
ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 2 (10)’2023 79

DOI: 10.20998/2079-0023.2023.02.12

UDC 004.9

O. M. NIKULINA, Doctor of Technical Sciences, Full Professor, Head of the Department of Information Systems and

Technologies of the National Technical University "Kharkiv Polytechnic Institute",

Kharkiv, Ukraine, e-mail: elniknik02@gmail.com; ORCID: https://orcid.org/0000-0003-2938-4215

K. O. KHATSKO, Senior Lecturer of the Department of the Department of Information Systems and Technologies of the

National Technical University "Kharkiv Polytechnic Institute", Graduate Student,

Kharkiv, Ukraine, e-mail: kyrylo.khatsko@khpi.edu.ua, ORCID: https://orcid.org/0000-0003-3315-1553

METHOD OF CONVERTING THE MONOLITHIC ARCHITECTURE OF A FRONT-END APPLICATION

TO MICROFRONTENDS

Web systems have existed for a long time and quite a lot of them have been created. Modern development uses new microservice architectural to improve

performance, portability, and other important characteristics. This necessitates the transformation of legacy systems from a monolithic architecture to a

microservices one. Such a process is complex and costly, so improving the methods for converting old systems to a new platform is relevant. This
research aims to develop a method of applying microfrontends approach for monolithic single page applications (SPA). The article proposes a method

of transforming the software system architecture from monolithic to microservice architecture (MSA). Since the client part of the system is considered,

the term microfrontend is proposed, as an analog of microservers in the server part of the software systems. A brief review of existing architecture
reengineering research is made and the advantages of a microservice approach are identified. The proposed three-stage method differs from the methods

by the selection of an additional stage of conversion, which allows to gently change the connections between parts of the monolithic application, which

were implemented in the initial monolithic architecture. The first stage is reverse engineering, it is proposed to shift the focus from the search for outdated
code to the functional analysis of the program as such. The second stage, a transition to a modular architecture with the allocation of functionality into

separate modules is proposed. At the end of the third stage, we have several separate programs (microinterfaces) that are connected to the main program.

An experiment with a typical external SPA demonstrates the operation of the proposed algorithm. The system obtained as a result of the transformation
is compared with the original one according to the following measurable parameters: production builds building time, size of the main bundle, and first

page average load time. All comparisons showed the advantages of the system obtained as a result of the conversion. As a result, the architecture
transformation algorithm allows you to obtain a guaranteed better result, taking into account the limitations of the interface SPA, which were not

considered by the authors of previous articles.

Keywords: information system, software architecture, algorithm, monolith model of an information system, software development process,
software migration, microservice architecture, single page application, method of converting to microfrontends.

Introduction. To create scalable, future-oriented

software systems in modern industrial programming, the

microservice architectural approach is increasingly used [1,

2]. Microservices break traditional monolithic applications

into a set of smaller services that can be independently

developed, tested, and deployed [3]. Due to highly

decoupled software modules, microservice applications are

easy to debug, update, use third-party code, therefore, in a

professional environment, they believe that the future is

theirs [4].

However, many applications have already been

developed as monolithic or modular, so in order to improve

these applications, it is necessary to migrate them to a

microservice architecture. Such actions have become the

preferred solution for software upgrades [5] than new

development.

With the development of browser-based client

applications, as well as the requirements for them, the same

problems that occur in monolithic backend applications

become more and more relevant, this is especially acute in

single page applications (SPA), which were originally

conceived as a single monolith.

We use a microservice approach to break a monolithic

SPA application into separate microfrontends. The topic of

this paper is the method of converting the monolithic

architecture of front-end applications to microfrontends.

Lets' talk about motivation. Just imagine that you're

the developer on some great project with a beautiful

microservice architecture. Each service is developed by

separate team, services are tested and deployed in isolation.

But let's back from imagine and see what we have on

frontend. Here is the typical SPA application. It's designed

with modern framework, but it is monolithic by its nature

with all the disadvantages of this architecture. So we think

may be we can do something like this – apply

microfrontends.

In the second section we analyse existing articles and

papers related to the strategies of the migration to the

microservice architecture. We highlight that this migration

could be successfully applied to solve an existing problems

that could be occurred in applications with monolithic

architecture approach. We also point that despite of the

existence of the fact that all of the problems of the

monolithic backend applications are inherent in front-end

applications, approach with dividing has been less reflected

in front-end development.

In next section we describe exiting methods of

migration to the microservices. We propose to use a

microservice approach to break a monolithic SPA

application into separate microfrotends. In this section we

also highlight limitations of the front-end SPA applications

that could not allow to apply existing methods directly for

converting its monolithic architecture into separate

independent units similar to microservices. Here the

additional motivation of such migration is described.

Finally in the main part of the section, we propose new

determination of the existing steps and describe all the

changes to be done on every step.

Research Article: This article was published by the publishing house of NTU "KhPI" in the collection

"Bulletin of the National Technical University "KhPI" Series: System analysis, management and
information technologies." This article is distributed under a Creative Common Creative Common

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

© Nikulina O. M., Khatsko K. O., 2023

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

80 аналіз, управління та інформаційні технології, № 2 (10)’2023

The next sections describes the existing technical

approaches to organize microfrontends. Here we mention

the main advantages and disadvantages of these approaches

and the ability to be used for SPA.

The results section contains a description of an

experiment to prove the method proposed. Here we high-

light the requirements to the application that should be the

subject of the experiment of the architectural transforma-

tion to the microfrontends. We point the detailed descript-

tion of the changes in code and architecture according to

the previously explained method steps. In this section the

choice of a technical solution for the organization of

microfrontends is justified. New microfrontends are hosted

and the final application is evaluated.

In the last section we point the questions that are still

not covered in the current experiment or could be improved

in future works.

Analysis of Migration Strategies. Many business

applications have been in use for many years, their

development does not stop, and a lot of unsuccessfully

fixed bugs have accumulated [6]. It would be useful for

such applications to get a second life with a new

architecture without this accumulated set of bugs. There is

reason to believe that migrating to a microservice

architecture will help overcome the existing problems.

Particular reasons for migrating older applications are the

fact that microservices improve maintainability over

traditional monoliths due to a smaller code base, strong

isolation of components, and organization of microservices

around business functionality. In addition, the development

company has the ability to create autonomous teams of

employees, which should reduce coordination efforts and

increase team productivity.

However, the introduction of microservices can com-

plicate the quality assurance of systems [7]. From an ar-

chitectural point of view, quality assurance is considered a

key issue when migrating or developing systems based on

microservices [8]. Most of the existing research on micro-

services is focused on architectural principles and the

application of architectural patterns [9-11] in microservice

migration practices, which can provide an analytical view

of the common patterns and methods used for MSA, and

can be considered the starting point of our work. Many re-

searchers have contributed to the development and quality

improvement of systems based on microservices [2, 3, 12].

As a result, MSA has also become the preferred path

for software upgrades based on the architecture [13].

There are many examples of successful rewriting of

applications based on microservices [14], when, next to the

original, applications are made immediately in the

execution of microservices [13, 15, 16].

While MSA has gained a lot of popularity as an

architectural style for back-end development of web

applications, this architecture has been less reflected in

front-end development. Web applications have been

around for a long time and many large systems have

accumulated that have a monolithic architecture. This

statement applies to both the server side and the browser

side. For several years, research has been published on the

transformation of the back-end from a monolithic or

modular architecture to a microservice one [4, 17, 18].

Migration method. Since the microservice

architecture primarily touched server applications, we will

first consider the published methods for migrating to MSA.

The process of moving from an existing system to

microservices, based on earlier work on systems

reengineering, is described in three steps: reverse

engineering, architecture transformation, and forward

engineering [19].

The described migrations were motivated by the need

to partially or completely modernize the system, to some

extent such a system was considered legacy, so the system

that existed before the migration was called pre-existing,

and the target microservice system was called new system.

At the reverse engineering step, the system was analyzed to

identify obsolete code, which became a candidate for

transferring it to services. Further, this transformation was

a restructuring of the code with the transformation of the

current architecture to a microservice one, but maintaining

the same level of abstraction. At this step, the architecture,

business model and business strategy are changed. At the

stage of backward engineering, the system is being

finalized, implemented and deployed.

However, the browser part of the system, the so-called

front-end, has a number of limitations that make such a

conversion a difficult task. Such limitations include the

need to work with a single environment. It is executed on

the client side, so within one application there is always

only one address bar, one global BOM object, and,

accordingly, the DOM that is part of it. It is around this

problem that the main limitations of microfrontends are

built.

The authors present the adapted process of transition

of a monolithic SPA application to microfrontends as

follows on fig. 1:

Fig. 1. Migration to microfrontends

The SPA approach has become popular relatively

recently, so the motivations for migrating to

microfrontends are caused not so much by outdated

architecture, but by the non-functional benefits that

microfrontends can provide. That is why the authors

propose to revise the above transition steps and specify

them as more appropriate in the context of working with

client applications. So, for example, at the stage of reverse

engineering, it is proposed to shift the focus from the search

for legacy code to the functional analysis of the application

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 2 (10)’2023 81

as such. At this step, functions are grouped, unified, large

functions can be separated. At the end of this step, our

architecture (pre-existing) is still monolithic and requires

further analysis before moving on to the next step.

The purpose of the stage of architecture

transformation is to analyze the current application to

determine the main business functions of the application

and, based on them, to identify potentially separate parts of

the application that should not depend on each other as

much as possible. For these purposes, you can use the

Strategic Design Domain-driven design approach. In the

context of DDD, the main application domains are

identified. To successfully solve this problem, all

stakeholders can be involved: developers, architects,

product owners; the project documentation is studied,

compared with the main business requirements.

Based on the allocated domains, the application

modules are created, which allows us to move to the

modular architecture stage. It should be noted that at this

stage we have already solved some problems inherent in

monoliths: code is more structured and less coupled. And

although we still have one application with bundles hosted

on the one server, this architecture allows us to organize

lazy loading of modules. This leads to a decrease in the size

of the main bundle, and hence to a decrease in the initial

load time of the application.

On the forward engineering step, the coupling

between the components of the different modules are

finally broken. At this stage, a technical solution for

organizing microfrontends should be selected. Due to the

limitations of client applications, in any division into

separate parts we still need one main application to manage

other microservices. All existing technical solutions come

down to solve the problem of how individual

microfrontends connect to the main application and how it

orchestrates them.

Step by step architecture changes are described on

fig.2.

Fig. 2. Architecture transformation during migration to

microfrontends

On the step of the backward engineering step there is

no architecture changes. Here we can see changes on low

level: grouping, unifying or removing unused functions. On

this step we still have the same business models as in pre-

existing system. On the next step the transformation of the

architecture is finally take place. By the end of the step we

have modular monolithic architecture. Business models

could be changed to ensure better isolation of the modules.

These modules are candidates to be moved into separate

micro-frontends on the last step of the forward engineering

step. By the end this step we have several separate

applications (microfrontends) that are connected to the

main application (shell).

Technical solutions for microfrontends. Currently

there are several variants how to provide microfrontend

architecture. The simplest way to organize microfrontens is

to create several independent applications. We need to have

one main application with hyperlinks to other

microfrontend applications. Clicking on such hyperlink the

user is navigated to the other application with other URL.

The only benefit of this approach is its simplicity, but bad

user experience is the biggest price for this advantage.

Another commonly used variant is applying single-

spa framework. The idea is to create framework-specific

wrapper for every microfrontend application to integrate

them in one single-spa application. The main disadvantage

of this approach is the necessary to follow strict single-spa

framework rules for every microfrontend to organize

integration with other microfrontends. If there is a ready-

made application, then it is a bug risk that it should be

rewritten taking into account the single-spa rules.

One of the most popular mechanisms is to apply i-

frames. All necessary widgets should be placed in i-frames

that load the corresponding microfrontend hosted on

separate host. Data is exchanged between them using POST

messages. The main disadvantage of the approach is the

necessary of the loading full bundle of the microfrontend.

This fact limits ability to use i-frames only for good isolated

applications. Another downside is the risk of reloading

libraries with the microfrontend bundles.

The most modern way to work with mircrofrontends

is to apply the Module Federation feature of the Webpack

module bundler. This approach allows both the good

communication of the microfrontends and the ability to

avoid code duplication. The main idea of the approach is

configurate the shell application to import just the

necessary module from mircofrontend application.

Results. The authors took for consideration the

previously created Chess Tutorials application, on the

client part of which experiments were carried out. When

writing, the authors, recognizing the problem, chose an

application that has a large number of internal

communications, in order to maximally reflect the

problems that developers face in the process of solving real

problems. The client part is typical monolithic SPA created

on the Angular framework with state management

organized with NgRx. The application is an educational

platform for learning the game of chess. The application is

designed for two types of clients – teachers and students.

To prove the ability to apply the proposed method of

converting the pre-existing monolithic SPA was refactored

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

82 аналіз, управління та інформаційні технології, № 2 (10)’2023

according to all the necessary steps of migration: reverse

engineering, architecture transformation, and forward

engineering.

At the stage of backward engineering, the interface

elements were unified, large analyzed, reused components

were identified. Functions related to authorization and

student entities were separated; an application routing was

changed by adding new route for home page, Angular SDK

was upgraded to higher version etc.

At the next stage, an analysis of the business functions

of the application was carried out. Business requirements

defined the following abilities for different types of users:

tutors could invite students to the system, create lessons and

manage study groups, including tracking learning statistics

for students; students could complete tasks from the lessons

available to them, view the study groups. All available

business documentation was studied including vision and

existing prototypes. The example of the documentation that

could be applied to identify business domains is application

user path is displayed on fig.3.

Fig. 3. Chess Tutorials documentation:

 path of the user with role tutor

Summarizing all the abilities and data from docu-

mentation, we identified such basic business functions as

managing students, working with lessons, working with

study groups. Based on the selected business functions, the

following domains was determined: Lessons, Students,

Groups and subdomain for Groups – Group Statistics.

Schematic view of the modular application is displayed on

fig. 4. Since domains must have a separate model valid only

within their bounded context [21], at this stage, the

application state (store) was restructured.

Fig. 4. Application structure by the end of the architecture

transformation step

All support functions of the centralized storage have

been broken into separate modules according to belonging

to a certain domain. The models of User and Student have

also been separated, since they belonged to different

domains. In reality, it is not always possible to achieve

complete isolation of domains. This is exactly the situation

that the authors are faced with. To solve this problem, the

data obtained during functional analysis were used – the

identified reusable components were taken out into separate

shared modules. It should be noted that creating a single

shared module is a bad solution for large systems.

Since not all functions are reused in each of the above

domains, it is recommended to organize several shared

modules to prevent unnecessary functionality from being

imported.

All the domain logic was moved to separate

independent modules. All smart and dump components and

support services responsible for working with students

were collected in the Students module; the components of

the lesson builder, view and list of lessons (support services

and other structures) were moved to the Lessons module;

everything related to group management, including a

separate module of Statistics, was moved to the Groups

module. After the necessary transformations, the Chess

Tutorials application still looked like one big monolithic

application, but consisting of as much as possible separated

domain modules, as well as shared modules. At this stage a

lazy loading of the modules was applied. Domain modules

also had their own internal routing. The above domain

modules were the candidates for separate microfrontends.

Module Statistics at this stage did not look independent

enough to be moved to a separate domain, and, accordingly,

was not a candidate for moving to a separate microfrontend.

With the development of the application and with the

addition of a new functions, such a transfer may become

relevant in the future, so such a decision may be postponed

for this stage.

On the forward engineering step, all possible links

between domains was broken down as much as possible,

since each domain will be placed in a separate application.

Orchestration by these applications was done by a shell

application that was built from the main application

module. Orchestration itself was done using routing. On the

last stage we finally created microfrontends. One of the

problems that we faced at this stage is the correct

development of individual microfrontends. Since they

should be separate independent applications, duplication of

a large amount of code, at least the framework itself and

styles, cannot be avoided. Our domain modules still had

some common functions placed in shared modules. We also

had state manager and common data used in several

modules. All this led to the fact that duplicate parts of the

code would be loaded several times, for example, when

using the i-frame approach. To avoid code duplication in

bundles of the future microfrondents we applied Webpack

Module Federation approach. Microfrontends was still

separate independent applications with duplicated code, but

webpack allowed to load only the necessary (declared)

modules of microfrontend applications in the resulting

application on the client side. Shared module was divided

into separate shared libraries. New microfrontend

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 2 (10)’2023 83

applications were created and main domains were moved

from main application to them. After that we set up shell

application to import just domain modules from our

microfrontends and deployed all the applications

separately. As a result we had shell application, mfe1

(Students), mfe2 (Lessons) and mfe3 (Groups).

Comparison of the pre-existing system and refactored

system is displayed on table 1.

Table 1 – Pre-existing and target systems comparison

Measurable

indicator

Pre-existing system

(monolithic SPA)

Target system

(Microfrontends)

Production

builds building

time, ms 20290 15363

Size of the main

bundle, KB 540.5 82.7

First page

average load

time, ms 644 269

Because of the ability to run build process of every

single microfrontend and shell application in parallel, the

result build time could be equal to the build time of the

largest application – mfe2. The size of the final bundle of

the target system (microfrontends) has become smaller,

which reduced the load time of the first page of the

application.

Conclusions and Future Work. In current work,

existing methods of migration to microservices are adopted

to be acceptable for microfrontends. Steps of converting

and new states of the application are defined and described

to take into account the limitations of the front-end SPA

which was not covered by authors of previous articles.

Experiment with typical front-end SPA Chess Tutorials

interface proved that the proposed conversion method

shows a good result, in terms of the quality of the resulting

software. Further research will be related to the concept of

DDD for more efficient domain identification and

microfrontend separation. Better understanding of

conceptions of the strategic design and the boundary

context will allow to design better domain models and as a

result better isolated microfrontends.

References

1. Furrer F. J. Future-Proof Software-Systems. Springer, 2019. 376 p.
2. Gidey H. K., Marmsoler D., Eckhardt J. Grounded Architectures:

Using Grounded Theory for the Design of Software Architectures.

IEEE International Conference on Soft-ware Architecture
Workshops. URL: https://doi.org/10.1109/ICSAW.2017.41 (access

date: 23.10.2023).

3. Terdal S. Microservices Enabled E-Commerce Web Application.
International Journal for Research in Applied Science and

Engineering Technology. URL: https://doi.org/10.22214/

ijraset.2022.45791 (access date: 23.10.2023).
4. Francesco P. D., Lago P., Malavolta I. Migrating towards

microservice architectures: An industrial survey. International

Conference on Software Architecture, URL:
https://doi.org/10.1109/ICSA.2018.00012. (access date: 23.10.2023).

5. Cruz P., Astudillo H., Hilliard R., Collado M. Assessing Migration of

a 20-Year-Old System to a Micro-Service Platform Using ATAM.

2019 IEEE International Conference on Software Architecture

Companion URL: https://doi.org/10.1109/ICSA-C.2019.00039.

(access date: 23.10.2023).

6. Auer F., Lenarduzzi V., Felderer M., Taibi D. From monolithic

systems to microservices: An assessment framework. Information

and Software Technology, URL:
https://doi.org/10.1016/j.infsof.2021.106600. (access date:

23.10.2023).

7. Li S., Zhang H., Jia Z., Zhing C. et al. Understanding and addressing
quality attributes of microservices architecture: A Systematic

literature review. Information and Software Technology. URL:

https://doi.org/10.1016/j.infsof.2020.106449. (access date:
23.10.2023).

8. Soldani J., Tamburri D.A., Van Den Heuvel W.J. The pains and gains

of microservices: a systematic grey literature review. Journal of
Systems and Software. URL:

https://doi.org/10.1016/j.jss.2018.09.082. (access date: 23.10.2023).

9. Kazman R., Woods S. G., Carrie`re S. J. Requirements for integrating
software architecture and reengineering models: Corum II.

Proceedings Fifth Working Conference on Reverse Engineering.

URL: http://doi.org/10.1109/WCRE.1998.723185. (access date:
23.10.2023).

10. Razavian M., Lago P. Understanding SOA migration using a

conceptual framework. Journal of Systems Integration. URL:
https://core.ac.uk/download/pdf/15455794.pdf (access date:

23.10.2023).

11. Steyer M. Enterprise Angular: Micro Frontends and Moduliths with
Angular. URL: https://www.angulararchitects.io/en/book/. (access

date: 23.10.2023).
12. Homay A., Zoitl A., de Sousa M., Wollschlaeger M. A Survey:

Microservices Architecture in Advanced Manufacturing Systems.

IEEE 17th International Conference on Industrial Informatics. URL:
http://doi.org/10.1109/INDIN41052.2019.8972079. (access date:

23.10.2023).

13. Abdellatif M., Shatnawi A., Mili H., Moha N. et al. A Taxonomy of
Service Identification Approaches for Legacy Software Systems

Modernization. Journal of Systems and Software. URL:

https://doi.org/10.1016/j.jss.2020.110868. (access date: 23.10.2023).
14. Hasselbring W., Steinacker G. Microservice Architectures for

Scalability, Agility and Re-liability in E-Commerce. IEEE

International Conference on Software Architecture Workshops. URL:
http://doi.org/10.1109/ICSAW.2017.11. (access date: 23.10.2023).

15. Patil M., Prajapat, S. Microservice Architecture for Scalability and

Reliability in E-Commerce. International Journal of Advanced
Research in Science, Communication and Technology. URL:

http://doi.org/10.48175/IJARSCT-2050. (access date: 23.10.2023).

16. Asrowardi I., Putra S., Subyantoro E. Designing microservice
architectures for scalability and reliability in e-commerce. Journal of

Physics: Conference Series. URL: http://doi.org/10.1088/1742-

6596/1450/1/012077. (access date: 23.10.2023).
17. Evans E. Domain-Driven Design: Tackling Complexity in the Heart

of Software. URL: https://www.amazon.com/Domain-Driven-

Design-Tackling-Complexity-Soft-ware/dp/0321125215. (access
date: 23.10.2023).

18. Blinowski G., Ojdowska A., Przybylek A. Monolithic vs. Mi-

croservice Architecture: A Performance and Scalability Evaluation.
IEEE Access. URL: https://doi.org/10.1109/access.2022.3152803.

(access date: 23.10.2023).

19. di Francesco P., Lago P., Malavolta I. Migrating Towards
Microservice Architectures: An Industrial Survey. IEEE

International Conference on Software Architecture. URL:

https://doi.org/10.1109/ICSA.2018.00012. (access date: 23.10.2023).

References (transliterated)

1. Furrer, F. J. Future-Proof Software-Systems. Springer, 2019. 376 p.

2. Gidey H. K., Marmsoler D., Eckhardt J. Grounded Architectures:
Using Grounded Theory for the Design of Software Architectures.

IEEE International Conference on Soft-ware Architecture

Workshops. Available at: https://doi.org/10.1109/ICSAW.2017.41
(accessed 23.10.2023).

3. Terdal S. Microservices Enabled E-Commerce Web Application.

International Journal for Research in Applied Science and
Engineering Technology. Available at:

https://doi.org/10.22214/ijraset.2022.45791 (accessed 23.10.2023).

4. Francesco P.D., Lago P., Malavolta I. Migrating towards
microservice architectures: An industrial survey. International

Conference on Software Architecture. Available at:

https://doi.org/10.1109/ICSA.2018.00012. (accessed 23.10.2023).

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

84 аналіз, управління та інформаційні технології, № 2 (10)’2023

5. Cruz P., Astudillo H., Hilliard R., Collado M. Assessing Migration of

a 20-Year-Old System to a Micro-Service Platform Using ATAM.

2019 IEEE International Conference on Software Architecture
Companion. Available at: https://doi.org/10.1109/ICSA-

C.2019.00039. (accessed 23.10.2023).

6. Auer F., Lenarduzzi V., Felderer M., Taibi D. From monolithic
systems to microservices: An assessment framework. Information

and Software Technology. Available at:

https://doi.org/10.1016/j.infsof.2021.106600. (accessed 23.10.2023).
7. Li S., Zhang H., Jia Z., Zhing C. et al. Understanding and addressing

quality attributes of microservices architecture: A Systematic

literature review. Information and Software Technology. Available at:
https://doi.org/10.1016/j.infsof.2020.106449. (accessed 23.10.2023).

8. Soldani J., Tamburri D.A., Van Den Heuvel W.J. The pains and gains

of microservices: a systematic grey literature review. Journal of
Systems and Software. Available at:

https://doi.org/10.1016/j.jss.2018.09.082. (accessed 23.10.2023).

9. Kazman R., Woods S. G., Carrie`re S. J. Requirements for integrating
software architecture and reengineering models: Corum II.

Proceedings Fifth Working Conference on Reverse Engineering.

Available at: http://doi.org/10.1109/WCRE.1998.723185. (accessed
23.10.2023).

10. Razavian M., Lago P. Understanding SOA migration using a

conceptual framework. Journal of Systems Integration, Available at:
https://core.ac.uk/download/pdf/15455794.pdf (accessed 23.10.2023)

11. Steyer M. Enterprise Angular: Micro Frontends and Moduliths with
Angular. Available at: https://www.angulararchitects.io/en/book/.

(accessed 23.10.2023).

12. Homay A., Zoitl A., de Sousa M., Wollschlaeger M. A Survey:
Microservices Architecture in Advanced Manufacturing Systems.

IEEE 17th International Conference on Industrial Informatics.

Available at: http://doi.org/10.1109/INDIN41052.2019.8972079.
(accessed 23.10.2023).

13. Abdellatif M., Shatnawi A., Mili H., Moha N. et al. A Taxonomy of

Service Identification Approaches for Legacy Software Systems

Modernization. Journal of Systems and Software. Available at:
https://doi.org/10.1016/j.jss. 2020.110868. (accessed 23.10.2023).

14. Hasselbring W., Steinacker G. Microservice Architectures for

Scalability, Agility and Re-liability in E-Commerce. IEEE
International Conference on Software Architecture Workshops.

Available at: http://doi.org/10.1109/ICSAW.2017.11. (accessed

23.10.2023).
15. Patil M., Prajapat, S. Microservice Architecture for Scalability and

Reliability in E-Commerce. International Journal of Advanced

Research in Science, Communication and Technology. Available at:
http://doi.org/10.48175/IJARSCT-2050. (accessed 23.10.2023).

16. Asrowardi I., Putra S., Subyantoro E. Designing microservice

architectures for scalability and reliability in e-commerce. Journal of
Physics: Conference Series. Available at:

http://doi.org/10.1088/1742-6596/1450/1/012077. (accessed

23.10.2023).
17. Evans E. Domain-Driven Design: Tackling Complexity in the Heart

of Software. Available at: https://www.amazon.com/Domain-Driven-

Design-Tackling-Complexity-Soft-ware/dp/0321125215. (accessed
23.10.2023).

18. Blinowski G., Ojdowska A., Przybylek A. Monolithic vs.

Microservice Architecture: A Performance and Scalability
Evaluation. IEEE Access. Available at:

https://doi.org/10.1109/access.2022.3152803. (accessed 23.10.2023).
19. di Francesco P., Lago P., Malavolta I. Migrating Towards

Microservice Architectures: An Industrial Survey. IEEE

International Conference on Software Architecture. Available at:
https://doi.org/10.1109/ICSA.2018.00012. (accessed 23.10.2023).

Received 06.11.2023

УДК 004.9

О. М. НІКУЛІНА, доктор технічних наук, професор, завідувачка кафедри інформаційних систем та технологій

Національного технічного університету «Харківський політехнічний інститут», Харків, Україна; e mail:

elniknik02@gmail.com; ORCID: https://orcid.org/0000-0003-2938-4215

К. О. ХАЦЬКО, старший викладач кафедри інформаційних систем та технологій Національного технічного

університету «Харківський політехнічний інститут», аспірант, Харків, Україна; e-mail: kyrylo.khatsko@khpi.edu.ua,

ORCID: https://orcid.org/0000-0003-3315-1553

МЕТОД ПЕРЕТВОРЕННЯ МОНОЛІТНОЇ АРХІТЕКТУРИ FRONT-END ДОДАТКУ НА

МІКРОФРОНТЕНДИ

Вебсистеми існують давно і їх створено досить багато. В сучасній розробці використовуються нова архітектура мікросервісів для підвищення

продуктивності, переносимісті та інших важливих характеристик. Це зумовлює необхідність трансформації застарілих систем від монолітної
архітектури до мікросервісної. Процес трансформації складний і дорогий, тому удосконалення методів перетворення старих систем на нову

платформу є актуальним. Це дослідження спрямоване на розробку методу трансформації для монолітних односторінкових програм (SPA). У

статті запропоновано метод трансформації архітектури програмної системи від монолітної до мікросервісної архітектури (MSA). Оскільки
розглядається клієнтська частина системи, пропонується термін мікрофронтенд, як аналог мікросерверів у серверній частині програмних

систем. Зроблено короткий огляд існуючих досліджень реінжинірингу архітектури та визначено переваги мікросервісного підходу.

Запропонований метод з трьох етапів відрізняється від інших методів виділенням додаткового етапу перетворення, що дозволяє м’яко
змінювати зв’язки між частинами монолітного додатку, які були реалізовані в початковій монолітній архітектурі. Перший етап – реверс-

інжиніринг, пропонується перенести фокус з пошуку застарілого коду на функціональний аналіз програми як такої. На другому етапі

пропонується перехід до модульної архітектури з виділенням функціоналу в окремі модулі. Наприкінці третього етапу ми маємо кілька
окремих програм (мікроінтерфейсів), які підключаються до основної програми. Експеримент із типовим зовнішнім SPA демонструє роботу

запропонованого алгоритму. Система, що отримана в результаті трансформації, порівнюється з вихідною за такими вимірюваними

параметрами: час створення виробничих збірок, розмір основного пакету, що надсилається в браузер, та середній час завантаження першої
сторінки. Усі порівняння показали переваги системи, отриманої в результаті перетворення. У результаті алгоритм трансформації архітектури

дозволяє отримати кращий результат, враховуючи обмеження інтерфейсного SPA.

Ключові слова: інформаційна система, архітектура програмного забезпечення, алгоритм, монолітна модель інформаційної системи,
процес розробки програмного забезпечення, міграція програмного забезпечення, мікросервісна архітектура, односторінковий додаток, метод

перетворення на мікроінтерфейси.

Повні імена авторів / Author's full names

Автор 1 / Author 1: Нікуліна Олена Миколаївна, Nikulina Olena Mykolaivna

Автор 2 / Author 2: Хацько Кирило Олександрович, Khatsko Kyrylo Olexandrovych

