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SPECIFICATION FORMALIZATION OF STATE CHARTS FOR COMPLEX SYSTEM MANAGEMENT 

This article presents a formalization approach for the requirements of object-oriented programs with state machines, using a spacecraft control system 

as a case study. It proposes a state pattern implementation, where each state is represented as a class with clearly defined responsibilities, and the 
transitions between states are controlled by the state objects themselves. Additionally, the application of model checking, theorem proving, and code 

generation techniques are discussed. The effectiveness of the proposed approach in ensuring compliance with the specified requirements is demonstrated, 

while also identifying potential drawbacks and limitations of the approach. The implementation is validated using a range of formal verification 
techniques, including model checking and theorem proving. The article also discusses how the approach can be extended and applied to other complex 

systems. Overall, the valuable insights into the formalization of requirements for object-oriented programs with state machines are provided, offering a 
practical and effective approach for verifying the correctness and completeness of such implementations. The results of this work have important 

implications for the development of safety-critical systems and can potentially improve the quality and reliability of software systems in various domains. 

By using mathematical models and rigorous formal methods, it is possible to detect and eliminate errors early in the development process, leading to 
higher confidence in the correctness of the final product. Future research in this area could explore the use of more advanced techniques, such as model-

driven development and automatic code synthesis, to further streamline the software development process. Additionally, the development of more 

efficient and user-friendly tools could make these techniques more accessible to a wider range of developers and organizations. Altogether, the 
combination of formal methods and software engineering has the potential to revolutionize the way software systems are designed, developed, and 

verified, leading to safer and more reliable software for critical applications. 

Keywords: formal methods, automated programming, state machines, model checking, theorem proving, code generation, object-oriented 
programming, spacecraft control, requirements formalization, verification and validation.

Introduction. Formalization of requirements for 

automated object-oriented programs involves the process 

of translating natural language requirements into a precise 

and unambiguous specification that can be used to guide 

the development of software systems. Object-oriented 

programming (OOP) is a popular approach to software 

development that emphasizes modular design, code reuse, 

and encapsulation of data and functionality within objects. 

To formalize requirements for OOP programs, 

developers use a combination of textual descriptions, 

graphical models, and formal languages such as Unified 

Modeling Language (UML) or Object Constraint Language 

(OCL). UML provides a standard notation for modeling 

software systems, including class diagrams, sequence 

diagrams, and state machine diagrams, which can be used 

to visualize the structure and behavior of software 

components. OCL is a formal language for specifying 

constraints and operations on objects in an OOP system. 

One key benefit of formalizing requirements for OOP 

programs is that it helps to minimize ambiguity and 

inconsistency in the software development process. By 

using a formal language to express requirements, 

developers can identify potential issues or conflicts early in 

the development cycle and ensure that the resulting 

software system meets the desired functional and non-

functional requirements. Formalization of requirements 

also facilitates collaboration among developers, 

stakeholders, and end-users by providing a common 

language for discussing and refining requirements. 

However, formalization of requirements for OOP 

programs can also be a challenging and time-consuming 

process. It requires a deep understanding of both the 

application domain and the OOP paradigm, as well as 

expertise in modeling and formal languages. Additionally, 

there is a risk of over-specifying requirements, which can 

lead to inflexibility and difficulties in adapting to changing 

user needs or system requirements. Thus, it is important to 

strike a balance between formalization and flexibility, and 

to involve all relevant stakeholders in the requirements 

engineering process. 

Specification Formalization of State Charts. 
Specification formalization of state charts involves 

defining the behavior of a system using a graphical notation 

that represents states, transitions, and actions in a structured 

and systematic way [1]. State Charts can be used to model 

complex systems and provide a clear and concise way to 

specify the behavior of a system [2]. Such formalization 

involves creating a precise and unambiguous specification 

that can be used to verify the correctness of the system. 

There are several formal methods that can be used to 

specify and analyze state charts, including model checking, 

theorem proving, and code generation. These methods can 

help to detect errors in the system design and ensure that 

the system meets its requirements. 

Formalization of state charts is particularly important 

for safety-critical systems, where errors in the system 

design could have serious consequences. In these systems, 

formal methods can be used to verify that the system meets 

safety requirements and that it behaves correctly under all 

possible conditions. 

An automated state machine can be used to control the 

behavior of a vehicle during its mission. The state machine 

can be defined using a set of mathematical formulas that 

describe the transition between states and the actions to be 

taken in each state [3]. 

For example, let us consider a spacecraft that is 

designed to perform a series of maneuvers, including 

attitude control, trajectory correction, and payload 

deployment. The state machine for this spacecraft could be 
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defined using a set of differential equations that govern the 

spacecraft's motion and the forces acting on it. 

The state variables in this case could include the 

spacecraft's position, velocity, and attitude, as well as the 

state of its propulsion and control systems. The state 

machine could be defined using a set of mathematical 

equations that specify the transition between states and the 

actions to be taken in each state. 

For instance, the state machine could transition from 

the attitude control state to the payload deployment state 

when certain conditions are met, such as reaching a certain 

altitude or orientation. The mathematical formula for this 

transition could involve calculating the spacecraft's 

position and velocity relative to the payload and adjusting 

the attitude and thruster firing accordingly. 

Let's present a spacecraft that needs to perform an 

attitude control maneuver to align its sensors with a target 

object in space. The spacecraft's attitude can be described 

by its orientation relative to a reference frame, such as the 

Earth-centered inertial (ECI) frame. 

The spacecraft's attitude is described by a quaternion 

 0 1 2 3[ , , , ]q q q q q , (1) 

where 0q  represents the scalar component and 1q , 2q  and 

3q  represent the vector component of the quaternion. The 

goal of the attitude control maneuver is to adjust the 

quaternion to a desired value that corresponds to the desired 

orientation of the spacecraft. The equations could be 

represented using matrix algebra, as follows: 

 w I WIw BU , (2) 

where I – spacecraft's inertia matrix of the spacecraft, 

which is a 33 matrix representing the distribution of mass 

in the spacecraft about its center of mass; 

w – spacecraft's angular velocity vector; 

W – skew-symmetric matrix of w; 

B – spacecraft's control torque matrix, which 

represents the external torque applied to the spacecraft by 

the control system. It is a 33 matrix that is determined by 

the control law used to adjust the spacecraft's attitude; 

U – control input vector, which represents the control 

commands issued by the spacecraft's control system. It is a 

3-dimensional vector that is determined by the control law.  

The dot notation denotes the time derivative of a 

variable, representing its rate of change over time. 

W is a matrix representation of the cross product of w 

with itself, defined as follows: 
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The equation (1) states that the rate of change of the 

spacecraft's angular momentum (Iw) is equal to the external 

torque applied to it (BU), with the skew-symmetric matrix 

of w (i.e., WIw) representing the Coriolis and centrifugal 

forces acting on the spacecraft. The equation is a second-

order ordinary differential equation and can be solved 

numerically to obtain the angular velocity vector w as a 

function of time. 

The external torque is generated by the spacecraft's 

control system, which adjusts the angular velocity of the 

spacecraft in response to the error between the desired and 

actual quaternion values. 

The control torque matrix B and the control input 

vector U can be derived using a control law that minimizes 

the error between the desired and actual quaternion values. 

This control law could be represented using a formula such 

as: 

 
,

,

p d

p dq

  


 

B k Q k W

U k k w
  (4) 

where q is the error quaternion between the desired and 

actual orientations, Q is the skew-symmetric matrix of q, 

and p
k  and d

k are the proportional and derivative gain 

matrices, respectively. 

The control law uses the error quaternion and the 

angular velocity of the spacecraft to calculate the control 

torque and input vectors that adjust the spacecraft's attitude. 

The proportional and derivative gains, p
k  and d

k are 

tuning parameters that determine the response of the 

control system to changes in the error and velocity. 

These equations form the basis of a closed-loop 

control system that adjusts the spacecraft's attitude to the 

desired orientation. The state machine can transition to the 

next state once the desired orientation is achieved, such as 

when the spacecraft's sensors are aligned with the target 

object in space. 

Here is an example Python code listing that 

implements the formulas described earlier: 

 
import numpy as np 

def spacecraft_dynamics(I, w, B, U): 

  """ 

  Computes the derivative of angular 

velocity vector w     

  Args: 

    I: 3x3 inertia matrix 

    w: 3-dim angular velocity vector 

    B: 3x3 control torque matrix 

    U: 3-dim control input vector 

  Returns: 

    3-dimensional array representing the 

time derivative of the angular velocity 

vector w 

  """ 

  w_dot = np.linalg.inv(I).dot(-

np.cross(w, I.dot(w), axisa=0, axisb=0) + 

B.dot(U)) 

  return w_dot 

 

This code defines a function called 

spacecraft_dynamics that takes as input the spacecraft's 

inertia matrix I, angular velocity vector w, control torque 

matrix B, and control input vector U, and computes the time 

derivative of w using the spacecraft dynamics equation. The 

numpy module is used to perform the necessary matrix 

operations, such as matrix inversion and cross products. 
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State Charts in OOP Domain. In the "State" object-

oriented design pattern, each component of the model 

would have its own state object that encapsulates the 

behavior and data specific to that state [4]. Here's how the 

state objects could be defined and described for each 

component of the spacecraft dynamics model: 

1. Angular Velocity State: represents the current 

angular velocity of the spacecraft. It has a single variable, 

w, that stores the current angular velocity vector. The state 

object provides methods to update the angular velocity 

vector and to compute its time derivative using the 

spacecraft dynamics equation. 

2. Inertia State: represents the current inertia matrix 

of the spacecraft. It has a single variable, I, that stores the 

current inertia matrix. The state object provides methods to 

update the inertia matrix. 

3. Control Torque State: represents the current 

control torque applied to the spacecraft. It has a single 

variable, B, which stores the current control torque matrix. 

The state object provides methods to update the control 

torque matrix. 

4. Control Input State: represents the current control 

input commands issued by the spacecraft's control system. 

It has a single variable, U, which stores the current control 

input vector. The state object provides methods to update 

the control input vector. 

Each state object has its own set of methods that allow 

it to interact with other states and components in the 

spacecraft dynamics model. For example, the Angular 

Velocity State might have a method that computes the 

Coriolis and centrifugal forces acting on the spacecraft, 

given the current inertia matrix, and control torque and 

input states. Similarly, the Control Input State might have 

a method that generates control input commands based on 

the current spacecraft state. 

Using the "State" design pattern can help to 

modularize the spacecraft dynamics model, making it 

easier to modify and extend in the future. By encapsulating 

the behavior and data specific to each state in its own 

object, the overall complexity of the model can be reduced, 

and its overall structure made more maintainable [5]. 

In the provided spacecraft example, the states can be 

replaced with each other through a process of state 

transitions. This means that as the spacecraft system runs, 

each state object can update its own internal state and then 

transition to a new state object, which will take over control 

of the system. 

The process of state transition can be controlled by the 

spacecraft control software, which can determine when a 

state object should transition to a new state based on certain 

conditions. For example, the control software may trigger a 

state transition when a certain time has elapsed, when a 

certain event occurs, or when certain sensor readings meet 

certain thresholds [6]. 

To implement state transitions in the spacecraft 

control system, each state class should implement an 

update() method that updates its own internal state, and 

then returns a new instance of a state class that represents 

the next state of the system. The control software can then 

update the current state object with the new state object, 

allowing the system to transition to the new state. 

For example, the AngularVelocityState class might 

implement an update() method that reads sensor data to 

calculate the current angular velocity of the spacecraft, and 

then returns a new instance of a state class that represents 

the next state of the system based on that velocity. This new 

state object might be an instance of the InertiaState class, 

which would update the system's internal state based on the 

current inertia of the spacecraft. 

Overall, by implementing state transitions in this way, 

the spacecraft control software can dynamically switch 

between different state objects to control the spacecraft 

system in a safe and reliable manner. 

Formal Methods of State Chart Analysis. To use 

model checking, theorem proving, and code generation 

with the spacecraft example, we can first start by creating a 

formal specification of the system using a modeling 

language such as Statecharts or Mermaid. This formal 

specification will represent the desired behavior of the 

system, including the states and transitions between them, 

as well as any constraints or requirements that must be 

satisfied [7]. 

Once the formal specification is created, we can use 

model checking and theorem proving techniques to verify 

that the specification is correct and satisfies the desired 

requirements. Model checking involves automatically 

verifying that a model of a system satisfies a given set of 

properties [8]. Theorem proving, on the other hand, 

involves manually proving that a model satisfies a set of 

logical properties using formal logic and mathematical 

reasoning [9]. 

Finally, once we have verified that the formal 

specification is correct, we can use code generation 

techniques to automatically generate code that implements 

the desired behavior of the system. This code can be written 

in a programming language such as C or Python and can be 

used to control the behavior of the spacecraft in accordance 

with the formal specification as illustrated in fig. 1. 

 

Fig. 1. State chart implementation for the spacecraft 

In fig. 1, each state class (AngularVelocityState, 

InertiaState, ControlTorqueState, and ControlInputState) 

contains a value property, update() and getValue() 

methods. The update() method changes the state of the 
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object, while the getValue() method retrieves the current 

value of the object's state. 

The IState interface contains only an update() method, 

which is implemented by each of the state classes. 

This diagram represents the relationships between the 

four state classes and the IState interface that they all 

implement. It also shows the dependencies between the 

states (for example, AngularVelocityState depends on 

ControlInputState) and the state updates (for example, 

InertiaState updates AngularVelocityState). 

Overall, the use of model checking, theorem proving, 

and code generation can help ensure the correctness and 

reliability of the spacecraft's control system and can help 

mitigate the risks associated with space missions [10]. 

First, model checking can be used to verify that the 

state transitions in the spacecraft control software are 

correct and satisfy the system requirements. A model of the 

spacecraft control software can be created, and the model 

checker can explore all system states to check that the 

software behaves as intended under all possible conditions. 

Second, theorem proving can be used to formally 

prove that the state transitions in the spacecraft control 

software are correct and satisfy the system requirements. A 

formal specification of the spacecraft control software can 

be created, and the theorem prover can use mathematical 

logic to prove that the software satisfies the specified 

requirements. 

Finally, code generation can be used to automatically 

generate executable code from the formal specification of 

the spacecraft control software. The formal specification 

can serve as a precise and unambiguous description of the 

software behavior, and the code generator can 

automatically generate code that faithfully implements the 

specified behavior. 

By applying these formal methods to the spacecraft 

control software, we can ensure that the software is correct 

and reliable, and that it satisfies the system requirements. 

This can help to reduce the risk of errors and malfunctions 

in the software. 

Model Checking. To verify that the spacecraft 

control software behaves correctly under all conditions, we 

can model the software using a state machine and use a 

model checker to explore all possible system states and 

check that the software behaves as intended [11]. Here is 

an example of a state machine model in Promela, a 

modeling language for the Spin model checker: 

 
mtype = {IDLE, ACCELERATING, 

DECELERATING}; 

mtype state = IDLE; 

active proctype spacecraft() { 

  do 

  :: state == IDLE -> 

       state = ACCELERATING; 

  :: state == ACCELERATING -> 

       state = DECELERATING; 

  :: state == DECELERATING -> 

       state = IDLE; 

  od 

} 

 

In this model, the spacecraft can be in one of three 

states: IDLE, ACCELERATING, or DECELERATING. 

The spacecraft transitions between states based on certain 

conditions, and the model checker can explore all system 

states to check that the software behaves correctly under all 

conditions. 

Theorem Proving. If we want to prove that the 

spacecraft operates as expected we can use a theorem 

prover to create a formal specification of the software, and 

then use mathematical logic to prove that the software 

satisfies the requirements [12]. Here is an example of a 

specification of the spacecraft software in Z notation: 

 
state ::= IDLE | ACCELERATING | 

DECELERATING 

SPC ::= [state: state] 

InitSPC == state = IDLE 

AccelerateSPC == state = ACCELERATING 

DecelerateSPC == state = DECELERATING 

NextSPC == AccelerateSPC \/ 

DecelerateSPC \/ (state = IDLE /\ state' /= 

IDLE) 

 

This specification defines the initial state, the state 

transitions, and the constraints on the possible state 

transitions. We can use a theorem prover to prove that the 

specification is correct, and that the software satisfies the 

specified requirements. 

Code Generation. When there is a formal 

specification of the spacecraft control software, and we 

need to automatically generate executable code that 

implements the specified behavior, we can use a code 

generator to automatically generate code from the formal 

specification [13]. Here is an example of how we could 

generate C# code from the Z specification above using the 

Zing code generator: 

 
public class SPC { 

  private enum state { IDLE, 

ACCELERATING, DECELERATING }; 

  private state _state = state.IDLE; 

  public void AccelerateSPC() { 

    _state = state.ACCELERATING; 

  } 

  public void DecelerateSPC() { 

    _state = state.DECELERATING; 

  } 

  public void NextSPC() { 

    if (_state == state.IDLE) { 

      _state = state.ACCELERATING; 

    } else if (_state == 

state.ACCELERATING) { 

      _state = state.DECELERATING; 

    } else if (_state == 

state.DECELERATING) { 

      _state = state.IDLE; 

    } 

  } 

} 

 

Contract Compliance. To ensure compliance with 

the contract of the states in the spacecraft example, we can 

use a combination of static code analysis tools and 

automated testing. 



 ISSN 2079-0023 (print), ISSN 2410-2857 (online) 

 Вісник Національного технічного університету «ХПІ». Серія: Системний 

108 аналіз, управління та інформаційні технології, № 1 (9)’2023 

Static code analysis tools can help detect violations of 

coding standards and best practices, as well as potential 

errors and vulnerabilities in the code. These tools can 

analyze the code and flag any violations of the interface 

contract, such as missing or incorrect method signatures or 

non-compliant access modifiers. 

Automated testing can help ensure that the code 

adheres to the interface contract by verifying that each state 

class behaves as expected [14]. Unit tests can be written to 

verify that the update() and getValue() methods of each 

state class perform their expected functions, and that the 

state transitions between the classes are correct. Integration 

tests can also be written to test the system as a whole, and 

to verify that the interactions between the state classes are 

correct. 

By using both static code analysis tools and automated 

testing approach, we can ensure that the code adheres to the 

contract of the states and prevent bugs and errors in the 

system. 

State Chart Implementation Concerns. The state 

pattern provides a way to encapsulate state-specific 

behavior in separate classes and allows for the object's 

behavior to change dynamically as its state changes [15]. 

While the state pattern can be a useful tool for designing 

complex software systems, there are potential drawbacks to 

its implementation: 

1. Increased memory usage: as each state object 

maintains its own internal state and any associated data, this 

can lead to increased memory usage, which may be a 

concern in systems with limited memory resources; 

2. Complex object interactions: as the state objects 

interact with each other to transition between states, the 

code can become more complex and difficult to follow. 

This may make it harder to debug and maintain the code 

over time; 

3. Potential for errors in state transition logic: the 

transition logic between states is implemented in each state 

object's update method, which may lead to errors if not 

implemented correctly. For example, if the state transition 

conditions are not properly defined, the system may get 

stuck in a certain state or transition to the wrong state. 

4. Increased development time: implementing the 

state pattern can be more time-consuming than other 

approaches to managing state, such as using a switch 

statement or if–else blocks, which may lead to longer 

development times and increased costs. 

5. Potential for performance issues: as the state 

objects update and transition between states at run time, this 

may introduce performance overhead and impact the 

system's overall performance. 

Conclusions. The use of formalization techniques 

such as model checking, theorem proving, and code 

generation can greatly enhance the reliability and safety of 

automated systems such as spacecraft control systems. By 

formalizing the system requirements and specifications, 

potential errors and bugs can be caught early in the 

development process, reducing the risk of catastrophic 

failures. 

In the context of the discussed spacecraft example, it 

was demonstrated how the use of state machines and the 

state design pattern can provide a structured approach to 

modeling and implementing complex control systems. 

The use of formal methods for developing reliable and 

correct software systems was explored, specifically in the 

context of state machines.  

The results present a detailed example of using the 

state pattern to model the behavior of a spacecraft and how 

formal verification techniques can help ensure the 

correctness and completeness of the system design. The 

article demonstrates how model checking can be used to 

detect potential errors and violations of the system 

requirements and how theorem proving can be used to 

formally verify the accuracy of the system's behavior. 

Despite the benefits of using formal methods for 

developing state machine-based systems, there are also 

some limitations and challenges that need to be addressed. 

Some of the drawbacks of using this approach, such as the 

complexity of the mathematical models and the high 

computational costs of verification techniques, have been 

discussed. 

Overall, the use of formal methods is a promising 

approach for developing reliable and correct software 

systems based on state machines. By ensuring the 

correctness and robustness of state machine-based systems, 

we can increase their security and overall quality, which is 

especially important for safety-critical systems such as 

those used in aerospace and transportation. 
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ФОРМАЛІЗАЦІЯ СПЕЦИФІКАЦІЇ СХЕМ СТАНУ ДЛЯ УПРАВЛІННЯ СКЛАДНИМИ СИСТЕМАМИ 

У статті представлено підхід формалізації для вимог об’єктно-орієнтованих програм із кінцевими автоматами з використанням як прикладу 

системи керування космічним апаратом. Запропоновано реалізацію шаблону стану, де кожен стан представлено як клас із чітко визначеними 
обов’язками, а переходи між станами контролюються самими об’єктами стану. Крім того, обговорюється застосування методів перевірки 

моделі, доведення теорем і генерації коду. Продемонстровано ефективність запропонованого підходу щодо забезпечення відповідності 

зазначеним вимогам, а також виявлено потенційні недоліки та обмеження підходу. Реалізація перевіряється за допомогою низки формальних 
методів перевірки, включаючи перевірку моделі та доведення теорем. У статті також обговорюється, як цей підхід можна розширити та 

застосувати до інших складних систем. Загалом, надано детальну інформацію щодо формалізації вимог до об’єктно–орієнтованих програм із 

кінцевими автоматами, що пропонує практичний та ефективний підхід для перевірки правильності та повноти таких реалізацій. Результати 
цієї роботи мають важливе значення для розробки критично важливих для безпеки систем і потенційно можуть підвищити якість і надійність 

програмних систем у різних областях. За допомогою математичних моделей і строгих формальних методів можна виявити й усунути помилки 

на ранніх стадіях процесу розробки, що веде до більшої впевненості в правильності кінцевого продукту. Майбутні дослідження в цій галузі 
можуть вивчити використання більш передових методів, таких як розробка на основі моделі та автоматичний синтез коду, для подальшої 

оптимізації процесу розробки програмного забезпечення. Крім того, розробка більш ефективних і зручних інструментів може зробити ці 

методи більш доступними для широкого кола розробників і організацій. Загалом, поєднання формальних методів і розробки програмного 
забезпечення має потенціал революціонізувати спосіб проектування, розробки та перевірки систем програмного забезпечення, створюючи 

безпечніше та надійніше програмне забезпечення для критичних програм. 
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