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AN ADAPTIVE METHOD FOR BUILDING A MULTIVARIATE REGRESSION

We propose an adaptive method for building a multivariate regression given by a weighted linear convolution of known scalar functions of deterministic
input variables with unknown coefficients. As, for example, when multivariate regression is given by a multivariate polynomial. In contrast to the general
procedure of the least squares method that minimizes only a single scalar quantitative measure, the adaptive method uses six different quantitative
measures and represents a systemically connected set of different algorithms which allow each applied problem to be solved on their basis by an
individual adaptive algorithm that, in the case of an active experiment, even for a relatively small volume of experimental data, implements a strategy
of a statistically justified solving. The small amount of data of the active experiment we use in the sense that, for such an amount, the variances of
estimates of unknown coefficients obtained by the general procedure of the least squares method do not allow to guarantee the accuracy acceptable for
practice. We also proposed to significantly increase the efficiency of the proposed by O. A. Pavlov. and M. M. Holovchenko modified group method of
data handling for building a multivariate regression which is linear with respect to unknown coefficients and given by a redundant representation. We
improve it by including some criteria and algorithms of the adaptive method for building a multivariate regression. For the multivariate polynomial
regression problem, the inclusion of a partial case of the new version of the modified group method of data handling in the synthetic method proposed
by O. A. Pavlov, M. M. Golovchenko, and V. V. Drozd, for building a multivariate polynomial regression given by a redundant representation, also
significantly increases its efficiency.
Keywords: multivariate regression, integral measure, adaptive algorithm, regression analysis, expert coefficients, linear programming.

1. Introduction. In recent years, the authors have E is arandom variable, its mathematical expectation
been working in the field of regression analysis, namely de- {5 ME =0, its variance Var( E) =o? <o, the value of
veloping efficient methods for building univariate and mul-
tivariate regressions (MR) which are linear in relation to
unknown coefficients [1, 2, 3]. The conducted critical anal- l//()_c) are known numerical scalar functions of the

ysis of existing universal methods for building an MR [4—  vector argument x. In [1], such functions were the compo-
20] showed that this problem is still relevant in both theo-  pents of a multidimensional polynomial.

retical and applied aspects. The new approach implemented According to the results of an active experiment
in this paper consists in that the universal adaptive method T
proposed by the authors (which includes six different crite- -
ria and four algorithms based on the outlined methodology ~ known coefficients &,, j =1,L.

of their use) allows to create an individual algorithm for an 2.2. Measures of deviation of experimental data

efficient solution of each individual applied problem. from the regression model used by the adaptive method.
2. The a.daptlve method for building an MR. 3271 4 classical measure implemented by the general
2.1. Formulation of the problem. The BR model looks like  ¢.;0me of the least squares method (LSM). A vector of es-

VaI(E ) is known or its efficient estimate is known;

X, > y;,i=1,n) we need to estimate the value of the un-

Y()—C)z ZL Oy, (g)_,_ E, (1) timates 6, of unknown components of the vector

6=(6,,...,6,)" minimizes the next measure:

where X =(x1,...,xm )T is a vector of deterministic input , 5
variables; an}i:rlli Zizl (y; - Z‘/_:l Oy, (% )) . )
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It is known that

b =(4"4) " Ay, 3)
where
‘/’1()?1) l//L()_Cl) T
A: ) y:(yla"'ayn) .
l//l(_n) V/L(‘fn

As is known [21], the estimates 6, are linear, unbi-

ased, efficient in the class of linear estimates (Markov’s
theorem). One can propose a statistically significantly more
efficient linear estimate of the vector @ than the estimate
obtained by the LSM only in the case when the structure of
the algorithm for finding the linear estimate is adaptive, not
fixed, that is, it depends on the input data and intermediate
results of its execution. This is the main methodological
idea that formed the basis of the proposed adaptive method.

2.2.2. Minimization of the sum of modules. Looks like

P L

Remark 1. The use of measure (4) in its explicit form
is inefficient due to Markov’s theorem.

2.2.3. A measure that minimizes the module of the sum
of differences. Looks like

Si(v-Xtow (E))‘. )

We recommend using it in explicit form only if it is
known that the density function f (x) of the random varia-
ble £ is symmetrical about the ordinate axis.

2.2.4. The measure of MR deviations from experi-
mental data realized with a given probability. For exact

min_
0;, j=1,L

values of 6,, j = 1,_L, the following is met:

> =2 0w, (& -3 2, (6)

where ¢; is the i -th realization of the random variable E .

A random variable lZ::I_IE, (E, are independent
i

copies of E ) for n>20 on the basis of a partial case of the
scalar limit theorem practically has a normal distribution

with parameters M(lZ'_Z 1E"j =0, Var(lZ'_l 1E"j =
n=—"rv n=—"v

2
o .
=—. Letus find ¢, , for which

n
P[—l > " E
n i=1

where « is set experimentally, we recommend choosing

an a <0.1. Then
g (F_aj , ®)

Jn 2

where @' (x) is the inverse Laplace transform and o is

srn,wj:l—a, 7)

tn,a,o' =

the arithmetic root of VaI(E ) or its efficient estimate. Then

the measure 2.2.4 is the condition for Hj, j= I,_L, which is

met with the probability 1 -« :
1

—ZLI(% —Z;‘gj%(fi ))

n

<tiao- )

Remark 2. Additional fifth and sixth measures are im-
plemented when we know the density function f (x) of the

random variable £ or the f (x) is known with the known

with the accuracy of the values of its numerical parameters.
From the methodological point of view, it is convenient to
introduce them later (see subsections 2.3.5, 2.3.6).

2.3. Algorithms of the adaptive method. 2.3.1. The
first algorithm (the first version). The first step. Find the

following estimate él :
6,=(4"4)" A"y.

The second step. Solve the following problem of lin-
ear programming (LP):

(10)
-z, <y — 2”9] ( )<zl, z, 20, l—ln

- nao‘—zl 1()/, Z /l//j(xt))sn'tn,a,o-- (11)
The variables of the LP problem (10), (11) are 6,,

j= I,_L, z,i= I,_n . Let us denote by éz the optimal solu-
tion of the LP problem (10), (11).
The third step. The solution of the first algorithm is él if

DIRERS)

and éz if condition (12) is not fulfilled.

2.3.2. The first algorithm (the second version). It dif-
fers from the algorithm of subsection 2.3.1 in the second
step, in which we solve the following LP problem:

. n + _
mlIlZ' u. +u. ),
=1\ 1 i

L _ . . _ . T
yi_Zj:IHjl//j(xi)zui —u;u; 20,u; 20,i=1n,

; b, (E)) ‘ <Holyas (12)

(13)

—-n- tn,a,o‘ S Z:;l (yz - j= 1€j ( z))s n- tn,a,o‘ (14)
The variables of the LP problem (13), (14) are ¢,

j=LL,u ,u,i=ln.

Remark 3. The LP problem (13), (14) is solved by the
simplex method, since only in this case the fulfillment of
the conditions Viu, -u; =0 is guaranteed. Whence, the

optimal functional values for the LP problems (10), (11)
and (13), (14) are the same. The advantage of the LP prob-
lem (13), (14) over the problem (10), (11) is that in its
standard form it has » variables and equations less.

2.3.3. The second algorithm (the first version). The

vector 93 of estimates of unknown components of the vec-
tor @ is a solution to the next LP problem:
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minz , (15)

—z< 2,1( le y (xl.))Sz, z2>0 (16)

where the variables of the LP problem (15), (16) are &, ,
j=LL, z.

2.3.4. The second algorithm (the second version). 93
is a solution to the following LP problem:

min(u+ +u’), (17)

n L — N _
Y b-Yow )= - ay)

The wvariables of the LP problem (17), (18) are
0,j=LL,u",u

Remark 4. We recommend using the second algorithm
when it is known that the density function of the random
variable E is symmetric about the ordinate axis and
L<<n.

2.3.5. The first hybrid algorithm of the adaptive
method. The hybrid method is used only when the density
function of the random variable E is known at least with
the accuracy of the values of its numerical parameters, and
the number of tests n allows sufficiently precise test of the

complex hypothesis by the ¥ ? statistic.
The first step. Find the estimates él , éz , é3 .

The second step. Find the values sequence 6, (a)u,a)z ),

O<a=0,<o,<..

<o, =b, w,-,, =const, [ =

=2,k , w,=const>0 as solutions to the following LP
problems (the first version):

min(a)u Do+ a)zz), (19)
_zigy,—zjlﬁjl//]( ) z,, i=ln,
—z< Z ( Z /l/jl( ))S z (20)
or the LP problems (the second version):
mm{wl,z (u +ui) +a)2(z*+z’)}, (21)

L — - - . T
y,—zj:lﬁjl//j(x,.)zu,. +u;yu 20,u; 20,i=1,n,

n L _ . o B
zi:l( i_zj':1€jl//j(xi))=z —Z ,Z ,2Z >0. (22)
The variables of the LP problem (19), (20) are &,,

i=1,L, ':1_ z , and for the LP problem (21), (22)

J

0. =1 L,u,
Remark 5. The LP problem (21), (22) can be solved

only by the simplex method.

The third step. For each of k, +3 found vector esti-

— .__ + —
u;, ,i=lLn, z°,z7.

mates 6, 6,, 6;, 94(601)1,602), lzm, find estimates of

realizations of the random variable E as

y’_Z;lép,jo (?_Cf),iZL_n,pZLk1+3.

For p>3 ép = @(wl’pf},a)zl p=4k +3. The
estimate of the components of an unknown vector @ is the
vector 9,), p =Lk, +3, with which the X

testing the simple or complex hypothesis about the density
function of the random variable £ has the minimum value.

Remark 6. Let X ,27 be the realization of the ¥ ? statis-
tic for the estimate found by the hybrid algorithm. Then, if

statistic for

P(;(z > ;(;)> 0.05, then the solution is unreliable, other-

wise, the realization of the ¥ : X ; statistic belongs to the
feasible region with significance level 0.05, and the smaller

the value of ¥ i (provided that ;(; >y —2, where r is the

number of degrees of freedom of the ¥ ? statistic), the more
reliable is the vector 8 of estimates of the components of the
unknown vector found by the hybrid algorithm.

2.3.6. The second hybrid algorithm of the adaptive
method. 1t is used when the distribution of the random vari-

able £ is known. Let us denote v, = M |E | , 17‘ £ 1saprac-
tically exact estimate of v, obtained as a result of simulation

modeling, not related to tests on the regression model (1).

Remark 7. 12"1
n=1"v

is a consistent sampling
characteristic for estimating the unknown vector Vig|»

where E,.,izl,_n, are independent copies of the random
variable E . Thatis, it coincides with Vigl with a probability
of 1 when n — oo . Whence, with a sufficiently large one n,
1 <«

;Zle

sufficiently small value, where &, is the result of the 7 -th

gl-| in absolute magnitude differs from Vig| by a

test on the random variable £ (i -th test on the regression

model (1)).

The estimate of the vector 6 by the second hybrid al-
gorithm. és(a),), 0<a,=0, <o, <...<@, =b,,
V@, —w, , =const, is the solution to the following LP
problem:

min z:« \Zis (23)
—z <y, 0w, (F)<z, 7,20, i=Ln,
1 n
@<= 7 V‘E‘ <o,
et , <D0 -0y, E))<nt,, (24)

The variables of the LP problem (23), (24) are z,,
i= L_n 0., )= I,_L . Further, the description of the second

hybrid algorithm coincides with the corresponding descrip-
tion of the first hybrid algorithm.
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Remark 8. b, —a, can be a sufficiently small number
(see Remark 7). That is, for true values of & L J= 1,_L , there
is small enough @, , in which condition (24) is fulfilled (un-

der the assumption that v, ~ ).

3. Algorithm for reducing the number of compo-
nents of the expression (1) for an MR given by a redun-
dant representation. A necessary condition for using al-
gorithms of the adaptive method is that L is significantly
less than n. We can offer the following algorithm for re-
ducing the value of L for a fixed set of experimental data.

The first step. Regression (1) is fictitiously increased
by one m +1-th deterministic input variable x,__, , thatis,

m+l 2

Y(x):ijlg/l// ( )+9 +1xm+l +E9 (25)

where 6, =0. Data of the experiment ()?I. —> Vi =1,_n)

1 m
are replaced by [[XU,. . -,xmip_zj_l xji) > Vi, i= 1,nj .
i

The second step. Find the estimates of ¢, by the

LSM, j=LL+1,at 8, =0.
The third step. By the cluster analysis algorithm [2]

the set of coefficients {Hj, j=LL +1} is divided into two

classes M, and M, [2], 6,,, should belongto M, . Other-
wise, the algorithm stops.
Remark 9. We can change the values of x,,,, i =1,n,

and repeat steps 1-3. The necessary condition for the con-
tinuation of the algorithmis 6,,, e M, .

The fourth step. Exclude all terms, which coefficients
belong to M, , from expression (25).

The fifth and subsequent steps of the algorithm. Re-
peat steps 1-3 for the new expression of the MR (provided
that for each iteration the coefficient for the fictitious input
variable belongs to the class M, ) until only the coefficient

for the fictitious input variable will remain in the class M.
The resulting expression of the MR statistically signifi-
cantly does not contain terms that insignificantly affect the
output variable, and the difference between the number of
tests n and the number of MR members can be signifi-
cantly reduced if really the MR was given by a redundant
representation. This will lead to an increase in the effi-
ciency of using the adaptive method.

4. Active experiment. Finding the analytical ex-
pression of the density function of the random variable
E and the estimate of its variance. We consider the case
when an active experiment can be carried out in sufficient
quantity at a fixed value of the deterministic input variables
X; . The number of tests should be sufficient to test the
complex hypothesis about the density function of an arbi-
trary random variable by the ¥ ? statistic, as well as for ef-
ficient estimation of the variance of a random variable.

4.1. Finding the analytical expression of the density
function of a random variable E . The first step. Find a

sample of the volume n of realizations of the random var-

iable E+ Z}L_:l 0,x; . They are the values of the output var-

iable from the experiment ()_cf >V, 1 =1,_n)

The second step. By the values of y,,i= L_n, build a

histogram, the geometric expression of which allows to de-
duce a complex hypothesis about the density function of the

random variable £ +Zj:l 0,x; , which is checked by the

2 ..
most “hard” X statistic.
Remark 10. Obviously, a more complex procedure for
testing a complex hypothesis can be proposed. If altering

the value of M (E + Vconst ) affects solely the numerical

parameters within the analytical expression that represents
the density function for the random variable E, then, in
case of acceptance of the complex hypothesis, the problem
is considered solved.

4.2. Estimation of Var(E). As an estimate of the var-

iance of a random variable E , we can take the number
2
P CE wit

because Var(E +Vconst ) = Var(E).

5. The use of some provisions of the adaptive
method in the modified group method of data handling
(MGMDH) [2]. We propose to make the following
changes to the general algorithmic scheme of MGMDH [2].

5.1. Using two regular criteria. In the case when the
analytical expression of the density function of the random
variable E is known with the accuracy of the values of the nu-
merical parameters and is symmetric with respect to the ordinate
axis, then we propose when finding by the test sequence of
experimental data, that is, data that were not used to find
estimates of unknown coefficients of partial descriptions of the
sought regression, to use not the single regular criterion
which is the residual sum of squares, but two criteria.

The first regular criterion:

+n, "oA 2
Zi:"”(yi _zjzlg“l//l/ (xi)) ,

where the set of coefficients {é;, ,j= l,rl} gives the /-th

(26)

partial descriptions of the sought MR; #n is the amount of
empirical data used to find estimates YHZ, ,j=Ln, of the

coefficients of the /-th partial description; n, is the num-

ber of experimental data in the test sequence.
The second regular criterion:

= (=2 b ()|

Thus, in the general case, we get two partial descrip-
tions that claim to be used to find the correct structure of
the sought MR, and not a single one.

5.2. The use of the hybrid algorithm. The hybrid al-
gorithm (the first or the second one, depending on the avail-

27
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able information) of the adaptive method is used to find es-
timates of coefficients for the entire (# + n, ) experimental

data set for the found partial description(s). The final esti-
mate of the unknown MR is the one for which the realiza-

tion of the X~ statistic is the smallest [2].

Remark 11. If the symmetry condition of the density
function of the random variable E is not fulfilled, then the
use of the second regular criterion (27) is redundant.

Remark 12. More detailed recommendations on the
use of criteria and algorithms of the adaptive method will
be the result of its careful experimental research. Now it
can be stated that finding estimates of the MR coefficients
with the simultaneous use of several criteria significantly
expands the application possibilities of universal methods
of regression analysis, in particular those proposed by the
authors of the adaptive method.

Conclusions. 1. To estimate the coefficients of an MR
which is linear with respect to unknown coefficients, we
proposed a universal adaptive method that implements not
a single criterion, as in the least squares method, but several
criteria. The adaptation consists in the fact that the structure
of the algorithm for the final result obtaining is not fixed
but depends on the intermediate results of calculations and
input data.

2. We considered the possibility of a statistically cor-
rect obtaining, based on the results of a special experiment,
an analytical expression of the density function of a random
variable that affects additively the output variable.

3. We showed how the use of the adaptive method can
significantly increase the efficiency of the modified group
method of data handling proposed earlier by the authors.
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AJTATITUBHAM METOJI TOBYJIOBA BATATOBUMIPHOI PETPECII

3anponoHOBaHO aJaNTUBHUH MeTo[ M00Y10BH 6araTOBHMIPHOI perpecii, Mo 3a1acThesl 3BaXKEHOIO JIIHIHHOIO 3TOPTKOI0 BIIOMUX CKAIIPHUX (YHKIIH
BiJl JETEPMIHOBAaHMX BXiJHUX 3MIHHUX, KOC(ILIEHTH TNpPU SKUX € HEBIOMUMH. SIK, Hampukian, KOJIM OaraTOBHMIpHAa perpecis 3aga€eThCs
GaraToBUMipHHM moniHoMOM. Ha BiaMiHy Bix 3arajbHOI HPOLEAYPU METOAY HAiMEHINHMX KBaJpaTiB, IO MiHIMI3ye JIUIIEC ONHY CKATAPHY KiIbKICHY
Mipy, aJalTHBHHN METOJ BUKOPHUCTOBYE LIICTh Pi3HHUX KIJBKICHHX MIp i MPECTaBiIsAe COO0I0 CHCTEMHO 3B’s3aHy CYKYIHICTh Pi3HUX aJTOPUTMIB, IO
JI03BOJISIFOTh KOXKHY HPHKJIAJHY 3aJady PO3B’A3yBaTH HAa IX OCHOBI IHIAMBIAyalbHMM aJalNTHBHUM ajrOPUTMOM, SIKHil B BHIIAJKy AKTHBHOTO
€KCIEPHMEHTY HaBiTh JUISl TOPIBHSIHO HEBEITMKOTO 00’ €My EKCIICPUMEHTANIBHUX JaHUX Pealli3ye CTPaTerito CTAaTUCTHYHO OOIPYHTOBAHOIO PO3B’SI3aHHS.
Hesenukuii 06’€M JaHUX aKTUBHOTO KCIIEPHMEHTY BUKOPUCTaHHUI B TOMY CEHCI, 110 JJIs1 HHOTO AUCIIEPCii OL[IHOK HEBITOMHX KOC(iLliEHTIB, OTPUMaHHUX
3arajJpHOI0 MPOLEAYPOI0 METOJA HAMMEHIINX KBAaIPaTiB, HE JO3BOJSIOTH TAPAHTYBATH MOMYCTUMY JUIS NMPAKTHKH TOYHICTH. [IpOMOHYyEThCS Takox
CYTTEBO MiJBUIINTH e(eKTHBHICTh 3amponoHoBaHoro IlaenoBum O.A. Ta I'omoByenko M.M. MoauQikoBaHOTO METORY TpPYyIOBOTO ypaxyBaHHS
apryMeHTiB 00y10BY 6araToBUMIpHOI perpecii, TiHiHHOI BiTHOCHO HEBITOMHX KOS(ILIIEHTIB Ta 3aJaHOT HA UTHIIIKOBUM OITHCOM, 32 PAXyHOK BKJTIOUCHHS
B HBOTO AESIKUX KPHUTEPIiiB Ta aITOPUTMIB aJalTUBHOIO METOy TOOYI0BH OaraToBUMipHOI perpecii. J[yis1 Bumaaky 3aBgaHHs perpecii 6araToBUMipHUM
TIOJIIHOMOM BKJIFOYEHHsI YaCTKOBOTO BHIIAJKy HOBOI Bepcil MOJH(IKOBAHOTO METOAY TIPYNOBOIO ypaxyBaHHS apryMEHTIB B CHHTETHYHHIl METOZX
1o0y10BM OaraToBUMIPHOI MOJTIHOMIaNbHOI perpecii, 3a7aHOl HA/UIMIIKOBUM OMMCOM, 3ampornoHoBaHoro IlaBmosum O.A., I'omoByenko M.M. Tta
Jpo3x B.B., Takoxk cyTT€BO HigBHIIYE HOTO e(heKTHBHICTB.

KurouoBi cioBa: GaratoBuMmipHa perpecis, iHTerpajibHa Mipa, aJanTHBHHN aJTrOPUTM, pErpeciiiHuil aHami3, ekcriepTHi KoedillieHTH, JiHiiHe
HpOrpaMyBaHHS.
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