
 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

104 аналіз, управління та інформаційні технології, № 1 (9)’2023

DOI: 10.20998/2079-0023.2023.01.16

UDC 004.053:004.428.2:519.688

D. M. NIKITIN, Postgraduate Student of the Department of Software Engineering, Kharkiv National University of Radio

Electronics, Kharkiv, Ukraine, e-mail: nikitin27959@gmail.com, ORCID: https://orcid.org/0000-0003-4388-4996

SPECIFICATION FORMALIZATION OF STATE CHARTS FOR COMPLEX SYSTEM MANAGEMENT

This article presents a formalization approach for the requirements of object-oriented programs with state machines, using a spacecraft control system

as a case study. It proposes a state pattern implementation, where each state is represented as a class with clearly defined responsibilities, and the
transitions between states are controlled by the state objects themselves. Additionally, the application of model checking, theorem proving, and code

generation techniques are discussed. The effectiveness of the proposed approach in ensuring compliance with the specified requirements is demonstrated,

while also identifying potential drawbacks and limitations of the approach. The implementation is validated using a range of formal verification
techniques, including model checking and theorem proving. The article also discusses how the approach can be extended and applied to other complex

systems. Overall, the valuable insights into the formalization of requirements for object-oriented programs with state machines are provided, offering a
practical and effective approach for verifying the correctness and completeness of such implementations. The results of this work have important

implications for the development of safety-critical systems and can potentially improve the quality and reliability of software systems in various domains.

By using mathematical models and rigorous formal methods, it is possible to detect and eliminate errors early in the development process, leading to
higher confidence in the correctness of the final product. Future research in this area could explore the use of more advanced techniques, such as model-

driven development and automatic code synthesis, to further streamline the software development process. Additionally, the development of more

efficient and user-friendly tools could make these techniques more accessible to a wider range of developers and organizations. Altogether, the
combination of formal methods and software engineering has the potential to revolutionize the way software systems are designed, developed, and

verified, leading to safer and more reliable software for critical applications.

Keywords: formal methods, automated programming, state machines, model checking, theorem proving, code generation, object-oriented
programming, spacecraft control, requirements formalization, verification and validation.

Introduction. Formalization of requirements for

automated object-oriented programs involves the process

of translating natural language requirements into a precise

and unambiguous specification that can be used to guide

the development of software systems. Object-oriented

programming (OOP) is a popular approach to software

development that emphasizes modular design, code reuse,

and encapsulation of data and functionality within objects.

To formalize requirements for OOP programs,

developers use a combination of textual descriptions,

graphical models, and formal languages such as Unified

Modeling Language (UML) or Object Constraint Language

(OCL). UML provides a standard notation for modeling

software systems, including class diagrams, sequence

diagrams, and state machine diagrams, which can be used

to visualize the structure and behavior of software

components. OCL is a formal language for specifying

constraints and operations on objects in an OOP system.

One key benefit of formalizing requirements for OOP

programs is that it helps to minimize ambiguity and

inconsistency in the software development process. By

using a formal language to express requirements,

developers can identify potential issues or conflicts early in

the development cycle and ensure that the resulting

software system meets the desired functional and non-

functional requirements. Formalization of requirements

also facilitates collaboration among developers,

stakeholders, and end-users by providing a common

language for discussing and refining requirements.

However, formalization of requirements for OOP

programs can also be a challenging and time-consuming

process. It requires a deep understanding of both the

application domain and the OOP paradigm, as well as

expertise in modeling and formal languages. Additionally,

there is a risk of over-specifying requirements, which can

lead to inflexibility and difficulties in adapting to changing

user needs or system requirements. Thus, it is important to

strike a balance between formalization and flexibility, and

to involve all relevant stakeholders in the requirements

engineering process.

Specification Formalization of State Charts.
Specification formalization of state charts involves

defining the behavior of a system using a graphical notation

that represents states, transitions, and actions in a structured

and systematic way [1]. State Charts can be used to model

complex systems and provide a clear and concise way to

specify the behavior of a system [2]. Such formalization

involves creating a precise and unambiguous specification

that can be used to verify the correctness of the system.

There are several formal methods that can be used to

specify and analyze state charts, including model checking,

theorem proving, and code generation. These methods can

help to detect errors in the system design and ensure that

the system meets its requirements.

Formalization of state charts is particularly important

for safety-critical systems, where errors in the system

design could have serious consequences. In these systems,

formal methods can be used to verify that the system meets

safety requirements and that it behaves correctly under all

possible conditions.

An automated state machine can be used to control the

behavior of a vehicle during its mission. The state machine

can be defined using a set of mathematical formulas that

describe the transition between states and the actions to be

taken in each state [3].

For example, let us consider a spacecraft that is

designed to perform a series of maneuvers, including

attitude control, trajectory correction, and payload

deployment. The state machine for this spacecraft could be

Research Article: This article was published by the publishing house of NTU "KhPI" in the collection
"Bulletin of the National Technical University "KhPI" Series: System analysis, management and

information technologies." This article is distributed under a Creative Common Creative Common

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

© Nikitin D. M. 2023

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (9)’2023 105

defined using a set of differential equations that govern the

spacecraft's motion and the forces acting on it.

The state variables in this case could include the

spacecraft's position, velocity, and attitude, as well as the

state of its propulsion and control systems. The state

machine could be defined using a set of mathematical

equations that specify the transition between states and the

actions to be taken in each state.

For instance, the state machine could transition from

the attitude control state to the payload deployment state

when certain conditions are met, such as reaching a certain

altitude or orientation. The mathematical formula for this

transition could involve calculating the spacecraft's

position and velocity relative to the payload and adjusting

the attitude and thruster firing accordingly.

Let's present a spacecraft that needs to perform an

attitude control maneuver to align its sensors with a target

object in space. The spacecraft's attitude can be described

by its orientation relative to a reference frame, such as the

Earth-centered inertial (ECI) frame.

The spacecraft's attitude is described by a quaternion

 0 1 2 3[, , ,]q q q q q , (1)

where 0q represents the scalar component and 1q , 2q and

3q represent the vector component of the quaternion. The

goal of the attitude control maneuver is to adjust the

quaternion to a desired value that corresponds to the desired

orientation of the spacecraft. The equations could be

represented using matrix algebra, as follows:

 w I WIw BU , (2)

where I – spacecraft's inertia matrix of the spacecraft,

which is a 33 matrix representing the distribution of mass

in the spacecraft about its center of mass;

w – spacecraft's angular velocity vector;

W – skew-symmetric matrix of w;

B – spacecraft's control torque matrix, which

represents the external torque applied to the spacecraft by

the control system. It is a 33 matrix that is determined by

the control law used to adjust the spacecraft's attitude;

U – control input vector, which represents the control

commands issued by the spacecraft's control system. It is a

3-dimensional vector that is determined by the control law.

The dot notation denotes the time derivative of a

variable, representing its rate of change over time.

W is a matrix representation of the cross product of w

with itself, defined as follows:

3 2

3 1

2 1

0

0

0

w w

w w

w w

 
 

  
  

W . (3)

The equation (1) states that the rate of change of the

spacecraft's angular momentum (Iw) is equal to the external

torque applied to it (BU), with the skew-symmetric matrix

of w (i.e., WIw) representing the Coriolis and centrifugal

forces acting on the spacecraft. The equation is a second-

order ordinary differential equation and can be solved

numerically to obtain the angular velocity vector w as a

function of time.

The external torque is generated by the spacecraft's

control system, which adjusts the angular velocity of the

spacecraft in response to the error between the desired and

actual quaternion values.

The control torque matrix B and the control input

vector U can be derived using a control law that minimizes

the error between the desired and actual quaternion values.

This control law could be represented using a formula such

as:

,

,

p d

p dq

  


 

B k Q k W

U k k w
 (4)

where q is the error quaternion between the desired and

actual orientations, Q is the skew-symmetric matrix of q,

and p
k and d

k are the proportional and derivative gain

matrices, respectively.

The control law uses the error quaternion and the

angular velocity of the spacecraft to calculate the control

torque and input vectors that adjust the spacecraft's attitude.

The proportional and derivative gains, p
k and d

k are

tuning parameters that determine the response of the

control system to changes in the error and velocity.

These equations form the basis of a closed-loop

control system that adjusts the spacecraft's attitude to the

desired orientation. The state machine can transition to the

next state once the desired orientation is achieved, such as

when the spacecraft's sensors are aligned with the target

object in space.

Here is an example Python code listing that

implements the formulas described earlier:

import numpy as np

def spacecraft_dynamics(I, w, B, U):

 """

 Computes the derivative of angular

velocity vector w

 Args:

 I: 3x3 inertia matrix

 w: 3-dim angular velocity vector

 B: 3x3 control torque matrix

 U: 3-dim control input vector

 Returns:

 3-dimensional array representing the

time derivative of the angular velocity

vector w

 """

 w_dot = np.linalg.inv(I).dot(-

np.cross(w, I.dot(w), axisa=0, axisb=0) +

B.dot(U))

 return w_dot

This code defines a function called

spacecraft_dynamics that takes as input the spacecraft's

inertia matrix I, angular velocity vector w, control torque

matrix B, and control input vector U, and computes the time

derivative of w using the spacecraft dynamics equation. The

numpy module is used to perform the necessary matrix

operations, such as matrix inversion and cross products.

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

106 аналіз, управління та інформаційні технології, № 1 (9)’2023

State Charts in OOP Domain. In the "State" object-

oriented design pattern, each component of the model

would have its own state object that encapsulates the

behavior and data specific to that state [4]. Here's how the

state objects could be defined and described for each

component of the spacecraft dynamics model:

1. Angular Velocity State: represents the current

angular velocity of the spacecraft. It has a single variable,

w, that stores the current angular velocity vector. The state

object provides methods to update the angular velocity

vector and to compute its time derivative using the

spacecraft dynamics equation.

2. Inertia State: represents the current inertia matrix

of the spacecraft. It has a single variable, I, that stores the

current inertia matrix. The state object provides methods to

update the inertia matrix.

3. Control Torque State: represents the current

control torque applied to the spacecraft. It has a single

variable, B, which stores the current control torque matrix.

The state object provides methods to update the control

torque matrix.

4. Control Input State: represents the current control

input commands issued by the spacecraft's control system.

It has a single variable, U, which stores the current control

input vector. The state object provides methods to update

the control input vector.

Each state object has its own set of methods that allow

it to interact with other states and components in the

spacecraft dynamics model. For example, the Angular

Velocity State might have a method that computes the

Coriolis and centrifugal forces acting on the spacecraft,

given the current inertia matrix, and control torque and

input states. Similarly, the Control Input State might have

a method that generates control input commands based on

the current spacecraft state.

Using the "State" design pattern can help to

modularize the spacecraft dynamics model, making it

easier to modify and extend in the future. By encapsulating

the behavior and data specific to each state in its own

object, the overall complexity of the model can be reduced,

and its overall structure made more maintainable [5].

In the provided spacecraft example, the states can be

replaced with each other through a process of state

transitions. This means that as the spacecraft system runs,

each state object can update its own internal state and then

transition to a new state object, which will take over control

of the system.

The process of state transition can be controlled by the

spacecraft control software, which can determine when a

state object should transition to a new state based on certain

conditions. For example, the control software may trigger a

state transition when a certain time has elapsed, when a

certain event occurs, or when certain sensor readings meet

certain thresholds [6].

To implement state transitions in the spacecraft

control system, each state class should implement an

update() method that updates its own internal state, and

then returns a new instance of a state class that represents

the next state of the system. The control software can then

update the current state object with the new state object,

allowing the system to transition to the new state.

For example, the AngularVelocityState class might

implement an update() method that reads sensor data to

calculate the current angular velocity of the spacecraft, and

then returns a new instance of a state class that represents

the next state of the system based on that velocity. This new

state object might be an instance of the InertiaState class,

which would update the system's internal state based on the

current inertia of the spacecraft.

Overall, by implementing state transitions in this way,

the spacecraft control software can dynamically switch

between different state objects to control the spacecraft

system in a safe and reliable manner.

Formal Methods of State Chart Analysis. To use

model checking, theorem proving, and code generation

with the spacecraft example, we can first start by creating a

formal specification of the system using a modeling

language such as Statecharts or Mermaid. This formal

specification will represent the desired behavior of the

system, including the states and transitions between them,

as well as any constraints or requirements that must be

satisfied [7].

Once the formal specification is created, we can use

model checking and theorem proving techniques to verify

that the specification is correct and satisfies the desired

requirements. Model checking involves automatically

verifying that a model of a system satisfies a given set of

properties [8]. Theorem proving, on the other hand,

involves manually proving that a model satisfies a set of

logical properties using formal logic and mathematical

reasoning [9].

Finally, once we have verified that the formal

specification is correct, we can use code generation

techniques to automatically generate code that implements

the desired behavior of the system. This code can be written

in a programming language such as C or Python and can be

used to control the behavior of the spacecraft in accordance

with the formal specification as illustrated in fig. 1.

Fig. 1. State chart implementation for the spacecraft

In fig. 1, each state class (AngularVelocityState,

InertiaState, ControlTorqueState, and ControlInputState)

contains a value property, update() and getValue()

methods. The update() method changes the state of the

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (9)’2023 107

object, while the getValue() method retrieves the current

value of the object's state.

The IState interface contains only an update() method,

which is implemented by each of the state classes.

This diagram represents the relationships between the

four state classes and the IState interface that they all

implement. It also shows the dependencies between the

states (for example, AngularVelocityState depends on

ControlInputState) and the state updates (for example,

InertiaState updates AngularVelocityState).

Overall, the use of model checking, theorem proving,

and code generation can help ensure the correctness and

reliability of the spacecraft's control system and can help

mitigate the risks associated with space missions [10].

First, model checking can be used to verify that the

state transitions in the spacecraft control software are

correct and satisfy the system requirements. A model of the

spacecraft control software can be created, and the model

checker can explore all system states to check that the

software behaves as intended under all possible conditions.

Second, theorem proving can be used to formally

prove that the state transitions in the spacecraft control

software are correct and satisfy the system requirements. A

formal specification of the spacecraft control software can

be created, and the theorem prover can use mathematical

logic to prove that the software satisfies the specified

requirements.

Finally, code generation can be used to automatically

generate executable code from the formal specification of

the spacecraft control software. The formal specification

can serve as a precise and unambiguous description of the

software behavior, and the code generator can

automatically generate code that faithfully implements the

specified behavior.

By applying these formal methods to the spacecraft

control software, we can ensure that the software is correct

and reliable, and that it satisfies the system requirements.

This can help to reduce the risk of errors and malfunctions

in the software.

Model Checking. To verify that the spacecraft

control software behaves correctly under all conditions, we

can model the software using a state machine and use a

model checker to explore all possible system states and

check that the software behaves as intended [11]. Here is

an example of a state machine model in Promela, a

modeling language for the Spin model checker:

mtype = {IDLE, ACCELERATING,

DECELERATING};

mtype state = IDLE;

active proctype spacecraft() {

 do

 :: state == IDLE ->

 state = ACCELERATING;

 :: state == ACCELERATING ->

 state = DECELERATING;

 :: state == DECELERATING ->

 state = IDLE;

 od

}

In this model, the spacecraft can be in one of three

states: IDLE, ACCELERATING, or DECELERATING.

The spacecraft transitions between states based on certain

conditions, and the model checker can explore all system

states to check that the software behaves correctly under all

conditions.

Theorem Proving. If we want to prove that the

spacecraft operates as expected we can use a theorem

prover to create a formal specification of the software, and

then use mathematical logic to prove that the software

satisfies the requirements [12]. Here is an example of a

specification of the spacecraft software in Z notation:

state ::= IDLE | ACCELERATING |

DECELERATING

SPC ::= [state: state]

InitSPC == state = IDLE

AccelerateSPC == state = ACCELERATING

DecelerateSPC == state = DECELERATING

NextSPC == AccelerateSPC \/

DecelerateSPC \/ (state = IDLE /\ state' /=

IDLE)

This specification defines the initial state, the state

transitions, and the constraints on the possible state

transitions. We can use a theorem prover to prove that the

specification is correct, and that the software satisfies the

specified requirements.

Code Generation. When there is a formal

specification of the spacecraft control software, and we

need to automatically generate executable code that

implements the specified behavior, we can use a code

generator to automatically generate code from the formal

specification [13]. Here is an example of how we could

generate C# code from the Z specification above using the

Zing code generator:

public class SPC {

 private enum state { IDLE,

ACCELERATING, DECELERATING };

 private state _state = state.IDLE;

 public void AccelerateSPC() {

 _state = state.ACCELERATING;

 }

 public void DecelerateSPC() {

 _state = state.DECELERATING;

 }

 public void NextSPC() {

 if (_state == state.IDLE) {

 _state = state.ACCELERATING;

 } else if (_state ==

state.ACCELERATING) {

 _state = state.DECELERATING;

 } else if (_state ==

state.DECELERATING) {

 _state = state.IDLE;

 }

 }

}

Contract Compliance. To ensure compliance with

the contract of the states in the spacecraft example, we can

use a combination of static code analysis tools and

automated testing.

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

108 аналіз, управління та інформаційні технології, № 1 (9)’2023

Static code analysis tools can help detect violations of

coding standards and best practices, as well as potential

errors and vulnerabilities in the code. These tools can

analyze the code and flag any violations of the interface

contract, such as missing or incorrect method signatures or

non-compliant access modifiers.

Automated testing can help ensure that the code

adheres to the interface contract by verifying that each state

class behaves as expected [14]. Unit tests can be written to

verify that the update() and getValue() methods of each

state class perform their expected functions, and that the

state transitions between the classes are correct. Integration

tests can also be written to test the system as a whole, and

to verify that the interactions between the state classes are

correct.

By using both static code analysis tools and automated

testing approach, we can ensure that the code adheres to the

contract of the states and prevent bugs and errors in the

system.

State Chart Implementation Concerns. The state

pattern provides a way to encapsulate state-specific

behavior in separate classes and allows for the object's

behavior to change dynamically as its state changes [15].

While the state pattern can be a useful tool for designing

complex software systems, there are potential drawbacks to

its implementation:

1. Increased memory usage: as each state object

maintains its own internal state and any associated data, this

can lead to increased memory usage, which may be a

concern in systems with limited memory resources;

2. Complex object interactions: as the state objects

interact with each other to transition between states, the

code can become more complex and difficult to follow.

This may make it harder to debug and maintain the code

over time;

3. Potential for errors in state transition logic: the

transition logic between states is implemented in each state

object's update method, which may lead to errors if not

implemented correctly. For example, if the state transition

conditions are not properly defined, the system may get

stuck in a certain state or transition to the wrong state.

4. Increased development time: implementing the

state pattern can be more time-consuming than other

approaches to managing state, such as using a switch

statement or if–else blocks, which may lead to longer

development times and increased costs.

5. Potential for performance issues: as the state

objects update and transition between states at run time, this

may introduce performance overhead and impact the

system's overall performance.

Conclusions. The use of formalization techniques

such as model checking, theorem proving, and code

generation can greatly enhance the reliability and safety of

automated systems such as spacecraft control systems. By

formalizing the system requirements and specifications,

potential errors and bugs can be caught early in the

development process, reducing the risk of catastrophic

failures.

In the context of the discussed spacecraft example, it

was demonstrated how the use of state machines and the

state design pattern can provide a structured approach to

modeling and implementing complex control systems.

The use of formal methods for developing reliable and

correct software systems was explored, specifically in the

context of state machines.

The results present a detailed example of using the

state pattern to model the behavior of a spacecraft and how

formal verification techniques can help ensure the

correctness and completeness of the system design. The

article demonstrates how model checking can be used to

detect potential errors and violations of the system

requirements and how theorem proving can be used to

formally verify the accuracy of the system's behavior.

Despite the benefits of using formal methods for

developing state machine-based systems, there are also

some limitations and challenges that need to be addressed.

Some of the drawbacks of using this approach, such as the

complexity of the mathematical models and the high

computational costs of verification techniques, have been

discussed.

Overall, the use of formal methods is a promising

approach for developing reliable and correct software

systems based on state machines. By ensuring the

correctness and robustness of state machine-based systems,

we can increase their security and overall quality, which is

especially important for safety-critical systems such as

those used in aerospace and transportation.

References

1. Lodi S., Mesiti M., Orsi G. A state machine for relational databases.

In Proceedings of the «34th IEEE/ACM International Conference on

Automated Software Engineering». 2019. P. 114–125.
2. Liggesmeyer P., Seib E., Prehofer C. A state machine approach for

modeling and testing autonomous driving functions. In Proceedings

of the «2021 IEEE Intelligent Vehicles Symposium». 2021. P. 2854–
2859.

3. Giannakopoulou D., Pasareanu C., Rungta N. An integrated approach

to analyzing and testing stateful systems. In Proceedings of the «32nd
IEEE/ACM International Conference on Automated Software

Engineering». 2017. P. 943–948.

4. Saenz J. C., Perez–Palacin D., d'Amorim M. Behavior–driven
development of stateful systems: a case study of a medical

information system. In Proceedings of the «2019 IEEE/ACM

International Conference on Automated Software Engineering».
2019. P. 1011–1016.

5. Azevedo G., Ribeiro M., Medeiros F. Model–based test generation
for stateful systems using an FSM language. In Proceedings of the

«2018 IEEE International Conference on Software Testing,

Verification and Validation». 2018. P. 237–247.

6. Daumke P., Laroche L., Graubner S. A state machine–based approach

for the dynamic adaptation of software systems. In Proceedings of the

«14th International Conference on Software Technologies». 2019. P.
466–475.

7. Lo D., Liu Y., Xie X., Wong S. Symbolic execution of stateful

programs with abstract state machines. In Proceedings of the «28th
ACM SIGSOFT International Symposium on Software Testing and

Analysis». 2019. P. 285–296.

8. Li Y., Li Y., Dong J. S. Formally verifying the state machine–based
software through the UPPAAL model checker. Journal of Intelligent

& Fuzzy Systems 36(4). 2019. P. 3657–3668.

9. Chen Q., Liu S., Wang S., Sun J. Efficient generation of state machine
models from Java source code for vulnerability detection. Journal of

Systems and Software, 177. 2021. 237 p.

10. Jovanovic J., Rackovic M., Milicic M. Analysis of the role of state
machine diagrams in software development: An exploratory study.

Information and Software Technology, 103. 2019. 132–146 p.

11. Chen X., Chen J., Wang J. Research on Formalization Method of

State Transition Rules for Automated Vehicle Systems. IEEE Access,

8. 2020. P. 134116–134127.

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (9)’2023 109

12. Eltoweissy M., Alnemr R., Seliem M., Ali M. Formal specification

and verification of state–based software systems: A systematic

literature review. Journal of Systems and Software, 163. 2021. P.
1105–1128.

13. Gaber A., Elragal A. Formalizing requirements for automated driving

systems: A systematic literature review. Safety Science, 142. 2021. P.
538–549.

14. Gu C., Li X., Liu Y. A Formal Method for Analyzing and Validating

the Functionality of Statecharts. IEEE Access, 7. 2021. P. 135–154.
15. Taha I., Ahmed E., Al–Mamory S., Karama S. Formalizing

Requirements for State Machine Models of Safety–Critical Systems:

A Review. IEEE Access, 9. 2021. P. 315–333.

References (transliterated)

1. Lodi S., Mesiti M., Orsi G. A state machine for relational databases.

In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering. 2019. P. 114–125.

2. Liggesmeyer P., Seib E., Prehofer C. A state machine approach for

modeling and testing autonomous driving functions. In Proceedings

of the 2021 IEEE Intelligent Vehicles Symposium. 2021. P. 2854–

2859.

3. Giannakopoulou D., Pasareanu C., Rungta N. An integrated approach
to analyzing and testing stateful systems. In Proceedings of the 32nd

IEEE/ACM International Conference on Automated Software

Engineering. 2017. P. 943–948.
4. Saenz J. C., Perez–Palacin D., d'Amorim M. Behavior–driven

development of stateful systems: a case study of a medical
information system. In Proceedings of the 2019 IEEE/ACM

International Conference on Automated Software Engineering. 2019.

P. 1011–1016.
5. Azevedo G., Ribeiro M., Medeiros F. Model–based test generation

for stateful systems using an FSM language. In Proceedings of the

2018 IEEE International Conference on Software Testing,
Verification and Validation. 2018. P. 237–247.

6. Daumke P., Laroche L., Graubner S. A state machine–based approach

for the dynamic adaptation of software systems. In Proceedings of the

14th International Conference on Software Technologies. 2019. P.
466–475.

7. Lo D., Liu Y., Xie X., Wong S. Symbolic execution of stateful

programs with abstract state machines. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and

Analysis. 2019. P. 285–296.

8. Li Y., Li Y., Dong J. S. Formally verifying the state machine–based
software through the UPPAAL model checker. Journal of Intelligent

& Fuzzy Systems 36(4). 2019. P. 3657–3668.

9. Chen Q., Liu S., Wang S., Sun J. Efficient generation of state machine
models from Java source code for vulnerability detection. Journal of

Systems and Software, 177. 2021. 237 p.

10. Jovanovic J., Rackovic M., Milicic M. Analysis of the role of state
machine diagrams in software development: An exploratory study.

Information and Software Technology, 103. 2019. 132–146 p.

11. Chen X., Chen J., Wang J. Research on Formalization Method of
State Transition Rules for Automated Vehicle Systems. IEEE Access,

8. 2020. P. 134116–134127.

12. Eltoweissy M., Alnemr R., Seliem M., Ali M. Formal specification
and verification of state–based software systems: A systematic

literature review. Journal of Systems and Software, 163. 2021. P.

1105–1128.
13. Gaber A., Elragal A. Formalizing requirements for automated driving

systems: A systematic literature review. Safety Science, 142. 2021. P.
538–549.

14. Gu C., Li X., Liu Y. A Formal Method for Analyzing and Validating

the Functionality of Statecharts. IEEE Access, 7. 2021. P. 135–154.
15. Taha I., Ahmed E., Al–Mamory S., Karama S. Formalizing

Requirements for State Machine Models of Safety–Critical Systems:

A Review. IEEE Access, 9. 2021. P. 315–333.

Received 12.05.2023

УДК 004.053:004.428.2:519.688

Д. М. НІКІТІН, аспірант кафедри програмної інженерії, Харківський національний університет радіоелектроніки

м. Харків, Україна, e-mail: nikitin27959@gmail.com, ORCID: https://orcid.org/0000-0003-4388-4996

ФОРМАЛІЗАЦІЯ СПЕЦИФІКАЦІЇ СХЕМ СТАНУ ДЛЯ УПРАВЛІННЯ СКЛАДНИМИ СИСТЕМАМИ

У статті представлено підхід формалізації для вимог об’єктно-орієнтованих програм із кінцевими автоматами з використанням як прикладу

системи керування космічним апаратом. Запропоновано реалізацію шаблону стану, де кожен стан представлено як клас із чітко визначеними
обов’язками, а переходи між станами контролюються самими об’єктами стану. Крім того, обговорюється застосування методів перевірки

моделі, доведення теорем і генерації коду. Продемонстровано ефективність запропонованого підходу щодо забезпечення відповідності

зазначеним вимогам, а також виявлено потенційні недоліки та обмеження підходу. Реалізація перевіряється за допомогою низки формальних
методів перевірки, включаючи перевірку моделі та доведення теорем. У статті також обговорюється, як цей підхід можна розширити та

застосувати до інших складних систем. Загалом, надано детальну інформацію щодо формалізації вимог до об’єктно–орієнтованих програм із

кінцевими автоматами, що пропонує практичний та ефективний підхід для перевірки правильності та повноти таких реалізацій. Результати
цієї роботи мають важливе значення для розробки критично важливих для безпеки систем і потенційно можуть підвищити якість і надійність

програмних систем у різних областях. За допомогою математичних моделей і строгих формальних методів можна виявити й усунути помилки

на ранніх стадіях процесу розробки, що веде до більшої впевненості в правильності кінцевого продукту. Майбутні дослідження в цій галузі
можуть вивчити використання більш передових методів, таких як розробка на основі моделі та автоматичний синтез коду, для подальшої

оптимізації процесу розробки програмного забезпечення. Крім того, розробка більш ефективних і зручних інструментів може зробити ці

методи більш доступними для широкого кола розробників і організацій. Загалом, поєднання формальних методів і розробки програмного
забезпечення має потенціал революціонізувати спосіб проектування, розробки та перевірки систем програмного забезпечення, створюючи

безпечніше та надійніше програмне забезпечення для критичних програм.

Ключові слова: формальні методи, автоматизоване програмування, кінцеві автомати, перевірка моделі, доведення теорем, генерація
коду, об’єктно–орієнтоване програмування, управління космічним кораблем, формалізація вимог, верифікація та валідація.

Повне ім’я автора / Author's full name

Нікітін Дмитро Михайлович, Nikitin Dmytro Mykhailovych

