ISSN 2079-0023 (print), ISSN 2410-2857 (online)

DOI: 10.20998/2079-0023.2023.01.16
UDC 004.053:004.428.2:519.688

D. M. NIKITIN, Postgraduate Student of the Department of Software Engineering, Kharkiv National University of Radio
Electronics, Kharkiv, Ukraine, e-mail: nikitin27959@gmail.com, ORCID: https://orcid.org/0000-0003-4388-4996

SPECIFICATION FORMALIZATION OF STATE CHARTS FOR COMPLEX SYSTEM MANAGEMENT

This article presents a formalization approach for the requirements of object-oriented programs with state machines, using a spacecraft control system
as a case study. It proposes a state pattern implementation, where each state is represented as a class with clearly defined responsibilities, and the
transitions between states are controlled by the state objects themselves. Additionally, the application of model checking, theorem proving, and code
generation techniques are discussed. The effectiveness of the proposed approach in ensuring compliance with the specified requirements is demonstrated,
while also identifying potential drawbacks and limitations of the approach. The implementation is validated using a range of formal verification
techniques, including model checking and theorem proving. The article also discusses how the approach can be extended and applied to other complex
systems. Overall, the valuable insights into the formalization of requirements for object-oriented programs with state machines are provided, offering a
practical and effective approach for verifying the correctness and completeness of such implementations. The results of this work have important
implications for the development of safety-critical systems and can potentially improve the quality and reliability of software systems in various domains.
By using mathematical models and rigorous formal methods, it is possible to detect and eliminate errors early in the development process, leading to
higher confidence in the correctness of the final product. Future research in this area could explore the use of more advanced techniques, such as model-
driven development and automatic code synthesis, to further streamline the software development process. Additionally, the development of more
efficient and user-friendly tools could make these techniques more accessible to a wider range of developers and organizations. Altogether, the
combination of formal methods and software engineering has the potential to revolutionize the way software systems are designed, developed, and
verified, leading to safer and more reliable software for critical applications.

Keywords: formal methods, automated programming, state machines, model checking, theorem proving, code generation, object-oriented
programming, spacecraft control, requirements formalization, verification and validation.

Introduction. Formalization of requirements for
automated object-oriented programs involves the process
of translating natural language requirements into a precise
and unambiguous specification that can be used to guide
the development of software systems. Object-oriented
programming (OOP) is a popular approach to software
development that emphasizes modular design, code reuse,
and encapsulation of data and functionality within objects.

To formalize requirements for OOP programs,
developers use a combination of textual descriptions,
graphical models, and formal languages such as Unified
Modeling Language (UML) or Object Constraint Language
(OCL). UML provides a standard notation for modeling
software systems, including class diagrams, sequence
diagrams, and state machine diagrams, which can be used
to visualize the structure and behavior of software
components. OCL is a formal language for specifying
constraints and operations on objects in an OOP system.

One key benefit of formalizing requirements for OOP
programs is that it helps to minimize ambiguity and
inconsistency in the software development process. By
using a formal language to express requirements,
developers can identify potential issues or conflicts early in
the development cycle and ensure that the resulting
software system meets the desired functional and non-
functional requirements. Formalization of requirements
also facilitates collaboration among developers,
stakeholders, and end-users by providing a common
language for discussing and refining requirements.

However, formalization of requirements for OOP
programs can also be a challenging and time-consuming
process. It requires a deep understanding of both the
application domain and the OOP paradigm, as well as
expertise in modeling and formal languages. Additionally,
there is a risk of over-specifying requirements, which can

lead to inflexibility and difficulties in adapting to changing
user needs or system requirements. Thus, it is important to
strike a balance between formalization and flexibility, and
to involve all relevant stakeholders in the requirements
engineering process.

Specification Formalization of State Charts.
Specification formalization of state charts involves
defining the behavior of a system using a graphical notation
that represents states, transitions, and actions in a structured
and systematic way [1]. State Charts can be used to model
complex systems and provide a clear and concise way to
specify the behavior of a system [2]. Such formalization
involves creating a precise and unambiguous specification
that can be used to verify the correctness of the system.

There are several formal methods that can be used to
specify and analyze state charts, including model checking,
theorem proving, and code generation. These methods can
help to detect errors in the system design and ensure that
the system meets its requirements.

Formalization of state charts is particularly important
for safety-critical systems, where errors in the system
design could have serious consequences. In these systems,
formal methods can be used to verify that the system meets
safety requirements and that it behaves correctly under all
possible conditions.

An automated state machine can be used to control the
behavior of a vehicle during its mission. The state machine
can be defined using a set of mathematical formulas that
describe the transition between states and the actions to be
taken in each state [3].

For example, let us consider a spacecraft that is
designed to perform a series of maneuvers, including
attitude control, trajectory correction, and payload
deployment. The state machine for this spacecraft could be

© Nikitin D. M. 2023

Research Article: This article was published by the publishing house of NTU **KhPI"" in the collection

® "Bulletin of the National Technical University "KhPI" Series: System analysis, management and
information technologies.” This article is distributed under a Creative Common Creative Common QPEN ACCESS

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

Bicnux Hayionanvnozo mexuniynoezo ynisepcumemy «XI1Iy». Cepin: Cucmemmnuii

104

ananis, ynpasninus ma ingpopmayiini mexnonozii, Ne 1 (9) 2023

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

defined using a set of differential equations that govern the
spacecraft's motion and the forces acting on it.

The state variables in this case could include the
spacecraft's position, velocity, and attitude, as well as the
state of its propulsion and control systems. The state
machine could be defined using a set of mathematical
equations that specify the transition between states and the
actions to be taken in each state.

For instance, the state machine could transition from
the attitude control state to the payload deployment state
when certain conditions are met, such as reaching a certain
altitude or orientation. The mathematical formula for this
transition could involve calculating the spacecraft's
position and velocity relative to the payload and adjusting
the attitude and thruster firing accordingly.

Let's present a spacecraft that needs to perform an
attitude control maneuver to align its sensors with a target
object in space. The spacecraft's attitude can be described
by its orientation relative to a reference frame, such as the
Earth-centered inertial (ECI) frame.

The spacecraft's attitude is described by a quaternion

q ::[qO'ql’qZ'q3]7 1)

where g, represents the scalar component and ¢,, g, and
0, represent the vector component of the quaternion. The

goal of the attitude control maneuver is to adjust the
quaternion to a desired value that corresponds to the desired
orientation of the spacecraft. The equations could be
represented using matrix algebra, as follows:

IW+WIlw = BU ,)

where | — spacecraft's inertia matrix of the spacecraft,
which is a 3x3 matrix representing the distribution of mass
in the spacecraft about its center of mass;

w — spacecraft's angular velocity vector;

W — skew-symmetric matrix of w;

B - spacecraft's control torque matrix, which
represents the external torque applied to the spacecraft by
the control system. It is a 3x3 matrix that is determined by
the control law used to adjust the spacecraft's attitude;

U — control input vector, which represents the control
commands issued by the spacecraft's control system. It is a
3-dimensional vector that is determined by the control law.

The dot notation denotes the time derivative of a
variable, representing its rate of change over time.

W is a matrix representation of the cross product of w
with itself, defined as follows:

0 -w, w,
W | 3)

The equation (1) states that the rate of change of the
spacecraft's angular momentum (Iw) is equal to the external
torque applied to it (BU), with the skew-symmetric matrix
of w (i.e., WIw) representing the Coriolis and centrifugal
forces acting on the spacecraft. The equation is a second-
order ordinary differential equation and can be solved

numerically to obtain the angular velocity vector w as a
function of time.

The external torque is generated by the spacecraft's
control system, which adjusts the angular velocity of the
spacecraft in response to the error between the desired and
actual quaternion values.

The control torque matrix B and the control input
vector U can be derived using a control law that minimizes
the error between the desired and actual quaternion values.
This control law could be represented using a formula such
as:

B=-k Q-k,W,
{ QK (@)

U=k, q+k,w,

where ¢ is the error quaternion between the desired and
actual orientations, Q is the skew-symmetric matrix of q,

and k, and K, are the proportional and derivative gain

matrices, respectively.

The control law uses the error quaternion and the
angular velocity of the spacecraft to calculate the control
torque and input vectors that adjust the spacecraft’s attitude.

The proportional and derivative gains, k, and Kk, are

tuning parameters that determine the response of the
control system to changes in the error and velocity.

These equations form the basis of a closed-loop
control system that adjusts the spacecraft's attitude to the
desired orientation. The state machine can transition to the
next state once the desired orientation is achieved, such as
when the spacecraft's sensors are aligned with the target
object in space.

Here is an example Python code listing that
implements the formulas described earlier:

import numpy as np
def spacecraft dynamics(I, w, B, U):

Computes the derivative of angular
velocity vector w
Args:

I: 3x3 inertia matrix

w: 3-dim angular velocity vector
B: 3x3 control torque matrix

U: 3-dim control input vector

Returns:
3-dimensional array representing the
time derivative of the angular velocity

vector w

w_dot = np.linalg.inv (I).dot (-
np.cross(w, I.dot(w), axisa=0, axisb=0) +
B.dot (U))
return w_dot
This code defines a function called

spacecraft_dynamics that takes as input the spacecraft's
inertia matrix 1, angular velocity vector w, control torque
matrix B, and control input vector U, and computes the time
derivative of w using the spacecraft dynamics equation. The
numpy module is used to perform the necessary matrix
operations, such as matrix inversion and cross products.

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIy. Cepis: Cucmemnuii
ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 1 (9) 2023 105

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

State Charts in OOP Domain. In the "State" object-
oriented design pattern, each component of the model
would have its own state object that encapsulates the
behavior and data specific to that state [4]. Here's how the
state objects could be defined and described for each
component of the spacecraft dynamics model:

1. Angular Velocity State: represents the current
angular velocity of the spacecraft. It has a single variable,
w, that stores the current angular velocity vector. The state
object provides methods to update the angular velocity
vector and to compute its time derivative using the
spacecraft dynamics equation.

2. Inertia State: represents the current inertia matrix
of the spacecraft. It has a single variable, 1, that stores the
current inertia matrix. The state object provides methods to
update the inertia matrix.

3. Control Torque State: represents the current
control torque applied to the spacecraft. It has a single
variable, B, which stores the current control torque matrix.
The state object provides methods to update the control
torque matrix.

4. Control Input State: represents the current control
input commands issued by the spacecraft's control system.
It has a single variable, U, which stores the current control
input vector. The state object provides methods to update
the control input vector.

Each state object has its own set of methods that allow
it to interact with other states and components in the
spacecraft dynamics model. For example, the Angular
Velocity State might have a method that computes the
Coriolis and centrifugal forces acting on the spacecraft,
given the current inertia matrix, and control torque and
input states. Similarly, the Control Input State might have
a method that generates control input commands based on
the current spacecraft state.

Using the "State" design pattern can help to
modularize the spacecraft dynamics model, making it
easier to modify and extend in the future. By encapsulating
the behavior and data specific to each state in its own
object, the overall complexity of the model can be reduced,
and its overall structure made more maintainable [5].

In the provided spacecraft example, the states can be
replaced with each other through a process of state
transitions. This means that as the spacecraft system runs,
each state object can update its own internal state and then
transition to a new state object, which will take over control
of the system.

The process of state transition can be controlled by the
spacecraft control software, which can determine when a
state object should transition to a new state based on certain
conditions. For example, the control software may trigger a
state transition when a certain time has elapsed, when a
certain event occurs, or when certain sensor readings meet
certain thresholds [6].

To implement state transitions in the spacecraft
control system, each state class should implement an
update() method that updates its own internal state, and
then returns a new instance of a state class that represents
the next state of the system. The control software can then
update the current state object with the new state object,
allowing the system to transition to the new state.

For example, the AngularVelocityState class might
implement an update() method that reads sensor data to
calculate the current angular velocity of the spacecraft, and
then returns a new instance of a state class that represents
the next state of the system based on that velocity. This new
state object might be an instance of the InertiaState class,
which would update the system's internal state based on the
current inertia of the spacecraft.

Overall, by implementing state transitions in this way,
the spacecraft control software can dynamically switch
between different state objects to control the spacecraft
system in a safe and reliable manner.

Formal Methods of State Chart Analysis. To use
model checking, theorem proving, and code generation
with the spacecraft example, we can first start by creating a
formal specification of the system using a modeling
language such as Statecharts or Mermaid. This formal
specification will represent the desired behavior of the
system, including the states and transitions between them,
as well as any constraints or requirements that must be
satisfied [7].

Once the formal specification is created, we can use
model checking and theorem proving techniques to verify
that the specification is correct and satisfies the desired
requirements. Model checking involves automatically
verifying that a model of a system satisfies a given set of
properties [8]. Theorem proving, on the other hand,
involves manually proving that a model satisfies a set of
logical properties using formal logic and mathematical
reasoning [9].

Finally, once we have verified that the formal
specification is correct, we can use code generation
techniques to automatically generate code that implements
the desired behavior of the system. This code can be written
in a programming language such as C or Python and can be
used to control the behavior of the spacecraft in accordance
with the formal specification as illustrated in fig. 1.

AngularVelochtyState ControlTorquesState

value: doubie + value: doubie

~updater() ; voxd supdatey) : void
~getvalue|) @ doudle sgetValue() : double
A r
wpdates dopends or wpdates depends an copends on updates
. " - *
inertiattate ControlinputState
« yalue: double + value: double
implewents nplermentsy
supdated) | vord updated) © vold
spetValuwe() ; double spetVatue) ; doubls

mplemonts implemonts

IState

supdatey) : vold

Fig. 1. State chart implementation for the spacecraft

In fig. 1, each state class (AngularVelocityState,
InertiaState, ControlTorqueState, and ControllnputState)
contains a value property, update() and getValue()
methods. The update() method changes the state of the

Bicnux Hayionanvnozo mexuniynoezo ynisepcumemy «XI1Iy». Cepin: Cucmemmnuii
106 ananis, ynpasninus ma ingpopmayiini mexnonozii, Ne 1 (9) 2023

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

object, while the getValue() method retrieves the current
value of the object's state.

The IState interface contains only an update() method,
which is implemented by each of the state classes.

This diagram represents the relationships between the
four state classes and the IState interface that they all
implement. It also shows the dependencies between the
states (for example, AngularVelocityState depends on
ControllnputState) and the state updates (for example,
InertiaState updates AngularVelocityState).

Overall, the use of model checking, theorem proving,
and code generation can help ensure the correctness and
reliability of the spacecraft's control system and can help
mitigate the risks associated with space missions [10].

First, model checking can be used to verify that the
state transitions in the spacecraft control software are
correct and satisfy the system requirements. A model of the
spacecraft control software can be created, and the model
checker can explore all system states to check that the
software behaves as intended under all possible conditions.

Second, theorem proving can be used to formally
prove that the state transitions in the spacecraft control
software are correct and satisfy the system requirements. A
formal specification of the spacecraft control software can
be created, and the theorem prover can use mathematical
logic to prove that the software satisfies the specified
requirements.

Finally, code generation can be used to automatically
generate executable code from the formal specification of
the spacecraft control software. The formal specification
can serve as a precise and unambiguous description of the
software behavior, and the code generator can
automatically generate code that faithfully implements the
specified behavior.

By applying these formal methods to the spacecraft
control software, we can ensure that the software is correct
and reliable, and that it satisfies the system requirements.
This can help to reduce the risk of errors and malfunctions
in the software.

Model Checking. To verify that the spacecraft
control software behaves correctly under all conditions, we
can model the software using a state machine and use a
model checker to explore all possible system states and
check that the software behaves as intended [11]. Here is
an example of a state machine model in Promela, a
modeling language for the Spin model checker:

mtype = {IDLE, ACCELERATING,
DECELERATING} ;
mtype state = IDLE;
active proctype spacecraft() {
do
state == IDLE ->
state = ACCELERATING;
state == ACCELERATING ->
state = DECELERATING;
state == DECELERATING ->
state = IDLE;
od

In this model, the spacecraft can be in one of three
states: IDLE, ACCELERATING, or DECELERATING.
The spacecraft transitions between states based on certain
conditions, and the model checker can explore all system
states to check that the software behaves correctly under all
conditions.

Theorem Proving. If we want to prove that the
spacecraft operates as expected we can use a theorem
prover to create a formal specification of the software, and
then use mathematical logic to prove that the software
satisfies the requirements [12]. Here is an example of a
specification of the spacecraft software in Z notation:

state HEES IDLE | ACCELERATING
DECELERATING

SPC ::= [state: state]

InitSPC == state = IDLE

AccelerateSPC == state = ACCELERATING

DecelerateSPC == state = DECELERATING

NextSPC == AccelerateSPC \/
DecelerateSPC \/ (state = IDLE /\ state' /=
IDLE)

This specification defines the initial state, the state
transitions, and the constraints on the possible state
transitions. We can use a theorem prover to prove that the
specification is correct, and that the software satisfies the
specified requirements.

Code Generation. When there is a formal
specification of the spacecraft control software, and we
need to automatically generate executable code that
implements the specified behavior, we can use a code
generator to automatically generate code from the formal
specification [13]. Here is an example of how we could
generate C# code from the Z specification above using the
Zing code generator:

public class SPC {
private enum state {
ACCELERATING, DECELERATING };

private state state = state.IDLE;

public void AccelerateSPC() {
_state = state.ACCELERATING;

}

public void DecelerateSPC() {
_state = state.DECELERATING;

}

public void NextSPC() {

IDLE,

if (_state == state.IDLE) {
_state = state.ACCELERATING;
} else if (_state ==

state.ACCELERATING) {
_state = state.DECELERATING;
} else if (_state ==
state.DECELERATING) {
_state = state.IDLE;
}
}
}

Contract Compliance. To ensure compliance with
the contract of the states in the spacecraft example, we can
use a combination of static code analysis tools and
automated testing.

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIy. Cepis: Cucmemnuii

ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 1 (9) 2023

107

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Static code analysis tools can help detect violations of
coding standards and best practices, as well as potential
errors and vulnerabilities in the code. These tools can
analyze the code and flag any violations of the interface
contract, such as missing or incorrect method signatures or
non-compliant access modifiers.

Automated testing can help ensure that the code
adheres to the interface contract by verifying that each state
class behaves as expected [14]. Unit tests can be written to
verify that the update() and getValue() methods of each
state class perform their expected functions, and that the
state transitions between the classes are correct. Integration
tests can also be written to test the system as a whole, and
to verify that the interactions between the state classes are
correct.

By using both static code analysis tools and automated
testing approach, we can ensure that the code adheres to the
contract of the states and prevent bugs and errors in the
system.

State Chart Implementation Concerns. The state
pattern provides a way to encapsulate state-specific
behavior in separate classes and allows for the object's
behavior to change dynamically as its state changes [15].
While the state pattern can be a useful tool for designing
complex software systems, there are potential drawbacks to
its implementation:

1. Increased memory usage: as each state object
maintains its own internal state and any associated data, this
can lead to increased memory usage, which may be a
concern in systems with limited memory resources;

2. Complex object interactions: as the state objects
interact with each other to transition between states, the
code can become more complex and difficult to follow.
This may make it harder to debug and maintain the code
over time;

3. Potential for errors in state transition logic: the
transition logic between states is implemented in each state
object's update method, which may lead to errors if not
implemented correctly. For example, if the state transition
conditions are not properly defined, the system may get
stuck in a certain state or transition to the wrong state.

4. Increased development time: implementing the
state pattern can be more time-consuming than other
approaches to managing state, such as using a switch
statement or if-else blocks, which may lead to longer
development times and increased costs.

5. Potential for performance issues: as the state
objects update and transition between states at run time, this
may introduce performance overhead and impact the
system's overall performance.

Conclusions. The use of formalization techniques
such as model checking, theorem proving, and code
generation can greatly enhance the reliability and safety of
automated systems such as spacecraft control systems. By
formalizing the system requirements and specifications,
potential errors and bugs can be caught early in the
development process, reducing the risk of catastrophic
failures.

In the context of the discussed spacecraft example, it
was demonstrated how the use of state machines and the

state design pattern can provide a structured approach to
modeling and implementing complex control systems.

The use of formal methods for developing reliable and
correct software systems was explored, specifically in the
context of state machines.

The results present a detailed example of using the
state pattern to model the behavior of a spacecraft and how
formal verification techniques can help ensure the
correctness and completeness of the system design. The
article demonstrates how model checking can be used to
detect potential errors and violations of the system
requirements and how theorem proving can be used to
formally verify the accuracy of the system's behavior.

Despite the benefits of using formal methods for
developing state machine-based systems, there are also
some limitations and challenges that need to be addressed.
Some of the drawbacks of using this approach, such as the
complexity of the mathematical models and the high
computational costs of verification techniques, have been
discussed.

Overall, the use of formal methods is a promising
approach for developing reliable and correct software
systems based on state machines. By ensuring the
correctness and robustness of state machine-based systems,
we can increase their security and overall quality, which is
especially important for safety-critical systems such as
those used in aerospace and transportation.

References

1. Lodi S., Mesiti M., Orsi G. A state machine for relational databases.
In Proceedings of the «34th IEEE/ACM International Conference on
Automated Software Engineering». 2019. P. 114-125.

2. Liggesmeyer P., Seib E., Prehofer C. A state machine approach for
modeling and testing autonomous driving functions. In Proceedings
of the «2021 IEEE Intelligent Vehicles Symposiumy. 2021. P. 2854—
2859.

3. Giannakopoulou D., Pasareanu C., Rungta N. An integrated approach
to analyzing and testing stateful systems. In Proceedings of the «32nd
IEEE/ACM International Conference on Automated Software
Engineering». 2017. P. 943-948.

4. Saenz J. C., Perez—Palacin D., d’Amorim M. Behavior—driven
development of stateful systems: a case study of a medical
information system. In Proceedings of the «2019 IEEE/ACM
International Conference on Automated Software Engineering».
2019. P. 1011-1016.

5. Azevedo G., Ribeiro M., Medeiros F. Model-based test generation
for stateful systems using an FSM language. In Proceedings of the
«2018 IEEE International Conference on Software Testing,
Verification and Validationy. 2018. P. 237-247.

6. Daumke P., Laroche L., Graubner S. A state machine—based approach
for the dynamic adaptation of software systems. In Proceedings of the
«14th International Conference on Software Technologies». 2019. P.
466-475.

7. Lo D, Liu Y., Xie X., Wong S. Symbolic execution of stateful
programs with abstract state machines. In Proceedings of the «28th
ACM SIGSOFT International Symposium on Software Testing and
Analysisy. 2019. P. 285-296.

8. LiY., LiY., DonglJ.S. Formally verifying the state machine—based
software through the UPPAAL model checker. Journal of Intelligent
& Fuzzy Systems 36(4). 2019. P. 3657-3668.

9. ChenQ., LiuS., WangS., Sun J. Efficient generation of state machine
models from Java source code for vulnerability detection. Journal of
Systems and Software, 177. 2021. 237 p.

10. Jovanovic J., Rackovic M., Milicic M. Analysis of the role of state
machine diagrams in software development: An exploratory study.
Information and Software Technology, 103. 2019. 132-146 p.

11. Chen X., Chen J., Wang J. Research on Formalization Method of
State Transition Rules for Automated Vehicle Systems. IEEE Access,
8.2020. P. 134116-134127.

Bicnux Hayionanvnozo mexuniynoezo ynisepcumemy «XI1Iy». Cepin: Cucmemmnuii
108 ananis, ynpasninus ma ingpopmayiini mexnonozii, Ne 1 (9) 2023

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

12. Eltoweissy M., Alnemr R., Seliem M., Ali M. Formal specification =~ 6. Daumke P., Laroche L., Graubner S. A state machine—based approach

and verification of state-based software systems: A systematic for the dynamic adaptation of software systems. In Proceedings of the
literature review. Journal of Systems and Software, 163. 2021. P. 14th International Conference on Software Technologies. 2019. P.
1105-1128. 466-475.

13. Gaber A., Elragal A. Formalizing requirements for automated driving 7. Lo D., Liu Y., Xie X., Wong S. Symbolic execution of stateful
systems: A systematic literature review. Safety Science, 142. 2021. P. programs with abstract state machines. In Proceedings of the 28th
538-549. ACM SIGSOFT International Symposium on Software Testing and

14. Gu C,, Li X., Liu Y. A Formal Method for Analyzing and Validating Analysis. 2019. P. 285-296.
the Functionality of Statecharts. IEEE Access, 7. 2021. P. 135-154. 8. LiY., LiVY., DongJ. S. Formally verifying the state machine—based

15. Taha I, Ahmed E., Al-Mamory S., Karama S. Formalizing software through the UPPAAL model checker. Journal of Intelligent
Requirements for State Machine Models of Safety—Critical Systems: & Fuzzy Systems 36(4). 2019. P. 3657-3668.

A Review. |IEEE Access, 9. 2021. P. 315-333. 9. ChenQ., LiuS.,WangS$., Sun J. Efficient generation of state machine
models from Java source code for vulnerability detection. Journal of
References (transliterated) Systems and Software, 177. 2021. 237 p.

10. Jovanovic J., Rackovic M., Milicic M. Analysis of the role of state

1. Lodi S., Mesiti M., Orsi G. A state machine for relational databases. machine diagrams in software development: An exploratory study.

In Proceedings of the 34th IEEE/ACM International Conference on Information and Software Technology, 103. 2019. 132-146 p.

Aytomated Soﬂwargtl)znglneel;:n?. 2019. P. 114_123‘_ h 11. Chen X., Chen J., Wang J. Research on Formalization Method of
2. Liggesmeyer P., Seib E., Prehofer C. A state machine approach for State Transition Rules for Automated Vehicle Systems. IEEE Access,

modeling and testing autonomous driving functions. In Proceedings 8. 2020. P. 134116-134127.

of the 2021 IEEE Intelligent Vehicles Symposium. 2021. P. 2854 12. Eltoweissy M., Alnemr R., Seliem M., Ali M. Formal specification

2859. . and verification of state-based software systems: A systematic
3. Giannakopoulou D., Pasareanu C., Rungta N. An integrated approach literature review. Journal of Systems and Software, 163. 2021. P.

to analyzing and testing stateful systems. In Proceedings of the 32nd 1105-1128.

IEEE/ACM International Conference on Automated Software 13

=R . Gaber A., Elragal A. Formalizing requirements for automated driving
Engineering. 2017. P. 943-948.

systems: A systematic literature review. Safety Science, 142. 2021. P.

4. Saenz J. C., Perez—Palacin D., d'’Amorim M. Behavior-driven 538-549.
f’e])’e'opme”‘ of stateful system(sj:_ a cafse hstudy of a mv/adlcal 14. GuC., Li X, Liu Y. A Formal Method for Analyzing and Validating
information system. In Proceedings of the 2019 IEEE/ACM the Functionality of Statecharts. IEEE Access, 7. 2021. P. 135-154.
International Conference on Automated Software Engineering. 2019. 15 Taha I. Ahmed E. Al-Mamory S., Karama S. Formalizing
P.1011-1016. o . . Requirements for State Machine Models of Safety—Critical Systems:
5. Azevedo G., Ribeiro M., Medeiros F. Model-based test generation A Review. IEEE Access. 9. 2021. P. 315-333
for stateful systems using an FSM language. In Proceedings of the ' T o '
2018 IEEE International Conference on Software Testing, Received 12.05.2023

Verification and Validation. 2018. P. 237-247.

Y JIK 004.053:004.428.2:519.688

J. M. HIKITIH, acnipaHT Kadeapy nporpaMHoi iHmxeHepii, XapKiBCbKHH HaI[lOHAIbHUI YHIBEPCUTET palioeNeKTPOHIKI
M. XapkiB, Ykpaina, e-mail: nikitin27959@gmail.com, ORCID: https://orcid.org/0000-0003-4388-4996

®OPMAJIBAIIA CHEHUPIKALIIT CXEM CTAHY JUISI YIIPABJIHHS CKJIAJTHUMHA CUCTEMAMM

V crarTi npecTaBieHo miaxia gopmaisaii /Uit BAMOT 00’ €KTHO-OPi€HTOBAHHX MPOTPaM i3 KiHIIEBUMH aBTOMAaTaM1 3 BUKOPHCTaHHAM SIK PHUKIIaTy
CUCTEMH KepYBaHHS KOCMIYHUM arapaToM. 3alporOHOBAHO peasli3allilo madlIoHy CTaHy, 1€ KOXKEH CTaH MPEACTAaBICHO SIK KJIac i3 4iTKO BU3HAYEHUMH
000B’sI3KaMH, a TIEPEXOIM MK CTaHAMH KOHTPOJIIOIOTHCS CaMUMH 00 €KTaMH cTaHy. KpiM TOro, o0roBOPIOETHCS 3aCTOCYBAHHS METOJIIB MEPEBiIpKH
Mogieri, TOBeleHHs TeopeM i reHepanii koxy. IIpomeMoHCTpoBaHO e(eKTHBHICTH 3alpOIIOHOBAHOTO IMIAXOAY WIOAO0 3a0e3MedeHHs BiIIOBITHOCTI
3a3HaUYEHUM BUMOTaM, a TAKOXK BUSBJICHO MOTEHI[IHHI HEJOMIKH Ta OOMEXEHHS Miaxoay. Peanizaliis nepeBipg€eThest 3a 1OMOMOrol0 HU3KH (POPMaIbHUX
METOJIIB TIEPEBIPKH, BKJIIOYAIOYM MEPEBIPKY MOJENI Ta IOBEJCHHS TeopeM. Y CTaTTi TaKOX OOrOBOPIOETHCH, SIK IEH MiJIXiJl MOXKHA PO3LIMPUTH Ta
3aCTOCYBATH JIO HIINX CKJIAJHUX CHCTEM. 3arajioM, HaJJaHO JeTalbHy iH(popMallifo moao Gpopmaisarlii BUMOT 10 00’ €KTHO—Opi€HTOBaHMX MPOTpaM i3
KIHIIEBUMH aBTOMAaTaMHu, 1110 MPOMOHYE MPAKTUYHUH Ta epEeKTUBHUM MiAXi U1 IePEeBIPKU MPaBHIBHOCTI Ta MOBHOTH TaKMX peanizauiid. Pesynbratu
i€l poOOTH MalOTh BRKJIMBE 3HAUEHHS JUIS1 PO3POOKH KPUTHYHO BKIMBUX VISl OE3MIEKH CUCTEM 1 MOTEHIIHHO MOXKYTh ITiIBULLIUTH SKICTh 1 HaAilHICTh
MIPOrPaMHUX CHCTEM Yy Pi3HUX 00JacTsX. 3a JOMOMOIO0 MaTeMaTHIHMX MOJeNel i CTPOruX popMabHIX METO/IB MOXKHA BHSBUTH i YCYHYTH IIOMIJIKH
Ha PaHHIX CTAJisIX MPOILECY PO3pOOKH, 110 Bee A0 OLIBIIOT BIEBHEHOCTI B MPaBHIBHOCTI KiHIIEBOTO MPOAYKTY. MaiOyTHI JOCTIKEHHS B LiH ramysi
MOXYTb BUBYMTH BUKOPHCTAaHHS OilbILI MEPEIOBHX METOJIB, TAKHX SK po3poOKa HA OCHOBI MOJEINI Ta aBTOMAaTUYHHUNA CHHTE3 KOAY, IS MOAANBIION
ONTHMI3alii Tporecy po3poOKH mporpamHoro 3abesnedeHns. KpiM Toro, po3pobka OinbIn epeKTHBHHX 1 3pydyHHMX iHCTPYMEHTIB MOKE 3pOOHTH Iii
METOM OUTBII JTOCTYITHHMH JUIsl IIMPOKOTO KOJIa pO3POOHUKIB i opraHizaimiid. 3aranom, noeqHaHHs (HOpMaTbHUX METOAIB 1 pO3POOKU MPOrpaMHOro
3a0e3MeueHHs] Ma€ MOTEHIlial PEBOMIOIOHI3YBATH CIIOCIO MPOEKTyBaHHS, PO3POOKHU Ta MEPEBIPKU CHCTEM IPOrPaMHOro 3a0e3Me4eHHs, CTBOPIOIOYHN
OesreyHinle Ta HaJlilfHIIIe MporpaMHe 3a0e3MeYeHHs Ul KPHTHYHNX POTPaM.

Kurouosi ciioBa: popManbHi METOM, aBTOMAaTH30BaHE MPOrPAMYBaHHs, KiHIIEBI aBTOMAaTH, MEpEBipKa MOJIENI, TOBEACHHS TEOPEM, TeHepallis
KOy, 00’ €KTHO—OpIEHTOBaHE MPOrpaMyBaHHsI, YIIPABIiHHSI KOCMIYHUM KopabiyieM, (opmaiizarist BUMOr, Bepudikaiis ta Bamifaris.

Iosne im’s asmopa | Author's full name

Hixkiria JImutpo Muxaitnosud, Nikitin Dmytro Mykhailovych

Bicnux Hayionanvnoco mexuiunozo ynisepcumemy «XIIy. Cepis: Cucmemnuii
ananis, ynpasninus ma ingopmayiini mexnonozii, Ne 1 (9) 2023 109

