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APPLICATION OF BAYESIAN REGULARIZATION FOR IMPROVING THE QUALITY OF ELECTRICAL
ENERGY IN THE ELECTRICAL SUPPLY SYSTEM

The possibility of using neural networks in the field of the energy coefficients correction of a power supply system with uneven load in phases is being
studied. This need is justified by the fact, that the calculation of the necessary parameters of the symmetry-compensating device was previously based
on the Nelder — Mead search optimization method. Search optimization performing is computationally expensive, takes long computation times, and
may calculate anomalous values. The article develops the idea of using technology for predicting the parameters of a symmetry-compensating device,
based on neural network modeling using Bayesian regularization. For a given set of initial data, the best selected configuration turned out to be a neural
network of two layers, implemented in the MATLAB package using the machine learning tool Neural Network Toolbox. The network input parameters
are a set of tuples, consisting of load values in each of the three phases of the power supply system, which are resistive-inductive in nature. There are six
input quantities in total (load resistance and inductance values in each of the three phases) and all their values are different, which causes current
asymmetry in the network and reactive power. The target matrix is formed from tuples, consisting of three values, which are the parameters of the
symmetrical compensating device, calculated by the optimization method, in such a way as to compensate reactive power and to balance currents in the
network. The number of data tuples, required to train a neural network was determined empirically. During the experiments, the optimal number of
neurons in the neural network was also revealed. The use of the generated neural network to calculate the parameters of the symmetry-compensating
device determined approximate solutions is comparable in accuracy to the values, found by optimization methods. With the help of the generated neural
system, adequate quasi-solutions for calculating the parameters of the symmetry-compensating device were determined, which, in case of calculation,
using the optimization method, led to anomalous values, that didn’t optimize the energy coefficients of the power supply system to the required extent.
Also, such neuropredictions protect the system from receiving excessive high parameters of symmetry compensating device, which can be obtained with
an optimization approach.

Keywords: neural network, Bayesian regularization learning algorithm, input matrix, target matrix, set of taples, search optimization methods,
power supply system.

Introduction. Issues of improving the quality of
electrical energy are key to the development of the
Ukrainian economy and require the implementation of
modern intellectual tools to improve energy performance.
The unbalanced load of consumers in the phases of a three-
phase power supply system leads to such phenomena, as an
increase in current values in the network, their asymmetry
and an increase in reactive power. High values of these
indicators have a negative impact both on the equipment,
used by consumers themselves, and on the power supply
system as a whole. One way to solve this problem is to use
special symmetry-compensating devices connected to a
section of the power supply system, the parameters of
which are calculated in such a way as to balance the
currents in the power supply system and reduce reactive
power to zero.

Optimization methods make it possible to calculate
the parameters of symmetry-compensating devices with
high accuracy [1, 2], however, this approach has a number
of disadvantages. It takes quite a long time, since the hum-
ber of iterations on average reaches 200-300. In addition,
depending on the setting of the initial conditions, alterna-
tive cases may arise, when, using optimization methods,
where the values of symmetry-compensating devices de-
termined are by an order of magnitude greater than those,
used in practice [3]. Situations arise, when calculations lead
to anomalous values, that do not actually balance currents
in the network and do not reduce reactive power.

The application of neural networks is a powerful tool
for quickly determining the parameters of symmetry-com-
pensating devices and monitoring their adequacy of the
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solution [4-10], so the issue of their use in the field of im-
proving electrical energy coefficient is actual.

Purpose of the study. The purpose of the article is to
study the possibility of using a neural network with Baye-
sian regularization learning algorithm to calculate the para-
meters of a symmetry-compensating device, that increases
the energy coefficients of the power supply system.

Main part. The power supply system, considered in
the study, consists of voltage sources, resistance of power
line wires, characterized by active and inductive elements,
designated accordingly in each phase za, zb, zc, La, Lb, Lc,
load currents, consisting of active resistances Ra, Rb, Rc
and inductances La, Lb, Lc. Compensation of reactive
power, reduction of current values and their balancing in
the network is carried out by a symmetry compensating
device, which consists of three balancing capacitors, each
of which is connected between two phases of the supply
system, respectively Cab, Chc, Cac. An uneven load in each
phase of the power supply system creates current asym-
metry (fig. 1) and contributes to an increase in reactive
power in the power supply.

To balance currents in the network and minimize
reactive power, it is necessary to calculate the correspon-
ding values of compensating capacitors. Such values can be
determined with high accuracy using the Nelder — Mead
optimization method or the deformed polyhedron method.
In this study, this method was used to compile a training set
of experimental data for further training of the neural
network.

Fig. 1. Oscillograms of power network currents
in asymmetric load mode

The research itself was carried out in MATLAB using
the machine learning tool Neural Network Toolbox. To
train the neural network, the Bayesian regularization
algorithm was chosen, which is based on a probabilistic
approach. This kind of approach to training a neural net-
work has a number of advantages: it allows to carry out
fairly accurate data predictions, does not require iterative
training procedures, and is cost-effective from a computa-
tional point of view [11-13]. The architecture of the selec-
ted neural network is shown in fig. 2. During the experi-
ments carried out, it was found, that the most acceptable
network training occurs with a number of neurons equal
to 28.

Initial training of the neural network was completed
on data set, that consisted of 70 tuples. Here, the training
data sets were compiled in such a way, that the load value

in one of the phases (for example, in phase C) significantly
exceeded the load values in the other phases. To do this, the
load in phase C gradually increased in the following ranges

= [1-10] Om, Lc = [0.005-0.08] H in the tuples,
and the parameter values in other phases changed
within the following limits of their values — in phase A:
Ra = [0.09-0.1] Om, La = [0.001-0.02] H; in phase B:
Rb =[0.9-3] Om, Lb = [0.01-0.12] H. At the same time,
two variants of the target matrix were considered for
training the neural network. In the first version, the matrix
consisted of both positive and negative values of the
symmetry-compensating device (as it was determined
directly during optimization); fig. 3, a—c.

Muﬂhn uycv Omw' uyev

'E"_,ofﬁ O_I o]

Fig. 2. Architecture of the selected neural network

In the second option, all negative values were repla-
ced with positive equivalents (fig. 4, a—c), since in fact va-
lues that are substituted into the symmetry-compensating
device, are previously converted to positive values and are
multiplied by 10-¢. Using a neural network, in which only
positive values are specified in the target matrix gives a
more accurate result (fig. 3, a) than a neural network in
which the target matrix was used with both positive and
negative values (fig. 4, a). Therefore, in future researches,
a target matrix is used, which consists only of positive
values.

The calculation results showed, that the data used, in
which the load value in phase C exceeds the load values in
the other phases, made it possible to train a neural network
that determines the parameters of the control system with
sufficient accuracy, setting the load in the phases within the
appropriate limits. However, for example, when the load in
phase B sufficiently increased, the neural network calcu-
lated values that do not balance the load currents in the net-
work and do not compensate reactive power (fig. 5, fig. 6).
So, we have to expand the data set.

To improve the accuracy of the calculations, the
dataset for training the neural network was increased three
times by adding new data sets of tuples. First additional
data set was generated by swapping position of the
parameters of phases of power supply system A with B, that
are parameters of the input matrix and in the target matrix.
Second additional data set has been received by swapping
tuples position of the input matrix and of the target matrix
of phases A with C. Such a way we reached an opportunity
to expand the training capabilities of a neural network.
Thus, the trained neural network made ability to conduct a
number of experiments that made it possible to find ade-
quate values for the parameters of symmetry-compensating
devices (fig.7).

However, in some cases, current balancing may not be
performed to the required extent (fig. 8). In such a case, the
neural network was retrained, which led to a positive result

(fig. 9).
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Fig. 3. Oscillogram of currents in supply line with parameters of  Fig. 4 Oscillogram of currents in supply line with parameters of
SCD calculated by a neural network with a target matrix having SCD calculated by a neural network with a target matrix
only positive values: a — with parameters Ra = 0.1, La = 0.003, specified by positive and negative values: a - with parameters
Rb=1.2,Lb=0.1, Rc =25, Lc =0.04 and capacities of Ra=0.1,La=0.003,Rb=1.2, Lb=0.1, Rc =25, Lc =0.04
compensating capacitors Cab = 220.6514, Cbc = 90.8858, and capacities of compensating capacitors Cab = 17.1714,
Cac = 316.5833; b — with parameters Ra = 0.7, La = 0.005, Chc =-148.2129, Cac = 413.4182; b - with parameters
Rb=1,Lb=0.01, Rc =25, Lc =0.08 and capacities of Ra=0.7,La=0.005Rb=1,Lb=0.01, Rc=2.5, Lc =0.08
compensating capacitors Cab = 759.2736, Chc = 317.1794, and capacities of compensating capacitors Cab = 707.7111,
Cac = 152.9549; ¢ — with parameters Ra = 0.6, La = 0.005, Cbc =-331.1599, Cac = 150.9918; c - with parameters
Rb=1,Lb=0.01, Rc =2, Lc =0.08 and capacities of Ra=0.6, La=0.005Rb=1,Lb=0.01,Rc=2, Lc=0.08 and
compensating capacitors Cab = 711.8675, Cbhc = -281.2767, capacities of compensating capacitors Cab = 711.8675,
Cac =116.2679 Chc =-281.2767, Cac = 116.2679

Using the developed neural network, the parameters  optimization that did not balance the currents in the
of the control system were determined in operating modes  network. These data are shown in table 1.
in which anomalous values were obtained during search
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To reduce the number of iterations when using
optimization methods, non-zero initial conditions are set.
However, with this approach, the resulting solution can be

Fig 5. Oscillograms of currents of network with parameters
Ra=1,La=0.01,Rb=2,Lb=0.04, Rc =0.3, Lc = 0.003 and
capacities of compensating capacitors Cab = -346.0767,
Chc =-205.0130, Cac = 393.6867 calculated by a neural
network trained on 70 sets of tuples

Fig. 6. Oscillograms of currents of network with parameters
Ra=2,La=0.04, Rb=0.3,Lb=0.003, Rc=1, Lc=0.01 and
capacities of compensating capacitors Cab = 45.8234,
Cbc = 382.2415, Cac = -26.90376, calculated by a neural
network trained on 70 sets of tuples

Fig. 7. Oscillograms of currents of network with parameters
Ra=1, La=0.01, Rb =2, Lb =0.04, Rc = 0.3, Lc = 0.003 and
capacities of compensating capacitors Cab = 137.8644,
Chc = 45.4429, Cac = 621.1652 calculated by a neural network
trained on 210 sets of tuples

characterized by fairly large values of energy coefficients.
For example, with the parameters of the supply network
Ra=0.7, La=0.005 Rb=1,Lb=0.01, Rc =2, Lc =0.04

Fig. 8. Oscillograms of currents of network with parameters
Ra=2,La=0.04, Rb=0.3,Lb=0.003, Rc=1, Lc=0.01 and
capacities of compensating capacitors Cab = 46.1874,

Cbc = 631.5026, Cac = 26.9037 calculated by a neural network
trained on 210 sets of tuples

Fig. 9. Oscillograms of currents of network with parameters
Ra=2,La=0.04, Rb=0.3,Lb=0.003, Rc=1, Lc=0.01 and
capacities of compensating capacitors Cab = 35.7603,

Cbc = 613.3234, Cac = 128.8183 calculated by a neural network
trained on 210 sets of tuples after retraining

Fig. 10. Oscillograms of currents of network with parameters
Ra=0.7,La=0.005Rb=1,Lb=0.01,Rc =2, Lc =0.04 and
capacities of compensating capacitors Cab = 543.8627,
Chc =159.7113. Cac = 12.7429
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Table 1 — Parameters of symmetry-compensating device with anomalous values

Electrical network parameters Anomalous values received Capacitor values calculated using
Ra, La, Rb, Lb,Rc, Lc by optimization Cab, Chc, Cac | a neural network Cab, Chc, Cac
0.3; 0.0061; 1;0.04; 1.9; 0.06 135.4102; —0.0000; —0.4816 | 194.4882; 11.6204; 109.8851
0.3; 0.0061; 1; 0.04; 1.91; 0.06 135.4781; 0.0000; -0.4822 | 194.5336; 11.6506; 109.9143
0.3; 0.0061; 1; 0.04; 2.5; 0.06 139.3876; —0.0000; —0.4576 | 200.2118; 7.5557; 105.3951
0.3;0.006; 1;0.04;2; 0.06 135.9989; 0.0000; 0.8182 | 196.3479; 11.9890; 110.6901
0.3;0.001; 1;0.04;2;, 0.06 176.9020; —0.0001; —0.5585 | 270.6922; 25.1454; 156.7750

and the initial conditions Cab = Cbc = Cac = 4000, the 4 Hu W, Liu B., Gomes J. Strategies for Pre-training Graph Neural

capacitance values of the compensating capacitors reached yft;”lo;'é;s)um-: https://arxiv.org/abs/1905.12265 (access date:

high values Cab = 3935.3, Chc = 3555.5, Cac = 3407.7. 5. pani G., Jaitly N., Salakhutdinov R. Multi-task neural networks for

Such values actually compensate reactive power and QSAR predictions. URL: https://arxiv.org/abs/1406.1231 (access

balance currents in the phases, however, the values of 6 dGatEZ 01;;1'\2/\923)' . Danihelka 1. Neural Turi hines. URL

: ; . Graves A., Wayne G., Danihelka I. Neural Turing machines. :

networkl currents reiCh hmore. thanf SF?O A, which IIS https://arxiv.org/abs/1410.5401 (access date: 01.11.2023).

extremely dangerous or the wires of the power_supp y 7. Xaiikun C. Heiponnvie cemu. Ilomusni xypc. Mocksa: Buibsimc,

system and unacceptable for use. When calculating the 2006. 1104 c.

parameters of a symmetry-compensating device using the 8. Haykin S. Neural networks. A comprehensive foundations. McMillan

generated neural network, the values Cab = 543.8627, 9 JCTSOHF(:;%E gbléiy?c;éeiiifﬁ 635"?6.76167}1‘ cmpamezuu U Memoobl

Cbc = 159.7113, Cac = 12.7429 Were Obtamed_' _They peutenus crodcHwix npoonem. Mocksa: Busesmc, 2003. 864 c.

balance the currents and reduce their values sufficiently  10. Xianjun Ni Research of Data Mining Based on Neural Networks.

(fig. 10), and can be used in practice. It should also be World Academy of Science, Engineering and Technology. 2008. Vol.

; R 39. P. 381-384.

noted, that t.he results Obtamed. are qu!te close to the ex.aCt 11. Wyner A. J., Olson M., Bleich J., Mease D. Explaining the success of

values obtained from calculations using the optimization adaboost and random forests as interpolating classifiers. The Journal

method with initial conditions Cab = Chc = Cac = 0, where of Machine Learning Research. 2017. Vol. 18, no. 1. P. 1558-1590.

final result is Cab = 562.2, Cbc = 182.3, Cac = 34.4. 12. Opper M.,. Archambeau C. The variational gaussian approximation

Conclusions revisited. Neural Computation. 2009. Vol. 21 (3). P. 786-792.
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3ACTOCYBAHHSA BAMECIBCHKOI PETYJISAPU3AIIII JJISA MIJIBUIIEHHS AKOCTI EJTEKTPUYHOI
EHEPI'Ti B CHCTEMI EJJEKTPOIIOCTAYAHHS

JlocTipKy€eThesl MOXKIINBICTh BHKOPHCTAHHS HEHPOHHUX Mepex y cdepi MiIBUIICHHS SHEPreTHYHHX IOKa3HUKIB CHCTEMH eJIeKTPOINOCTadaHHS 3
HEepiBHOMIPHHM HaBaHTaXEHHSAM Yy (a3ax. Taka HeOOXigHICTP OOIPYHTOBaHa THM, IO PO3PaxXyHOK HEOOXiAHHX IIapaMeTpiB CHMETpO-
KOMIICHCYBAJIBHOT'O IIPUCTPOIO PaHillle IPYHTYBABCs Ha METOI molrykoBoi ontuMizauii Hengepa — Mina. BukoHaHHS MOIIYyKOBOI ONTHMI3aLlii BUMarae
3HAYHUX OOYMCIIOBAILHUX BHTpAT, 3aiiMac TpHBaIMili yac OOYMCIICHHS i MOXKE PO3paxOBYBATH aHOMAJIbHI 3HAUeHHS. Y CTAaTTi PO3BUBAEThCA inest
BUKOPHCTAHHS TEXHOJOIil HPOTHO3YBaHHS MHapaMeTpiB CHMETPO-KOMIIEHCYBAJBHOIO HPHCTPOI0 HAa OCHOBI HEHPOMEPEkEBOTO MOJCTIOBAHHS i3
3aCTOCYBaHHsIM Oaii€ciBChKOI perymsipusarii. s 3aganoro Habopy BHXIAHHX JAHUX HAHKpaIow migiopaHoro KOHQIrypariero BUABHIACS HEHPOHHA
Mepexa JBOX IuapiB peanizoBana B nakeri MATLAB 3acobamu iHctpymenty mammazoro HaBuauas Neural Network Toolbox. Bxigui mapamerpu
Mepexi SBISIIOTH CO00I0 Habip KOPTEXKIB, [0 CKJIAAIOTHCS 3 BEIMYMH HABAHTAXKEHDb y KOXKHIH i3 TphoX (ha3 CHCTEMHU eNeKTPOIIOCTayaHHs, [0 MalOTh
PE3UCTHBHO-IHAYKTUBHHUIT XapakTep. Y ChOro BXiIHUX BETHYHH IIICTh (3HAYCHHS OIMOPY Ta IHAYKTUBHOCTI HABAHTAXKCHHS B KOXKHIiT i3 TppoX (a3) i Bci
X 3HA4YeHHS BiJPI3HAIOTHCS, IO 1 CTBOPIOE HECHMETPIIO CTPYMIB y MEpEXi Ta PEaKTHBHY IOTY)XHICTb. MaTpuus mineii copMoBaHa 3 KOPTEXKiB, IO
CKJIQJIAIOTHCS 3 TPHOX BEIMYHUH, L0 € PO3PAaxOBaHI METOIOM ONTHMI3allii apaMeTpH CHMETPO-KOMIICHCYBAILHOIO IIPUCTPOIO, TAKMM YHHOM, 10O
KOMIICHCYBAaTH PEAKTUBHY MOTYXXHICTb 1 BIACHMETPYBATH CTPyMH B Mepexi. JloCBiI4EeHNM HITIXOM BU3HAYEHO KITBKICTh KOPTEXKIB JaHHUX, HEOOXiqHI
HaBYaHHS HeHpoHHOI Mepexi. Ili 9ac NpoOBEeREHHS EKCHEPUMEHTIB TAaKOX BHABICHO ONTHMANbHY KUIBKICTH HEHPOHIB HEHpPOHHOI Mepexi.
3acrocyBaHHs c(hOpMOBaHOI HEHPOMEPEKi /IS PO3paxyHKy HapaMeTpiB CHMETPO-KOMIICHCYBAJILHOTO MPUCTPOKO BU3HAYKMIIO HAOJIMKEHI PIllICHHS, SIKi
MO’KHA MOPIBHATH 33 TOUHICTIO 31 3HAUYCHHAMH, 3HAHICHUMH ONTUMI3aLi iHIMH METOIaMHi. 3a TOMIOMOTO0 C(OPMOBAHOI HEHPOHHOI CHCTEMH BU3HAYCHO
aJIeKBaTHI KBa3ipilleHHS pO3paxyHKY IapaMeTpiB CHMETPO-KOMIICHCYBAIFHOTO IIPHCTPOIO, SIKi NPH PpO3paxyHKaxX ONTHMI3allifHEM MeTOIOoM
MIPU3BOIIIN 1O aHOMAJIBHUX 3HAYCHb, SKi He BUKOHYBAJIM ONTHMI3allil0 eHEPreTHYHUX IIOKa3HHUKIB CHCTEMH €JIEKTPONOCTAuyaHHs y HeOOXiMHIH Mipi.
Takox Taki HeWponependayeHHs 3aXUIAI0Th CUCTEMY BiJl OTPUMAHHS HAJAMIPHO 3aBHIIECHHUX [TApaMETPiB CUMETPO-KOMIIEHCYBAJILHOTO PUCTPOIO, SIKi
MOXXYTb OyTH OTPHMaHi IIPH ONTHMI3aI[ifHOMY MiJXO0/i Ta aHOMAJILHUX 3HAa4YeHb,

Kuroqogi ciioBa: HelipoHHa Mepexa, HaBUYaHHS 3a anropuTMoM balieciBchKol perymspusarii, BXiZHa MaTPHIIS, MATPHIIA 1ieil, Habip KopTexeH,
METO/IH MOIIYKOBOI ONTUMI3aLlil, CHCTEMA )KUBJICHHSI.
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