);
®,, ®, are the indeterminate components of the

structures.

To approximate the indeterminate components in (20)
we use Ritz’s variational method [18]. To do this, in
problems (15), (16), and (17), (18) we first make
substitutions

v =h +u;, (21)

where h =-wg,, U =o’®, — new functions we are
looking for, i=1,2. Substituting (21) into (15), (16), and
(17), (18) for functions u, , i =1, 2, we obtain problems with
homogeneous boundary conditions:

Ay, =-A’h in Q, (22)
ul, =0, & —o. (23)
oQ an o

We consider boundary value problems (22), (23) in
Hilbert space L,(Q). We will associate each of these

problems with an operator A= A’ at the function definition
area

_a

ueC*(QNCHQ),u =o} cL(Q).
on|s

DA={u

The operator A defined in this way is symmetric and
positively defined. If we close the set D, in the norm

generated by the scalar product

oQ

[u,v]= H AuAvdxdy ,

then we get the energy space H,. Then, by the theorem on
the energy functional [18] (provided that Ah € L,(Q),
i =1, 2) the generalized solution of problems (22), (23) is
u, =arg inf H[(Au)z +2AUAh Jdxdy , i=1,2.
Q

ueH,

According to the Ritz method [18], approximate
solutions of these variational problems will be sought in the
form

N N
— 2D ~ — 2 — 2 0. _ ()
U =0~y =0'® =0 E,Ck Tk_E,Ck Py s

k=1 k=1

where i=1,2, {r,} — any complete in L,(Q) system of
functions (degree or trigonometric polynomials, splines,
etc), o, =0’ .

The sequence {¢,} is coordinate because

1) ¢; € D, foranyone j;

2) ¢y, ..., ¢ linearly independent for each N ;

3) the system {¢,} is full in space H,.

To determine the unknown numbers ¢, ..., c{,
i=1 2, itis necessary to solve the Ritz system

N .
D lo 9;1c” =—(ah, Ag)),
k=1

j=1..,N,i=12,

where

[(Pk'@j]=ﬂA<PkA<P,-dxdy, k,j=1.. N,
Q

(Ahi,A@j)=IjAhiA¢jdxdy, j=1..,N,i=12.
Q

The matrices of systems (24) are independent of i and
can be calculated once, when we solve problems (22), (23).
In addition, these matrices are symmetric, which also
reduces the amount of computation.

It follows from the Ritz method convergence theorem
[18] that the sequences of functions u;,, 1=12,

N — oo, converge to the unique generalized solutions of
boundary value problems (22), (23) in both norms L, (Q)
and H,. Then the sequences of functions v, =/ +u;  ,
i=12,convergeinnorm L,(Q) tothe unique generalized

solutions of problems (15), (16) and (17), (18) and the
sequence of functions
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Wy (%, 1,8) = =iy (O (X, ) + v (O (%, 9)

converges to the unique generalized solution of the original
problem (1), (2).

So the first part of the mixing problem is solved.

To solve the second part of the mixing problem we
need to study the methods of qualitative theory of
differential equations of the initial problem

%(t) _ oy (a8 o) __Oyy(xyt)

w0 &

X(to) =Xy, y(to) = Yo (26)

that describes the behavior of individual fluid particles
(markers).

In considered problem (25), (26), it is necessary to
find the periodic points of system (25), find out their nature,
study the behavior of phase trajectories, etc. [5].

Results. The computational experiment was
performed for a rectangular area for different ratios a:b
and for different movement modes of the top and bottom
walls. The integrals in system (24) were numerically
calculated using a Gaussian cubic formula. The fifth-degree
Schonberg splines for the system {z,} were chosen. Two

quasi-stationary modes (T — period) were considered:

—mode A: alternately at time intervals [kT; TE + kT} :

[%+ KT; T+ kT} , k e N, the top and bottom walls move

respectively at regular intervals in opposite directions at
constant speeds;
— mode B: the top wall moves at the time interval

{kT —&; %+e+kT] k e N, and the bottom wall moves

in the opposite direction at the time interval

F—E—gﬂcT; T+kT+e}, keN (0<8<TE).

The quasi-stationary modes under consideration are of
applied interest. In these cases, chaotic behavior may occur
when mixing is the most effective. In the case of stationary
mode, the phase trajectory of markers in the area Q is a
closed curve without self-intersection points. For quasi-
stationary mode the phase trajectory has more complex
behavior. Fig. 3 shows the marker trajectory exiting from
the point (0.52; 0.53) in 10 periods in case of mode B.

Periodic points for different ratios a:b were nume-
rically found for the considered modes. Schemes of their

location in the area Q are shown in Fig. 3 and 4 ( = -

hyperbolic point; * — elliptic point). Poincare Sections for
300 points were constructed as well. The obtained cross
sections allow us to conclude that in quasi-stationary mode
A the regularity of the flow is disturbed. In mode B there is
an area of global chaos with the exception of only the
border zones. For the area Q when a=1, b=1, their
examples for different modes are shown in Fig. 5 and 6.
The obtained results are in good agreement with the results

of physical experiments [1, 5] and with the results obtained
by means of other methods [4, 8].

0.8 |

0.6 |

0.2 |

0.2 0.4 0.6 0.8 1

Fig. 2 The marker trajectory exiting from the point (0.52; 0.53)
in 10 periods (mode B)

0 1

Fig. 3 Location of periodic points in the area Q (a=1, b=1,
modes A and B)

3 3
. *
>, >,
x & x ¢ X
=,
L ] L ]
0 1 0 1
a b

Fig. 4 Location of periodic pointsinarea Q (a=1, b=3)
mode A (a) and mode B (b)

Conclusions. The technique for investigating the
processes of mixing viscous mixtures was proposed. It is
based on the joint application of the structural method (R-
functions method) and methods of qualitative theory of
differential equations. The application of the R-functions
method made it possible to obtain the analytic solution of
the first part of the mixing problem — viscous stream flow
function. That facilitated its further usage for solving the
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second part of the mixing problem — to study the properties
of the trajectories of the marker movements.

0.8 F

P d -
] "
0.6 F ' ‘
! '
) \
0.4 F ' 1)
! '
] 1
b S

0.2

L L L L £

0.2 0.4 0.6 0.8 1

Fig. 5 Poincare Intersection of the trajectory exiting from the
point (0.52; 0.53) (mode A)

Fig. 6 Poincare Intersection of the trajectory exiting from the
point (0,52; 0,53) (mode B)

The application of the R-functions method allows to
perform computational experiments for more complex
areas than those found in modern research. That made the
proposed method more universal than the known ones.
Experimental studies of two of mixing modes allowed us to
make conclusions about their effectiveness. Further studies
of the proposed method may be related to the consideration
of flows in more geometrically complex areas and more
complex mixing modes.
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