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EFFICIENCY SUBSTANTIATION FOR A SYNTHETICAL METHOD OF CONSTRUCTING A
MULTIVARIATE POLYNOMIAL REGRESSION GIVEN BY A REDUNDANT REPRESENTATION

In recent years, the authors in their publications have developed two different approaches to the construction of a multivariate polynomial (in particular,
linear) regressions given by a redundant representation. The first approach allowed us to reduce estimation of coefficients for nonlinear terms of a
multivariate polynomial regression to construction of a sequence of univariate polynomial regressions and solution of corresponding nondegenerate
systems of linear equations. The second approach was implemented using an example of a multivariate linear regression given by a redundant
representation and led to the creation of a method the authors called a modified group method of data handling (GMDH), as it is a modification of the
well-known heuristic self-organization method of GMDH (the author of GMDH is an Academician of the National Academy of Sciences of Ukraine
O. G. lvakhnenko). The modification takes into account that giving a multivariate linear regression by redundant representation allows for construction
of a set of partial representations, one of which has the structure of the desired regression, to use not a multilevel selection algorithm, but an efficient
algorithm for splitting the coefficients of the multivariate linear regression into two classes. As in the classic GMDH, the solution is found using a test
sequence of data. This method is easily extended to the case of a multivariate polynomial regression since the unknown coefficients appear in the
multivariate polynomial regression in a linear way. Each of the two approaches has its advantages and disadvantages. The obvious next step is to combine
both approaches into one. This has led to the creation of a synthetic method that implements the advantages of both approaches, partially compensating
for their disadvantages. This paper presents the aggregated algorithmic structure of the synthetic method, the theoretical properties of partial cases and,
as a result, the justification of its overall efficiency.

Keywords: univariate polynomial regression, multivariate polynomial regression, redundant representation, least squares method, test sequence,
repeated experiment.

Introduction. Multivariate linear and non-linear re-  representation. In this paper, we explain the aggregated al-

gressions, constructed based on the results of active or pas-
sive experiments, are widely used in modern diagnostic in-
formation systems, in particular, medical ones, and in in-
formation management systems with a wide range of appli-
cations [1-10]. Universal methods for multivariate regres-
sions construction vary from classical statistical methods to
heuristics, such as the group method of data handling
(GMDH) or genetic algorithms. But none of them, due to
the complexity of the problem, dominates the others. Exist-
ing methods complement each other. Therefore, scientific
research in this field is still relevant.

We give in the abstract, at a qualitative level, the char-
acteristics of a synthetic method of constructing a multivar-
iate polynomial regression (MPR) given by a redundant

gorithmic structure of the synthetic method, substantiate
the logic of its construction, its theoretical properties, the
properties of partial cases of redundant representations of
MPRs that lead to the finding of coefficient estimates for
nonlinear members of the MPR with acceptable accuracy.

1. General theoretical provisions that we use.
1.1. Univariate polynomial regression (UPR) [11]. Let a
UPR be given in the form:

Y(x)=6,+t0x+..+0,x"+E, (D)

where E is a random variable with an arbitrary distribu-
tion, its mathematical expectation ME =0, its variance

DE = o? <, the variance or its upper bound is known.
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According to the results of the experiment (xi -V,
i=l,_n), r<n, x, ele,d], where
Y =6, +0x .+ Ox 6, @)

where §, is an implementation of a random variable E in

the i-th test, estimates of unknown coefficients can be
found using normalized orthogonal polynomials of For-
sythe (NOPFs) constructed from the values of the input var-

iable x,,i=1n.
o, (x)= djo +qj1x+...+qjjxj ,j=0,r.
In this case, the UPR (1) has the form

Y=Y 00 ()+E, ©
j=0

aA)j:Zn:Yin(Xi)'jZT’ “)

0,= @0, +..+d0;,j=0r, )

Mo, = w,,Dd, =o*, M0, =06,,D0, =0'22qu . (6)
J=

1.2. A repeated experiment. A. Pavlov and D. Kova-
lenko proved that the results of a repeated experiment with

k repetitions of the main experiment (xi >V, i :1_n) are
equivalent to the experiment

Zkfl y .
Xi - p=0 P 3 i :ﬁ ’
k

and the variances of estimates éi , J= 0r , decrease by the

factor of k .

1.3. Estimation of coefficients for nonlinear members
of a UPR using a single set of NOPFs. It was shown in [12]
that the estimates of the coefficients for nonlinear terms of
a UPR (1) at arbitrary values of ¢ <d can be found using
only a single set of NOPFs based on the results of the fol-
lowing virtual experiment. We introduce a virtual deter-
ministic scalar variable z and for its values

2,<2,<..<1, (7)
we find with the specified accuracy a set of NOPFs Q,(z),
j=0,r. Having put

a=9=C .o p-c-d=C z,
Z, 74 Z,—4
x =az,+b,i=1n(x =¢,x,=d), (8)

substituting x=az+b, we reduce the UPR (1) to a virtual
UPR

Y(z)=6,+6,(az+b)+...+6, (az+b)r +E=

=yotnzt.tyz +E. ©)

The coefficients 6,7, j = or , are in a mutually un-
ambiguous correspondence

1
a a, Zo }7: )
a’ E (10)
0 :
NICYIRVE

According to
(xi Sy, i :1,_n) ,where x,,i=1,n, satisfy (8), we design

results of the main experiment

a virtual experiment (zi >y, i :1_n) Based on the set of
NOPFs constructed for z;,i =1n, we find estimates

Vi = 0,r, and based on the system of equations (10) we

find estimates éj N 0,r . Itis shown in [12] that

2 2
Z[yj —ZHin'j = m_inZ[yj _ZQJXiIJ :
= =0 0 1=0r i3 =0

2. Estimation with acceptable accuracy of the coef-
ficients for nonlinear members of a UPR (1) using a sin-
gle set of NOPFs. 2.1. Justification of the number of tests
n of the main experiment and the choice of values of
z,,i=1n, of the virtual scalar variable z. With the ap-
propriate selection of the values of the virtual scalar varia-
ble z, expression (10) significantly simplifies the prelimi-
nary analysis and the input data formation for the main
active experiment to obtain, with acceptable accuracy, esti-
mates of the coefficients for nonlinear terms of the UPR
and, as will be shown later, an MPR. Such a requirement is
for r,, <n acompromise between the number of tests n
of the main experiment and the value of variances of the
estimates of the coefficients for nonlinear members of the
virtual UPR (9). As a result of the analysis of the conducted
experiments, the following compromise solution is
proposed for r,, <5: n=10, z,=-50, z,=50,

Az =(z,—z,,)=const. In this case,
Dy, =4.26-10°¢%, Dy, =7.55-10°¢",

D7, =1.4-10%6%, Dy, =1.28-10%¢%,  (11)

that is, with an increase of j by one, Dy, is decreased by
three orders of magnitude, starting from Dy, .

2.2. Justification of conditions for obtaining estimates
for nonlinear members of a UPR (1) with acceptable accu-
racy. In [12], analytical expressions are given for variances

of estimates éj, j=2, for a UPR (1). The expressions

were obtained from the results of estimation by a virtual
UPR (9). This makes it possible to determine, depending on
the values of c, d, a, b (8), the number k of repetitions of

the main experiment (variances of the coefficient estimates

éi are reduced by the factor of k) that, using the three-
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sigma rule, leads to obtaining the estimates éj , j=2,with

acceptable accuracy. Thus, when the repeated experiment
turned out to be practically feasible, the problem has a so-
lution.

Remark 1. The three-sigma rule for an arbitrary ran-
dom variable X is formulated as follows. With a probabil-
ity of 0,89, any realization of X belongs to the segment

[MX -3, MX +30], where o =+/DX .
Remark 2. Due to the roughness of the three-sigma
rule, the actual number of repetitions k is significantly less.
3. A decomposition method of estimating the coef-
ficients of an MPR given by a redundant representation.
3.1. The problem formulation. Let an MPR be given by the
following redundant representation [13]:
Y(y): Z bllh 'jjx(Xil)jl..-(Xil)j‘ +E, (12)
)

e
V(i i )€K Y (o) €K (i

where X:(xi,...,xm)T is a deterministic vector of input

variables,

x €[c.d], ¢>0,i=1m, (13)

where E is a random variable, ME=0, DE =0’ <o,
The values of the coefficients b/;" are unknown (b¢ is a

constant).
Remark 3. The condition ¢, >0, i=1m, corres-

ponds to the most common practical case. All the results
obtained below are trivially extended to arbitrary real val-

ues of the numbers ¢, <d;, i=1m.

3.2. The decomposition method [13] implements the
methodology of reducing the estimation of nonlinear mem-
bers of an MPR (12) to the sequential construction of UPRs
and the solution of the corresponding systems of linear
equations, the variables of which are the estimates for the
nonlinear members of the MPR (12).

The general algorithmic scheme for obtaining esti-
mates for nonlinear members of the MPR (12) consists of
two sub-algorithms [13].

3.2.1. Aggregated modified algorithmic scheme of the
first sub-algorithm [13]. The | -th step (I <L, , where L, is

the total number of nonlinear components in (12), each of
which contains at least one scalar variable raised to a power
greater than or equal to two) is implemented for the next
nonlinear term of the MPR (12), whose coefficient was not
estimated at the previous steps of the first sub-algorithm
and that contains a scalar variable to the maximum power.
Let's denote it as X, In the MPR (12), the scalar variable

Xip

=a; Z+Db; , where a; , b;, are found according to (8) for

d=d; , c=g

is replaced with a virtual scalar variable z: X =

- In the real main experiment, the scalar
variable Xi, takes the value according to (7), (8), and the

other scalar variables in all tests take fixed values. In this
case, the MPR (12) is transformed into a UPR, and the data
of the main virtual experiment are found based on the main
real experiment

F A
(xip’i jyip Xji =X, 2>Vl =1,nj,

namely:

S () ) =T |

1-1
okl )}

Z, > Y —

where ULIil{Jm} is the set of coefficients estimated with
acceptable accuracy at the previous steps of the first sub-
algorithm.

Remark 4. In a similar way, we found the data of a
repeated virtual experiment, in which the number of output
data is y;,i=1kn, and the input data of the main experi-
ment is repeated k times.

Remark 5. The maximum degree of a UPR is j,, .

The number of UPRs constructed at the | -th step can
be more than one if the corresponding coefficient(s) of the
first UPR is (are) expressed linearly by several coefficients
for the nonlinear terms of the MPR (12) not evaluated at the
previous steps of the first sub-algorithm.

The right-hand parts of the obtained nondegenerate
systems of linear equations are the estimates for nonlinear
terms of the UPRs. Their solutions are the estimates of the
corresponding coefficients for nonlinear terms of the MPR
(12).

3.2.2. Aggregated modified scheme of the second
sub-algorithm [13]. The I -th step (I <L,, where L, isthe

number of nonlinear components in (12) of the form b.ii. X
XX, -+, ) is implemented for a nonlinear coefficient b;

that was not evaluated at the previous steps and has a max-
imum value of t,. Each input variable x; , j=1t,, is ex-

pressed linearly by a virtual variable z: X, =&z +bij ac-
cording to (8) for c=c, , d =d, , j =1t . Inthe main ex-
periment, the variables x; , j=1,_t,,vary according to (7),
(8). Other scalar input vajriables take fixed values in each

test. The data of the virtual main experiment are determined
based on the data of the main experiment

(xilyi,...,xiq,i VX = X, je {il,...,itt } =Y, i :l_n) ,
namely:

i > Y — Z Biljﬁi'[jt (Xil,i )j1 ”'(Xi‘,i )j‘ -

Ky
ol )

- Y BATILxei=Ln,

T
Vb.il i(k EUm,l{Gm}

(15)

where K, is the number of steps of the first sub-algorithm;
G,, is a set of coefficients estimated with sufficient accu-
racy at the previous steps of the second sub-algorithm.
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Remark 6. The data for the repeated virtual experi-
ment is found in a similar way.

Remark 7. The maximum degree of a UPR is t, .

3.3. Classes of redundant representations for which
the coefficients for nonlinear terms of an MPR (12) are es-
timated completely or partially with acceptable accuracy.
3.3.1. The redundant representation of (12) satisfies the fol-
lowing three conditions.

1) v(xiI )" , J; 22 canbe included in only one compo-
nent of (12);

2) for any two nonlinear components of (12) with co-

efficients b, b;" the following is true:

{ieeniy ) # (Lol )

3) Oelc,d]i=1m,

(16)

(17)

where m is the number of input variables.
Then the | -th step of the first sub-algorithm of the de-
composition method implemented for the input scalar vari-

able (Xip )j", J, 22, of the nonlinear component of (12)

b (%, )" +++(x,)"
must satisfy the following additional conditions. In all tests
of the active experiment, in each component of (12)
b, )b -, !, b US| (see (14)), one input
scalar variable whose index is not included in the set
fi..-..i, | (18) is equal to zero. In this case, the linear equa-

(18)

tion for estimating b (18) has the form

R t
o i
h---h F_ 5 _
bll,,,i[ (aip ) Hxim =7, =7i, *
m=

m=p

, (19)

E.
Vip

where 7, is the estimate of »; — the coefficient of the

corresponding virtual UPR (depending on its meaning, it is

arealization or a random variable), and ¢&; is the realiza-
P

tion of a random variable with zero mathematical expecta-
tion and the variance equal to D;?jp (if ?jp is considered a
random variable). Let 5(2}:1 j,)> 0 (this is an expertly set
upper bound on the value of |bif%jjif‘| below which the cor-

responding component (18) is excluded from the redundant
representation (12) as not essential). Then the values of

X Vi, i, #p,aresetequal to X =d, >0,m=p, and

thereby the number of repetitions of the main experiment
that guarantees the fulfillment of the inequality

<10* (aip )jp e(Xi] )lidim

m=p

‘gﬂ_ (20)

(with the corresponding probability, using the three-sigma
rule), is the minimum possible.

Remark 8. To obtain the estimate (20), the three-
sigma rule is applied to the random variable ;ﬂ-p , Which

realization is used to find the estimate of the coefficient
b))+ (18).
If

(1)

‘7ip‘<(a1‘p )jp &(Zia jl)gdim ’
e

then the component (18) is excluded from the redundant
representation (12). In the opposite case, we have found an
estimate of the coefficient for the component (18) with an
acceptable accuracy (20).

The | -th step of the second sub-algorithm of the de-
composition method implemented for the component

(22)

t

by [ Tx  t=max,
1=1

must satisfy the following additional conditions. In all tests

of the active experiment in each component of (12) of the

form bilj.lf fi;j( (Xi1 )h ”'(Xi( )j‘ ) bif.' .'i;j‘ € {Ur?il {J m }}U {U:Til {Gm }}

(see (15)), one input scalar variable whose index does not
belong to the set {i,,...,i,} (22) is equal to zero. The linear

equation for estimating b % (22) has the form

t
billl H aiI = 7;t =n* |‘9;[ | ' (23)
I=1

where 7, is the estimate of 7: — the coefficient of the cor-
responding virtual UPR. Let the number of repetitions of
the main experiment be feasible to fulfill, based on the
three-sigma rule, the limitation
t
|g%|310‘1g(t)Hail . (24)
1=1
Then, if
t
7l<e®]1a, .
1=1
then the component (22) is excluded from the redundant
representation (12). In the opposite case, we have found an

estimate of the coefficient b} (22) with an acceptable ac-

curacy (24).

Thus, if all the repeated experiments are feasible, the
decomposition method allows you to find all estimates for
nonlinear terms of the MPR (12) with acceptable accuracy.

Corollary. If for some steps of the first or second sub-
algorithms the required number of repetitions of the main
experiment is unfeasible, then the corresponding coeffi-
cients are not estimated, and conditions (15), (16) allow
such components of the redundant representation (12) to be
excluded from other steps of the first and second sub-algo-
rithms.

Remark 9. Each step of the first and second sub-algo-
rithms estimates only one coefficient of the MPR (12).

3.3.2. The redundant representation (12) is given by
the following four conditions.

(25)
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The first condition: all input variables included in the
redundant representation (12) of the form bl x

X(Xil )h ---(xi[ )’ z::1j| > 2, have a range of acceptable

values |1, di,J' I=1t.

The second condition: if an arbitrary input variable is
included in an arbitrary component of (12) to a power
greater than or equal to two, it is no longer included in any

other component of (12) of the form bl (x. )"1 (x )j‘ ,

to.
D i zt+l

The third condition: all nonlinear components of the

1

t - -
form by [,%, do not have common input variables.

The fourth condition: no input variable included in
any component of (12) that has Jj, =22, is included in any

1.1
(A

component of (12) whose coefficient has the form b

t>2.

Let the number of repetitions of the main experiment
for an arbitrary step of the first and second sub-algorithms
be feasible for obtaining, using the three-sigma rule, the
estimates:

a) for the first sub-algorithm:

‘g,&p ‘ S:I-Oil(aip )jp 5( I J|) ;

b) for the second sub-algorithm: estimate (24).

Then, if during the implementation of an arbitrary step
of the first and second sub-algorithms, the fixed input vari-
ables included in the nonlinear terms of the MPR in expres-
sions (14), (15) are set equal to one, then in expressions
(14), (15) from the values of y; will be subtracted the val-

(26)

ues of ZBifffi;j‘ , which will differ in modulus from the val-
v()

ues of Zbif?_'ji;j‘ , due to estimates (24), (26) and the rough-
v()

ness of the three-sigma rule, by values that can be practi-
cally neglected. Then all estimates for non-linear terms of
the MPR (12) are found with acceptable accuracy.

Remark 10. The number of repetitions of the main ex-

periment can be real if a, > %, i =1,m . This is also true for

the second sub-algorithm for the class 3.3.1.
Remark 11. The number of repetitions of the main ex-
periment at some steps of the first sub-algorithm can be sig-

nificantly smaller, if for this step the estimate for ‘gy.p‘ is of

the form (20). That is, some input variables that are not in-
cluded in (14), (15) can take maximum values.

Remark 12. If we exclude the third and fourth condi-
tions imposed on the redundant representation (12), then
the decomposition method implements only the first sub-
algorithm.

Remark 13. Each step of the decomposition method
for the redundant representation (12) that satisfies the four
or the first two conditions of the class 3.3.2, estimates only
one coefficient of the redundant representation (12).

3.3.3 (generalization of the class 3.3.2). A redundant
representation (12) satisfies the first condition of the class

33.1.¢<d;, ¢, >0, i=1,m, are arbitrary numbers. The
second condition is set based on the results of the imple-

mentation of the following version of the decomposition
method. When performing the | -th (1> 2) step of the first
sub-algorithm for the term b ;" (xi1 )i "'(Xit. )j" , the fixed
values of the input variables in (14), which are not part of
the set {Xil,.-., X, } are set modulo the minimum possible.
When implementing an arbitrary step of the second sub-al-
gorithm, all fixed variables included in (15) take modulo
minimum values.

Let the number of repetitions of the main experiment
for each step of the first and second sub-algorithms be fea-

sible to fulfill constraints (20), (24). Then the second con-
dition imposed on the redundant representation (12) is

v

Bilj{:i'tjl ‘ = 8(2::1 i )'1Op‘ p=2,or

bk \ <&(Xiad)-
It is obvious that for any real values of c; <d,,

i=1m, Mo (the maximum degree of the virtual UPR)
there is such a small enough value of the natural number p

that the replacement of exact values of b " in expressions

iy dy

(14), (15) with their estimates is statistically guaranteed to
have practically no effect on the values of coefficient esti-
mates for nonlinear terms of the MPR (12).

Remark 14. Only one coefficient of the MPR (12) is
estimated at each step of the decomposition algorithm.

3.3.4. The redundant representation of the MPR (12)
is arbitrary, the random variable E =0. Such a case occurs
when E is a measurement error and is neglected having
sufficient measurement accuracy. In this case, the general
algorithmic procedure of the decomposition method accu-
rately finds the values of all coefficients for the nonlinear
terms of (12). The exact values of the coefficients for linear
terms, including the constant, are found by the usual inter-
polation procedure, which consists in solving a system of
linear equations with the number of variables m+1, where
m is the number of input variables.

The advantage of the decomposition method over an
arbitrary interpolation method lies is two-fold: the coeffi-
cients for nonlinear terms of the redundant representation
are estimated using only a single set of NOPFs found with
a given accuracy; the needed-to-solve nondegenerate sys-
tems of linear equations have a significantly smaller dimen-
sion than the number of nonlinear components of (12), and
in most cases the dimension is equal to one.

3.3.5. The redundant representation (12) is arbitrary.
In general case, the detailed formalization of the first and
second sub-algorithms for finding estimates with sufficient
accuracy is inefficient. A visual analysis of the specific re-
dundant representation (12) using the above theoretical re-
sults allows for each specific case to create an efficient se-
quence of steps of an individual algorithm of the decompo-
sition method (which can be a step of the first or second
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sub-algorithm in any order), which leads to estimation with
acceptable accuracy of the maximum number of coeffi-
cients for nonlinear terms of the MPR (12).

4. A modified group method of data handling
(MGMDH). As a result of the implementation of the de-
composition method, we obtained a set {J} of coefficients

for nonlinear terms of the MPR (12) estimated with ac-
ceptable accuracy.

Remark 15. Insignificant coefficients are excluded
from the redundant representation (12) and the set {J}

To obtain the final result, we propose to use the
MGMDH described in [14] to construct a multivariate lin-
ear regression (MLR) given by a redundant representation.
Indeed, the problem of constructing an MPR given by a
redundant representation (12) was reduced to the following:

2

NCSOR

Y (%)= b (x, ) (%) + F(R)+E (@7)

(N

where f(X)=

> B () (%)
bl ela)
The regression problem without any changes (to an
accuracy of the content of the columns of the matrix A in

the expression (ATA)f1 AT of the general formula of the

least squares method) can be solved by the method [14],
since all unknown coefficients are included linearly in ex-
pression (27).

Remark 16. As shown in [14], the use of k repetitions
of the main experiment significantly increases the compu-
tational efficiency of the MGMDH. Namely, the variance
of estimates is reduced by a factor of k, and only the ma-
trices of the main experiment are used in the general for-
mula of the least squares method.

Remark 17. The MGMDH can solve the problem of
constructing an MPR given by a redundant representation
based also on the results of a passive experiment. In this
case, disappear only the advantages of an active experi-
ment: the possibility of using repetitions of the main exper-
iment.

Conclusions. 1. We considered the aggregated algo-
rithmic scheme of the universal synthetic method of con-
structing an MPR given by a redundant representation. The
synthetic method organically combines the decomposition
method of estimating coefficients for nonlinear terms of the
MPR with acceptable accuracy and the modified group
method of data handling.

2. We presented theoretically justified classes of re-
dundant representation of MPR, which allow to estimate
fully or partially coefficients for nonlinear terms of an MPR
with acceptable accuracy.

3. We substantiated the possibility of extending the
modified group method of data handling, created for esti-
mating the coefficients of an MLR given by a redundant
representation, to the case of estimating the coefficients of
an MPR given by a redundant representation.
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OBIPYHTYBAHHSA E®EKTUBHOCTI CHHTETUYHOI'O METOY NOBY/IOBH BAT'ATOBUMIPHOI
MOJIHOMIAJILHOI PET'PECII, 3AJIAHOI HAJUIMIIIKOBUM OINMMCOM

IpoTsiroM OCcTaHHIX POKiB aBTOPH B CBOIX MyOiKaIisgX MapajienbHO PO3BUBAIH J[BA Pi3HUX ITAXOAH JI0 MOOYI0BH 6araTOBUMIpHUX MOJIIHOMiaJIbHHX,
30KpeMa, JIIHIHHUX perpeciii, 3alaHuX Ha UTMIIKOBUM onucoM. [lepimii miaxia JO3BOJISB 3HAXOKEHHS OI[IHOK KOe(illieHTIB PpY HETIHIHHUX YIeHaX
06araToBUMIpHOT OJIIHOMIAIBbHOI perpecii 3BOANTH 10 MOOYI0BHU MOCIIOBHOCTI OJJHOBUMIPHHX TOJIIHOMIAIBHUX PErpeciii Ta po3B’i3aHHs BiIITOBITHUX
HEBHMPOJKEHNX CHCTEM JHIHHNX piBHAHB. Jlpyruii miaxin OyB peanizoBaHuil Ha MPHUKIAJ 6araTOBUMIpHOI JiHIIfHOT perpecii, 3a/1aHoi HaUTUIIKOBHM
OIHCOM, 1 IPUBIB JI0 CTBOPEHHSI METOAY, HA3BAHOTO aBTOpaMH MOAN(IKOBAHHM METOIOM TPYMOBOr0 ypaxyBauHs aprymentiB (MI'VA), Tak siK BiH €
Mo (diKaIlie MMPOKO BIiOMOTO METONy eBpucTH4HOI camoopraHnizauii MI'YA (aBrop MI'YA — akanemik HAH VYkpainu O. T'. IBaxueHko).
Mozndikaris monsrae B ToMy, 10 3aBJaHHsA 6araTOBUMipHOI JIIHIHHOT perpecii HaJINITKOBIM OITMCOM JI03BOJISI€ JUIS TOOYJOBH MHOXKHHH YaCTKOBHX
OINHUCIB, OAMH 3 SKUX MAa€ CTPYKTYpY LIYKaHOI perpecii, BAKOPUCTOBYBATH HE OaraTOpiBHEBUIl CENEKUINHMII anropuT™M, a e)eKTUBHHN aIrOpUTM
po3ouTTS KoediuieHTiB OaraToBUMIpHOI NiHIMHOI perpecii Ha aBa kimacu. Sk i B kmacmyHoMy MI'VA, po3B’S30K 3HaXOAUTHCSA 33 JIOMOMOTOIO
nepeBipodHoi mocnigoBHOCTI JaHuX. Lleifi MeTos Jierko MONMMPIOEThCS HAa BHUITAJOK OaraTOBMMIPHOI ITOTiHOMialbHOI perpecii, Tak sk HeBigoMi
koedinieHTH B OaraTOBUMIpHY IMOJIHOMIalIbHY PErpecito BXOAATH JiHiHHO. KoxeH 3 JBOX MigxoziB Mae cBoi mepeBaru i Hemoiiku. O4eBUIHUM
HACTYITHUM KPOKOM € TIO€JHaHHsI 000X MiIXOiB B ofuH. Lle mpu3Bemno 10 CTBOPEHHSI CHHTETUYHOTO METOAY, SKHil peaji3ye nepeBarn 000X MiIXo.iB,
JaCTKOBO KOMIIGHCYIOUHM iX HeoIiKu. B 1iif poboTi HaBesieHa arperoBaHa arOpHTMIYHA CTPYKTYpPa CHHTETHYHOTO METOJY, TEOPETHYHI BJIaCTHBOCTI
YaCTKOBUX BHIAJIKIB 1, SIK HACTIJJOK, OOIPYHTYBaHHS HOTro €()eKTHBHOCTI B IIIJIOMY.

KurouoBi cj10Ba: 0lHOBUMIpHA TOJIIHOMIiaNbHa perpecis, OaraToBUMipHa MOJiHOMIiallbHA PErpecisi, Ha/JUIMIIKOBUN OMKC, METOJ| HaHMEHIINX
KBaJIpaTiB, IIEPEBIPOYHA TTOCITIIOBHICTh, TIOBTOPHUH EKCIIEPUMEHT.
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