ISSN 2079-0023 (print), ISSN 2410-2857 (online)

DOI: 10.20998/2079-0023.2023.02.12
UDC 004.9

O. M. NIKULINA, Doctor of Technical Sciences, Full Professor, Head of the Department of Information Systems and
Technologies of the National Technical University "Kharkiv Polytechnic Institute",

Kharkiv, Ukraine, e-mail: elniknik02@gmail.com; ORCID: https://orcid.org/0000-0003-2938-4215

K. O. KHATSKO, Senior Lecturer of the Department of the Department of Information Systems and Technologies of the
National Technical University "Kharkiv Polytechnic Institute”, Graduate Student,

Kharkiv, Ukraine, e-mail: kyrylo.khatsko@khpi.edu.ua, ORCID: https://orcid.org/0000-0003-3315-1553

METHOD OF CONVERTING THE MONOLITHIC ARCHITECTURE OF A FRONT-END APPLICATION
TO MICROFRONTENDS

Web systems have existed for a long time and quite a lot of them have been created. Modern development uses new microservice architectural to improve
performance, portability, and other important characteristics. This necessitates the transformation of legacy systems from a monolithic architecture to a
microservices one. Such a process is complex and costly, so improving the methods for converting old systems to a new platform is relevant. This
research aims to develop a method of applying microfrontends approach for monolithic single page applications (SPA). The article proposes a method
of transforming the software system architecture from monolithic to microservice architecture (MSA). Since the client part of the system is considered,
the term microfrontend is proposed, as an analog of microservers in the server part of the software systems. A brief review of existing architecture
reengineering research is made and the advantages of a microservice approach are identified. The proposed three-stage method differs from the methods
by the selection of an additional stage of conversion, which allows to gently change the connections between parts of the monolithic application, which
were implemented in the initial monolithic architecture. The first stage is reverse engineering, it is proposed to shift the focus from the search for outdated
code to the functional analysis of the program as such. The second stage, a transition to a modular architecture with the allocation of functionality into
separate modules is proposed. At the end of the third stage, we have several separate programs (microinterfaces) that are connected to the main program.
An experiment with a typical external SPA demonstrates the operation of the proposed algorithm. The system obtained as a result of the transformation
is compared with the original one according to the following measurable parameters: production builds building time, size of the main bundle, and first
page average load time. All comparisons showed the advantages of the system obtained as a result of the conversion. As a result, the architecture
transformation algorithm allows you to obtain a guaranteed better result, taking into account the limitations of the interface SPA, which were not

considered by the authors of previous articles.

Keywords: information system, software architecture, algorithm, monolith model of an information system, software development process,
software migration, microservice architecture, single page application, method of converting to microfrontends.

Introduction. To create scalable, future-oriented
software systems in modern industrial programming, the
microservice architectural approach is increasingly used [1,
2]. Microservices break traditional monolithic applications
into a set of smaller services that can be independently
developed, tested, and deployed [3]. Due to highly
decoupled software modules, microservice applications are
easy to debug, update, use third-party code, therefore, in a
professional environment, they believe that the future is
theirs [4].

However, many applications have already been
developed as monolithic or modular, so in order to improve
these applications, it is necessary to migrate them to a
microservice architecture. Such actions have become the
preferred solution for software upgrades [5] than new
development.

With the development of browser-based client
applications, as well as the requirements for them, the same
problems that occur in monolithic backend applications
become more and more relevant, this is especially acute in
single page applications (SPA), which were originally
conceived as a single monolith.

We use a microservice approach to break a monolithic
SPA application into separate microfrontends. The topic of
this paper is the method of converting the monolithic
architecture of front-end applications to microfrontends.

Lets' talk about motivation. Just imagine that you're
the developer on some great project with a beautiful
microservice architecture. Each service is developed by

separate team, services are tested and deployed in isolation.
But let's back from imagine and see what we have on
frontend. Here is the typical SPA application. It's designed
with modern framework, but it is monolithic by its nature
with all the disadvantages of this architecture. So we think
may be we can do something like this — apply
microfrontends.

In the second section we analyse existing articles and
papers related to the strategies of the migration to the
microservice architecture. We highlight that this migration
could be successfully applied to solve an existing problems
that could be occurred in applications with monolithic
architecture approach. We also point that despite of the
existence of the fact that all of the problems of the
monolithic backend applications are inherent in front-end
applications, approach with dividing has been less reflected
in front-end development.

In next section we describe exiting methods of
migration to the microservices. We propose to use a
microservice approach to break a monolithic SPA
application into separate microfrotends. In this section we
also highlight limitations of the front-end SPA applications
that could not allow to apply existing methods directly for
converting its monolithic architecture into separate
independent units similar to microservices. Here the
additional motivation of such migration is described.
Finally in the main part of the section, we propose new
determination of the existing steps and describe all the
changes to be done on every step.

© Nikulina O. M., Khatsko K. O., 2023

Research Article: This article was published by the publishing house of NTU ""KhPI" in the collection

® "Bulletin of the National Technical University "KhPI" Series: System analysis, management and
information technologies.” This article is distributed under a Creative Common Creative Common QPEN ACCESS

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

Bicnux Hayionanvnoco mexuniynozo ynisepcumemy «XI1Iy. Cepis: Cucmemnuti
ananis, ynpasninksa ma ingopmayiiuni mexnonozii, Ne 2 (10) 2023 79

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

The next sections describes the existing technical
approaches to organize microfrontends. Here we mention
the main advantages and disadvantages of these approaches
and the ability to be used for SPA.

The results section contains a description of an
experiment to prove the method proposed. Here we high-
light the requirements to the application that should be the
subject of the experiment of the architectural transforma-
tion to the microfrontends. We point the detailed descript-
tion of the changes in code and architecture according to
the previously explained method steps. In this section the
choice of a technical solution for the organization of
microfrontends is justified. New microfrontends are hosted
and the final application is evaluated.

In the last section we point the questions that are still
not covered in the current experiment or could be improved
in future works.

Analysis of Migration Strategies. Many business
applications have been in use for many vyears, their
development does not stop, and a lot of unsuccessfully
fixed bugs have accumulated [6]. It would be useful for
such applications to get a second life with a new
architecture without this accumulated set of bugs. There is
reason to believe that migrating to a microservice
architecture will help overcome the existing problems.
Particular reasons for migrating older applications are the
fact that microservices improve maintainability over
traditional monoliths due to a smaller code base, strong
isolation of components, and organization of microservices
around business functionality. In addition, the development
company has the ability to create autonomous teams of
employees, which should reduce coordination efforts and
increase team productivity.

However, the introduction of microservices can com-
plicate the quality assurance of systems [7]. From an ar-
chitectural point of view, quality assurance is considered a
key issue when migrating or developing systems based on
microservices [8]. Most of the existing research on micro-
services is focused on architectural principles and the
application of architectural patterns [9-11] in microservice
migration practices, which can provide an analytical view
of the common patterns and methods used for MSA, and
can be considered the starting point of our work. Many re-
searchers have contributed to the development and quality
improvement of systems based on microservices [2, 3, 12].

As a result, MSA has also become the preferred path
for software upgrades based on the architecture [13].

There are many examples of successful rewriting of
applications based on microservices [14], when, next to the
original, applications are made immediately in the
execution of microservices [13, 15, 16].

While MSA has gained a lot of popularity as an
architectural style for back-end development of web
applications, this architecture has been less reflected in
front-end development. Web applications have been
around for a long time and many large systems have
accumulated that have a monolithic architecture. This
statement applies to both the server side and the browser
side. For several years, research has been published on the
transformation of the back-end from a monolithic or
modular architecture to a microservice one [4, 17, 18].

Migration method. Since the microservice
architecture primarily touched server applications, we will
first consider the published methods for migrating to MSA.

The process of moving from an existing system to
microservices, based on earlier work on systems
reengineering, is described in three steps: reverse
engineering, architecture transformation, and forward
engineering [19].

The described migrations were motivated by the need
to partially or completely modernize the system, to some
extent such a system was considered legacy, so the system
that existed before the migration was called pre-existing,
and the target microservice system was called new system.
At the reverse engineering step, the system was analyzed to
identify obsolete code, which became a candidate for
transferring it to services. Further, this transformation was
a restructuring of the code with the transformation of the
current architecture to a microservice one, but maintaining
the same level of abstraction. At this step, the architecture,
business model and business strategy are changed. At the
stage of backward engineering, the system is being
finalized, implemented and deployed.

However, the browser part of the system, the so-called
front-end, has a number of limitations that make such a
conversion a difficult task. Such limitations include the
need to work with a single environment. It is executed on
the client side, so within one application there is always
only one address bar, one global BOM object, and,
accordingly, the DOM that is part of it. It is around this
problem that the main limitations of microfrontends are
built.

The authors present the adapted process of transition
of a monolithic SPA application to microfrontends as
follows on fig. 1:

Step 2: architecture transformation

Pre-existing Modular
>
architecture } architecture
o / w
= / -
= [
§ busness-doman analysis :
E' - g
3 modules dvaing 2
.g_ odules dhvaing | a
g — 2
7 | 2
— — functional analyss @
g 2 e 2
2 v =]
w o
Manolithic
2 Microfrontends
SPA

Fig. 1. Migration to microfrontends

The SPA approach has become popular relatively
recently, so the motivations for migrating to
microfrontends are caused not so much by outdated
architecture, but by the non-functional benefits that
microfrontends can provide. That is why the authors
propose to revise the above transition steps and specify
them as more appropriate in the context of working with
client applications. So, for example, at the stage of reverse
engineering, it is proposed to shift the focus from the search
for legacy code to the functional analysis of the application

Bicnux Hayionanvnozo mexuniynoezo ynisepcumemy «XI1ly». Cepisn: Cucmemnuii
80 ananis, ynpasiinus ma ingopmayiiuni mexnonozii, Ne 2 (10) 2023

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

as such. At this step, functions are grouped, unified, large
functions can be separated. At the end of this step, our
architecture (pre-existing) is still monolithic and requires
further analysis before moving on to the next step.

The purpose of the stage of architecture
transformation is to analyze the current application to
determine the main business functions of the application
and, based on them, to identify potentially separate parts of
the application that should not depend on each other as
much as possible. For these purposes, you can use the
Strategic Design Domain-driven design approach. In the
context of DDD, the main application domains are
identified. To successfully solve this problem, all
stakeholders can be involved: developers, architects,
product owners; the project documentation is studied,
compared with the main business requirements.

Based on the allocated domains, the application
modules are created, which allows us to move to the
modular architecture stage. It should be noted that at this
stage we have already solved some problems inherent in
monoliths: code is more structured and less coupled. And
although we still have one application with bundles hosted
on the one server, this architecture allows us to organize
lazy loading of modules. This leads to a decrease in the size
of the main bundle, and hence to a decrease in the initial
load time of the application.

On the forward engineering step, the coupling
between the components of the different modules are
finally broken. At this stage, a technical solution for
organizing microfrontends should be selected. Due to the
limitations of client applications, in any division into
separate parts we still need one main application to manage
other microservices. All existing technical solutions come
down to solve the problem of how individual
microfrontends connect to the main application and how it
orchestrates them.

Step by step architecture changes are described on
fig.2.

Monoitie Monolmrse
modde ! module 2 modue 3
business-function 1
Dusiness-function 2 % = -
business-function 3 g 8 %
H 2 3
2 2 8
s s »
3 8 Y
= - 2
3 B s
Monciithic shel
mie! mie2 mied
uncion 1 | o
o 2 - ~ ~
functen 2 < ﬁ ¢
functen 3 T 3 T
function 4 2 2 -1
7 3 3
functen & s ?e F
E = s
3 2 2

Fig. 2. Architecture transformation during migration to
microfrontends

On the step of the backward engineering step there is
no architecture changes. Here we can see changes on low
level: grouping, unifying or removing unused functions. On
this step we still have the same business models as in pre-
existing system. On the next step the transformation of the
architecture is finally take place. By the end of the step we
have modular monolithic architecture. Business models
could be changed to ensure better isolation of the modules.
These modules are candidates to be moved into separate
micro-frontends on the last step of the forward engineering
step. By the end this step we have several separate
applications (microfrontends) that are connected to the
main application (shell).

Technical solutions for microfrontends. Currently
there are several variants how to provide microfrontend
architecture. The simplest way to organize microfrontens is
to create several independent applications. We need to have
one main application with hyperlinks to other
microfrontend applications. Clicking on such hyperlink the
user is navigated to the other application with other URL.
The only benefit of this approach is its simplicity, but bad
user experience is the biggest price for this advantage.

Another commonly used variant is applying single-
spa framework. The idea is to create framework-specific
wrapper for every microfrontend application to integrate
them in one single-spa application. The main disadvantage
of this approach is the necessary to follow strict single-spa
framework rules for every microfrontend to organize
integration with other microfrontends. If there is a ready-
made application, then it is a bug risk that it should be
rewritten taking into account the single-spa rules.

One of the most popular mechanisms is to apply i-
frames. All necessary widgets should be placed in i-frames
that load the corresponding microfrontend hosted on
separate host. Data is exchanged between them using POST
messages. The main disadvantage of the approach is the
necessary of the loading full bundle of the microfrontend.
This fact limits ability to use i-frames only for good isolated
applications. Another downside is the risk of reloading
libraries with the microfrontend bundles.

The most modern way to work with mircrofrontends
is to apply the Module Federation feature of the Webpack
module bundler. This approach allows both the good
communication of the microfrontends and the ability to
avoid code duplication. The main idea of the approach is
configurate the shell application to import just the
necessary module from mircofrontend application.

Results. The authors took for consideration the
previously created Chess Tutorials application, on the
client part of which experiments were carried out. When
writing, the authors, recognizing the problem, chose an
application that has a large number of internal
communications, in order to maximally reflect the
problems that developers face in the process of solving real
problems. The client part is typical monolithic SPA created
on the Angular framework with state management
organized with NgRx. The application is an educational
platform for learning the game of chess. The application is
designed for two types of clients — teachers and students.

To prove the ability to apply the proposed method of
converting the pre-existing monolithic SPA was refactored

Bicnux Hayionanvnoco mexuniynozo ynisepcumemy «XI1Iy. Cepis: Cucmemnuti
ananis, ynpasninksa ma ingopmayiiuni mexnonozii, Ne 2 (10) 2023 81

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

according to all the necessary steps of migration: reverse
engineering, architecture transformation, and forward
engineering.

At the stage of backward engineering, the interface
elements were unified, large analyzed, reused components
were identified. Functions related to authorization and
student entities were separated; an application routing was
changed by adding new route for home page, Angular SDK
was upgraded to higher version etc.

At the next stage, an analysis of the business functions
of the application was carried out. Business requirements
defined the following abilities for different types of users:
tutors could invite students to the system, create lessons and
manage study groups, including tracking learning statistics
for students; students could complete tasks from the lessons
available to them, view the study groups. All available
business documentation was studied including vision and
existing prototypes. The example of the documentation that
could be applied to identify business domains is application
user path is displayed on fig.3.

Groups
S — = e -
[Group H Lesson J-«» LesSson e | [Lass0n Bulcoer]

|

k4
Grow Siastics

Fig. 3. Chess Tutorials documentation:
path of the user with role tutor

Main Pags |

= A
Lessom

v

Summarizing all the abilities and data from docu-
mentation, we identified such basic business functions as
managing students, working with lessons, working with
study groups. Based on the selected business functions, the
following domains was determined: Lessons, Students,
Groups and subdomain for Groups — Group Statistics.
Schematic view of the modular application is displayed on
fig. 4. Since domains must have a separate model valid only
within their bounded context [21], at this stage, the
application state (store) was restructured.

ADD module

Groups Stassins

Shared

Fig. 4. Application structure by the end of the architecture
transformation step

All support functions of the centralized storage have
been broken into separate modules according to belonging
to a certain domain. The models of User and Student have
also been separated, since they belonged to different
domains. In reality, it is not always possible to achieve
complete isolation of domains. This is exactly the situation
that the authors are faced with. To solve this problem, the
data obtained during functional analysis were used — the
identified reusable components were taken out into separate
shared modules. It should be noted that creating a single
shared module is a bad solution for large systems.

Since not all functions are reused in each of the above
domains, it is recommended to organize several shared
modules to prevent unnecessary functionality from being
imported.

All the domain logic was moved to separate
independent modules. All smart and dump components and
support services responsible for working with students
were collected in the Students module; the components of
the lesson builder, view and list of lessons (support services
and other structures) were moved to the Lessons module;
everything related to group management, including a
separate module of Statistics, was moved to the Groups
module. After the necessary transformations, the Chess
Tutorials application still looked like one big monolithic
application, but consisting of as much as possible separated
domain modules, as well as shared modules. At this stage a
lazy loading of the modules was applied. Domain modules
also had their own internal routing. The above domain
modules were the candidates for separate microfrontends.
Module Statistics at this stage did not look independent
enough to be moved to a separate domain, and, accordingly,
was not a candidate for moving to a separate microfrontend.
With the development of the application and with the
addition of a new functions, such a transfer may become
relevant in the future, so such a decision may be postponed
for this stage.

On the forward engineering step, all possible links
between domains was broken down as much as possible,
since each domain will be placed in a separate application.
Orchestration by these applications was done by a shell
application that was built from the main application
module. Orchestration itself was done using routing. On the
last stage we finally created microfrontends. One of the
problems that we faced at this stage is the correct
development of individual microfrontends. Since they
should be separate independent applications, duplication of
a large amount of code, at least the framework itself and
styles, cannot be avoided. Our domain modules still had
some common functions placed in shared modules. We also
had state manager and common data used in several
modules. All this led to the fact that duplicate parts of the
code would be loaded several times, for example, when
using the i-frame approach. To avoid code duplication in
bundles of the future microfrondents we applied Webpack
Module Federation approach. Microfrontends was still
separate independent applications with duplicated code, but
webpack allowed to load only the necessary (declared)
modules of microfrontend applications in the resulting
application on the client side. Shared module was divided
into separate shared libraries. New microfrontend

Bicnux Hayionanvnozo mexuniynoezo ynisepcumemy «XI1ly». Cepisn: Cucmemnuii
82 ananis, ynpasiinus ma ingopmayiiuni mexnonozii, Ne 2 (10) 2023

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

applications were created and main domains were moved
from main application to them. After that we set up shell
application to import just domain modules from our
microfrontends and deployed all the applications
separately. As a result we had shell application, mfel
(Students), mfe2 (Lessons) and mfe3 (Groups).

Comparison of the pre-existing system and refactored
system is displayed on table 1.

Table 1 — Pre-existing and target systems comparison

Measurable Pre-existing system Target system
indicator (monolithic SPA) (Microfrontends)
Production
builds building
time, ms 20290 15363
Size of the main
bundle, KB 540.5 82.7
First page
average load
time, ms 644 269

Because of the ability to run build process of every
single microfrontend and shell application in parallel, the
result build time could be equal to the build time of the
largest application — mfe2. The size of the final bundle of
the target system (microfrontends) has become smaller,
which reduced the load time of the first page of the
application.

Conclusions and Future Work. In current work,
existing methods of migration to microservices are adopted
to be acceptable for microfrontends. Steps of converting
and new states of the application are defined and described
to take into account the limitations of the front-end SPA
which was not covered by authors of previous articles.
Experiment with typical front-end SPA Chess Tutorials
interface proved that the proposed conversion method
shows a good result, in terms of the quality of the resulting
software. Further research will be related to the concept of
DDD for more efficient domain identification and
microfrontend separation. Better understanding of
conceptions of the strategic design and the boundary
context will allow to design better domain models and as a
result better isolated microfrontends.

References

P

Furrer F. J. Future-Proof Software-Systems. Springer, 2019. 376 p.

2. Gidey H. K., Marmsoler D., EckhardtJ. Grounded Architectures:
Using Grounded Theory for the Design of Software Architectures.
IEEE International Conference on Soft-ware Architecture
Workshops. URL.: https://doi.org/10.1109/ICSAW.2017.41 (access
date: 23.10.2023).

3. Terdal S. Microservices Enabled E-Commerce Web Application.

International Journal for Research in Applied Science and

Engineering Technology. URL: https://doi.org/10.22214/

ijraset.2022.45791 (access date: 23.10.2023).

4. FrancescoP.D., LagoP., Malavoltal. Migrating towards
microservice architectures: An industrial survey. International
Conference on Software Architecture, URL:

https://doi.org/10.1109/ICSA.2018.00012. (access date: 23.10.2023).

5. Cruz P., Astudillo H., Hilliard R., Collado M. Assessing Migration of
a 20-Year-Old System to a Micro-Service Platform Using ATAM.
2019 IEEE International Conference on Software Architecture
Companion URL: https://doi.org/10.1109/ICSA-C.2019.00039.
(access date: 23.10.2023).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Lo

Auer F., Lenarduzzi V., Felderer M., Taibi D. From monolithic
systems to microservices: An assessment framework. Information

and Software Technology, URL:
https://doi.org/10.1016/j.infsof.2021.106600. (access date:
23.10.2023).

Li S., Zhang H., Jia Z., Zhing C. et al. Understanding and addressing
quality attributes of microservices architecture: A Systematic
literature review. Information and Software Technology. URL:
https://doi.org/10.1016/j.infsof.2020.106449. (access date:
23.10.2023).

Soldani J., Tamburri D.A., Van Den Heuvel W.J. The pains and gains
of microservices: a systematic grey literature review. Journal of
Systems and Software. URL:
https://doi.org/10.1016/j.jss.2018.09.082. (access date: 23.10.2023).
Kazman R., Woods S. G., Carrie're S. J. Requirements for integrating
software architecture and reengineering models: Corum Il
Proceedings Fifth Working Conference on Reverse Engineering.
URL: http://doi.org/10.1109/WCRE.1998.723185. (access date:
23.10.2023).

Razavian M., Lago P. Understanding SOA migration using a
conceptual framework. Journal of Systems Integration. URL:
https://core.ac.uk/download/pdf/15455794.pdf (access date:
23.10.2023).

Steyer M. Enterprise Angular: Micro Frontends and Moduliths with
Angular. URL: https://www.angulararchitects.io/en/book/. (access
date: 23.10.2023).

Homay A., Zoitl A., de Sousa M., Wollschlaeger M. A Survey:
Microservices Architecture in Advanced Manufacturing Systems.
IEEE 17th International Conference on Industrial Informatics. URL:
http://doi.org/10.1109/INDIN41052.2019.8972079. (access date:
23.10.2023).

Abdellatif M., Shatnawi A., Mili H., Moha N. et al. A Taxonomy of
Service Identification Approaches for Legacy Software Systems
Modernization. Journal of Systems and Software. URL:
https://doi.org/10.1016/j.jss.2020.110868. (access date: 23.10.2023).
Hasselbring W., Steinacker G. Microservice Architectures for
Scalability, Agility and Re-liability in E-Commerce. IEEE
International Conference on Software Architecture Workshops. URL:
http://doi.org/10.1109/ICSAW.2017.11. (access date: 23.10.2023).
Patil M., Prajapat, S. Microservice Architecture for Scalability and
Reliability in E-Commerce. International Journal of Advanced
Research in Science, Communication and Technology. URL:
http://doi.org/10.48175/1JARSCT-2050. (access date: 23.10.2023).
Asrowardi |., Putra S., Subyantoro E. Designing microservice
architectures for scalability and reliability in e-commerce. Journal of
Physics: Conference Series. URL: http://doi.org/10.1088/1742-
6596/1450/1/012077. (access date: 23.10.2023).

Evans E. Domain-Driven Design: Tackling Complexity in the Heart
of Software. URL: https://www.amazon.com/Domain-Driven-
Design-Tackling-Complexity-Soft-ware/dp/0321125215. (access
date: 23.10.2023).

Blinowski G., Ojdowska A., Przybylek A. Monolithic vs. Mi-
croservice Architecture: A Performance and Scalability Evaluation.
IEEE Access. URL: https://doi.org/10.1109/access.2022.3152803.
(access date: 23.10.2023).

di Francesco P., Lago P., Malavolta 1. Migrating Towards
Microservice ~ Architectures: An Industrial Survey. |EEE
International Conference on Software Architecture. URL:
https://doi.org/10.1109/ICSA.2018.00012. (access date: 23.10.2023).

References (transliterated)

Furrer, F. J. Future-Proof Software-Systems. Springer, 2019. 376 p.
Gidey H. K., Marmsoler D., Eckhardt J. Grounded Architectures:
Using Grounded Theory for the Design of Software Architectures.
IEEE International Conference on Soft-ware Architecture
Workshops. Available at: https://doi.org/10.1109/ICSAW.2017.41
(accessed 23.10.2023).

Terdal S. Microservices Enabled E-Commerce Web Application.
International Journal for Research in Applied Science and
Engineering Technology. Available at:
https://doi.org/10.22214/ijraset.2022.45791 (accessed 23.10.2023).

Francesco P.D., Lago P., Malavolta 1. Migrating towards
microservice architectures: An industrial survey. International
Conference on Software Architecture. Available at:
https://doi.org/10.1109/ICSA.2018.00012. (accessed 23.10.2023).

Bicnux Hayionanvnoco mexuniynozo ynisepcumemy «XI1Iy. Cepis: Cucmemnuti

ananis, ynpasninksa ma ingopmayiiuni mexnonozii, Ne 2 (10) 2023

83

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

5. Cruz P., Astudillo H., Hilliard R., Collado M. Assessing Migration of ~ 13. Abdellatif M., Shatnawi A., Mili H., Moha N. et al. A Taxonomy of

a 20-Year-Old System to a Micro-Service Platform Using ATAM. Service Identification Approaches for Legacy Software Systems
2019 IEEE International Conference on Software Architecture Modernization. Journal of Systems and Software. Available at:
Companion. Auvailable at: https://doi.org/10.1109/ICSA- https://doi.org/10.1016/j.jss. 2020.110868. (accessed 23.10.2023).
C.2019.00039. (accessed 23.10.2023). 14. Hasselbring W., Steinacker G. Microservice Architectures for

6. Auer F., Lenarduzzi V., Felderer M., Taibi D. From monolithic Scalability, Agility and Re-liability in E-Commerce. IEEE
systems to microservices: An assessment framework. Information International Conference on Software Architecture Workshops.
and Software Technology. Available at: Available at: http://doi.org/10.1109/ICSAW.2017.11. (accessed
https://doi.org/10.1016/j.infsof.2021.106600. (accessed 23.10.2023). 23.10.2023).

7. LiS., Zhang H., Jia Z., Zhing C. et al. Understanding and addressing ~ 15. Patil M., Prajapat, S. Microservice Architecture for Scalability and
quality attributes of microservices architecture: A Systematic Reliability in E-Commerce. International Journal of Advanced
literature review. Information and Software Technology. Available at: Research in Science, Communication and Technology. Available at:
https://doi.org/10.1016/j.infsof.2020.106449. (accessed 23.10.2023). http://doi.org/10.48175/1IJARSCT-2050. (accessed 23.10.2023).

8. Soldani J., Tamburri D.A., Van Den Heuvel W.J. The painsand gains ~ 16. Asrowardi I., Putra S., Subyantoro E. Designing microservice
of microservices: a systematic grey literature review. Journal of architectures for scalability and reliability in e-commerce. Journal of
Systems and Software. Auvailable at: Physics: Conference Series. Auvailable at:
https://doi.org/10.1016/j.jss.2018.09.082. (accessed 23.10.2023). http://doi.org/10.1088/1742-6596/1450/1/012077. (accessed

9. Kazman R., Woods S. G., Carrie're S. J. Requirements for integrating 23.10.2023).
software architecture and reengineering models: Corum Il 17. Evans E. Domain-Driven Design: Tackling Complexity in the Heart
Proceedings Fifth Working Conference on Reverse Engineering. of Software. Available at: https://www.amazon.com/Domain-Driven-
Awvailable at: http://doi.org/10.1109/WCRE.1998.723185. (accessed Design-Tackling-Complexity-Soft-ware/dp/0321125215. (accessed
23.10.2023). 23.10.2023).

10. Razavian M., Lago P. Understanding SOA migration using a 18. Blinowski G., Ojdowska A., Przybylek A. Monolithic vs.
conceptual framework. Journal of Systems Integration, Available at: Microservice Architecture: A Performance and Scalability
https://core.ac.uk/download/pdf/15455794.pdf (accessed 23.10.2023) Evaluation. |IEEE Access. Auvailable at:

11. Steyer M. Enterprise Angular: Micro Frontends and Moduliths with https://doi.org/10.1109/access.2022.3152803. (accessed 23.10.2023).
Angular. Available at: https://www.angulararchitects.io/en/book/. 19. di Francesco P., Lago P., Malavolta I. Migrating Towards
(accessed 23.10.2023). Microservice ~ Architectures: An Industrial Survey. |EEE

12. Homay A., Zoitl A., de Sousa M., Wollschlaeger M. A Survey: International Conference on Software Architecture. Available at:
Microservices Architecture in Advanced Manufacturing Systems. https://doi.org/10.1109/ICSA.2018.00012. (accessed 23.10.2023).
IEEE 17th International Conference on Industrial Informatics.

Available at: http://doi.org/10.1109/INDIN41052.2019.8972079. Received 06.11.2023

(accessed 23.10.2023).

VIK 004.9

0. M. HIKYJITHA, noxtop TeXHIYHUX HAyK, mpodecop, 3aBiayBadka kadeapu iHhopManiiHuX CHCTEM Ta TEXHOIOTIN
HarionansHOT0 TEXHIYHOTO YHIBEpCHTETY «XapKiBCHKHI MOMITEXHIYHIH IHCTUTYT», XapKiB, YKpaiHa; e mail:
elniknik02@gmail.com; ORCID: https://orcid.org/0000-0003-2938-4215

K. O. XAIIbKO, crapumii Bukianad kadenapy iHGopMaIiifHIX CHCTEM Ta TEXHOJIOT N HallioHAIbHOTO TEXHIYHOTO
yHiBepcuTeTy «XapKiBChKHIA MOITEXHIYHAN IHCTUTYT», acmipadT, XapkiB, Ykpaina; e-mail: kyrylo.khatsko@khpi.edu.ua,
ORCID: https://orcid.org/0000-0003-3315-1553

METO/I MIEPETBOPEHHA MOHOJITHOI APXITEKTYPH FRONT-END JIOJIATKY HA
MIKPO®POHTEH/ 1

Bebcucremu icHYIOTH TaBHO 1 IX CTBOPEHO AOCUTH OaraTo. B cyuacHiit po3po0iii BUKOPHCTOBYIOTHCS] HOBA apXiTEKTypa MiKPOCEPBiCiB IS i IBHILCHHS
TIPOTyKTHBHOCTI, MEPEHOCUMICTI Ta IHIINX BaXIIMBHUX XapakTepucTuk. e 3yMoBiroe HeoOXiqHiCTh TpaHC(hOpMAIIii 3aCTapianX CHCTEM BiJ] MOHOIIITHOT
apXxiTeKkTypH 10 MikpocepsicHoi. [Iporiec TpaHchopmariii cKkIagHMiA i TOporuii, TOMy yIOCKOHAJICHHS METOIiB IIEPETBOPEHHS CTAPUX CHCTEM Ha HOBY
miathopmy € akTyansHuM. Lle nociipkeH s crpsiMoBaHe Ha po3poOKy MeToay TpaHcdopMarii Iuisi MOHOJMITHHX OIHOCTOPiHKOBUX mporpaM (SPA). ¥
CTaTTi 3alPONIOHOBAHO METOJ TpaHc(opMamii apXiTEeKTypH IPOrpaMHOi CHCTEMH BiJ] MOHOJITHOI 0 MikpocepBicHOI apXiTekTypHu (MSA). Ockinbku
PO3TIIATAEThCSA KITIEHTChKA YaCTHHA CHCTEMH, TPOIOHYETHCS TEPMiH MIKPOMPOHTEHN, SIK aHAJIOT MiKpOCEpBEpIB y CEpBEPHIN YaCTHHI MPOTpaMHMX
cucTteM. 3poOJIeHO KOPOTKME OIVISIJ ICHYIOUMX JOCIHIKEHb PEIHKHHIPUHTY apXiTeKTypd Ta BH3HAUEHO I€peBard MIKpOCEPBICHOTO MiAXOmy.
3anponoHOBaHNH METOJ 3 TPHOX ETalliB BiJPI3HAETHCS BiJ IHIIMX METOJIB BHAUICHHSIM JOJAaTKOBOTO €Tally MEPeTBOPEHHS, IIO JIO3BOJAE M’SKO
3MIHIOBAaTH 3B’S3KH MDK YaCTHHAMH MOHOJITHOTO JOJATKy, sKi Oyjin peayi3oBaHi B MOYaTKOBiil MOHOMITHIN apxiTekTypi. Ilepmmii etanm — peBepc-
IHKMHIPHHT, TPONOHYEThCS NepeHecTH (POKyC 3 MOIIYKY 3acTapilioro Koay Ha (yHKLIOHAJNBHUE aHami3 mporpamu sk Takoi. Ha npyromy erami
TIPOTIOHYETBCS TIEPEXiJ] 10 MOMYIBHOI apXiTEeKTypH 3 BHAUICHHSIM (yHKI[IOHaTy B OKpeMi Momyini. HanpukiHIi TpeThoro erarmy Mm Maemo KilbKa
OKpeMHX Iporpam (MiKpoiHTep(eHciB), sIKi MiKITIOYal0ThCS 10 OCHOBHOI porpamu. ExcriepumeHT i3 THIIOBUM 30BHIMHIM SPA neMoHCTpye poboTy
3alpONOHOBAaHOr0 anroput™my. CucTema, IO OTPHMaHa B pe3yibTaTi TpaHc(opMmalil, MOPIBHIOETBCS 3 BHUXIMHOK 3a TAKUMH BHUMIPIOBAHUMU
TIapaMeTpaMHu: Yac CTBOPEHHs BUPOOHHMYHX 30ipOK, PO3Mip OCHOBHOTO TAKeTy, 10 HaJCHIIAEThCA B Opaysep, Ta Cepe/iHiil 4ac 3aBaHTaXXEHHS MepIIol
CTOpIHKH. Yci MOPiBHSAHHS IIOKa3aJIH IepeBard CUCTEMH, OTPUMAHOI B Pe3yJIbTaTi IEPETBOPEHHS. Y Pe3yiIbTaTi alrOpUTM TpaHc(hopMallii apXiTeKTypH
JIO3BOJISIE OTPUMATH KPAIIUiA Pe3ysbTaT, BpaxoByoun oOMexeHHs inTepdeiicHoro SPA.

Kuarouosi cioBa: inpopmauiiiHa cucTeMa, apXiTeKTypa IpOrpaMHOro 3abe3neyeHHs], alfOPUTM, MOHOJITHA MOJieb iHMOPMAI[iHHO CHCTEMH,
TIpoIiec po3poOKHU MPOTrPaMHOT0 3a0e3MeUeHHs], Mirpallis IporpaMHoro 3abe3edeHH s, MiKpocepBicHa apXiTeKTypa, OHOCTOPIHKOBHI 10JAaTOK, METO
MePETBOPEHHS Ha MiKpoiHTepdeiicu.

Toeni imena asmopis / Author's full names

Astop 1/ Author 1: Hikynina Onena Mukonaisua, Nikulina Olena Mykolaivna
ABTop 2 / Author 2: Xaneko Kupuno Onexcannposuy, Khatsko Kyrylo Olexandrovych

Bicnux Hayionanvnozo mexuniynoezo ynisepcumemy «XI1ly». Cepisn: Cucmemnuii
84 ananis, ynpasiinus ma ingopmayiiuni mexnonozii, Ne 2 (10) 2023

