ISSN 2079-0023 (print), ISSN 2410-2857 (online)

DOI: 10.20998/2079-0023.2024.01.13
UDC 004.41

M. D. VERES, Student, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine; e-mail: maksym.veres@nure.ua;
ORCID: https://orcid.org/0009-0009-1768-8693

N. V. GOLIAN, Associate Professor of the Department of Software Engineering, Kharkiv National University of Radio
Electronics, Kharkiv, Ukraine; e-mail: nataliia.golian@nure.ua; ORCID: https://orcid.org/0000-0002-1390-3116

OPTIMIZATION OF THE DEVELOPMENT PROCESS OF MONOLITHIC MULTI-MODULE PROJECTS
IN JAVA

In recent years, there has been an increase in the complexity of Java software development and a change in the scope of projects, including an increase
in the number of modules in projects. The multi-modularity of projects, although it improves manageability to a certain extent, but often creates a number
of problems that can complicate development and, a problem that will appear in the future, require more resources to support. This article will analyze
the main problems of monolithic multi-module Java projects and will try to consider a number of possible solutions to overcome the above problems.
The article discusses the peculiarities of working with multi-module monolithic projects using Java as the main programming language. The purpose of
this article is to identify features and obstacles using the above architectural approach of the software, analysis of the main possible issues of working
with the monolithic multi-module Java projects, as well as providing recommendations for eliminating these obstacles or describing the features of the
process that could help engineers in supporting this kind of projects. In other word the main goal of this work is to create recommendations, provide
modern best practices for working with monolithic multi-modular software architecture and the most popular modern technological solutions used in
corporate development. The proposed recommendations allow the team, primarily developers and the engineering side, to avoid possible obstacles that
lead to the loss of efficiency of the monolithic software development process. The most important advantage, from the recommendations given in the
article, is the optimization of resource costs (time, money and labor) for the development process. As a result of the article, a general list of
recommendations was obtained, which allows the developer to better analyze what changes in the project should (if necessary) be made to optimize the
development, assembly and deployment processes of a monolithic Java project, as well as advice before designing new software to avoid the main

obstacles of monolithic architecture in the future.

Keywords: monolithic architecture, multi-module architecture, Java, project build, module, development, project deployment.

Introduction. To begin with, here is a short descrip-
tion of monolithic architecture and its features. To do this,
let’s turn to the article «Microservices vs. monolithic
architecture» by Atlassian marketing strategist Chandler
Harris [1].

A monolithic application is a single common project,
while a microservice architecture, in turn, is a combination
of small, independently deployed services. Monolithic
architecture has already become a traditional software
model; it represents a single project that works
autonomously and independently of other applications. In
turn, the code base in such an architecture combines all
business tasks.

Let us highlight the main advantages and disadvan-
tages of monolithic architecture. The advantage is the ease
of deploying applications with a monolithic architecture.
Fewer independent modules reduce configuration and
deployment costs. Using a single code base in some
situations leads to simplified development, however,
making fundamental changes to its structure can, on the
contrary, significantly increase costs.

In some situations, the performance of monolithic
applications can be higher than that of applications with a
microservice architecture. For example, in a centralized
codebase it is sometimes possible to use a single API,
which often immediately sends a request to the data storage
system, when, in turn, a microservice architecture requires
calling various APIs, as well as transferring data through
application communication interfaces (for example,
REST).

In cases where at the initial stages, as the monolithic
application grows, its main disadvantages begin to appear.

One of the main ones is a significant increase in resource
costs for development (both material and time). Especially,
this flaw will manifest itself during major changes in a
single code base, which may affect all functionality. Not
only does the developer need to take this into account, but
also a competent team lead must realize that it is necessary
to almost completely test the functionality of the project,
which could be affected by these changes. This is a rather
unpleasant factor, especially during the period when, for
example, the release date is approaching, and changes to
the code base are requested and occur after the main
business functionality has been tested. Thus, there is a need
to retest the application, where there is a risk that it will not
be fully completed by the release date.

As a possible example, a situation where the business
side urgently requires new functionality, in addition to what
was planned in advance, and from the technical
management side, closer to the end of the development
period, a request comes for a mandatory update of the
project build system plugins to close a technical
vulnerability. After updating the plugins, part of the
project’s functionality stops working with an error. The
development team needs to try to fix the problem with
urgency, and the testing team has even more urgency to
verify that the problem is fixed.

The next disadvantage of such an architecture -
unreliability. An instability or bug in one module has the
risk of affecting the availability of the entire application.

Scalability is the third key problem. Individual
components cannot be scaled, since they are part of a single
code base and are not presented, at least, as a separate
stand-alone module [2].

© Veres M. D., Golian N. V., 2024

Research Article: This article was published by the publishing house of NTU "KhPI" in the collection

@ @ "Bulletin of the National Technical University "KhPI" Series: System analysis, management and
information technologies." This article is distributed under an international license Creative Common OPEN ACCESS
Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

Bicnux Hayionanvrnozo mexuiunoeo ynisepcumemy «XI1Iy. Cepia: Cucmemnuii

80

auanis, ynpaenints ma ingpopmayiini mexnonozii, Ne 1 (11)°2024

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

About multimodularity. Let us briefly recall what
multimodularity is, why this approach is used, and what
advantages and disadvantages it has. To do this, let's turn to
Google's article on using the modularization approach in
Android development [3].

And so, modularization is a practical approach that
consists of breaking the project's code base into loosely
coupled and autonomous parts, each of which is a separate
module. Each such module is independent and created for
a clear purpose. For example, a simple application that has
a presentation module, a module that represents business
logic, and a module for communicating with the data
storage environment. Thus, dividing the code base into
modules can reduce the complexity of designing and
maintaining especially large systems. Let us highlight the
main advantages of this approach.

The multimodular approach opens up the possibility
that a module's code base can be reused both within a
project and across multiple applications. In this case,
modules are individual building blocks. An example would
be where an application has multiple presentation modules,
say a Ul module and multiple REST API modules. In this
case, they can reuse the functionality of the module
(modules) for working with business logic, which in turn
uses the module for working with the data storage
environment.

Another benefit is increased efficiency in dependency
management. It becomes possible to control which module
dependencies and which part of its code base needs to be
transferred to other modules, and which needs to be hidden
or encapsulated.

The next advantage is scalability. When using a
properly implemented principle of separation of concerns,
changes in one module will not cause a cascade of changes
in all other modules of the project [4]. However, often, in
practice, in both old and new monolithic projects, this
principle is not taken into account, which subsequently
significantly increases support resources.

However, in the process of implementing a
modularization approach, developers can often encounter
risks and common architectural mistakes. For example,
each module will introduce additional costs in the form of
increased assembly complexity and cumbersome
boilerplate code. At the same time, the complexity of the
module assembly configuration creates the risk of making
it difficult to maintain configuration consistency across all
project modules in the long term. The costs of
implementing this approach should be assessed to see if
they will hinder the improvement in scalability. In such
cases, a possible solution would be to conduct an
architectural refactoring to find modules that could be
consolidated.

Conversely, in some cases, especially on large
monolithic multimodule projects that are already quite old,
the problem arises that the modules can become too large,
thereby spawning another monolith, which in turn deprives
almost all the benefits of the multimodularity of the project.
For example, business logic modules quite often grow in
applications, but some functionality is used only once, at
the same time requiring quite a lot of configurations and
resource costs [5].

The next danger in implementing a multimodule
approach is unnecessary complexity. It is necessary to
analyze whether, in principle, it makes sense to split the
project into modules. The main thing to pay attention to is
the size of the codebase. If the project is not expected to
exceed a certain size limit, the scalability gain will be either
so small or non-existent that implementing the approach
discussed will make no sense. As an example, there is no
point in splitting very small microservices that perform one
single simple action into modules.

To summarize, to determine whether multimodularity
is suitable for a particular project, you can only first assess
its expected size, the need for scalability, encapsulation, or
simply reduce build time, then it makes sense to consider
the possibility of switching to a multimodular architecture.

Multimodularity in Java. Java is one of the most
popular object-oriented programming languages today [6].
Generally, more commonly used today for either enterprise
development or Android development. In addition to a
number of advantages that this language has, one of them
has only recently begun to appear in a real development
environment - the Java Platform Module System (JPMS).
Let's look at how this works, using an article from the
Baeldung resource [7] as well as material presented in the
book «The Java Module System» [8].

JPMS arrived with the 9th release of Java and brought
with it a new layer of abstraction over packages known as
the Java Platform Module System.

A module in JPMS itself is a group of closely related
packages and resources, along with a newly introduced
module descriptor file. The packages within each such
module are identical to those already existing in Java. Each
module is responsible for its own resources, such as, for
example, media or properties and configuration files.

At the time of writing, there are four types of modules:
system modules - modules that are listed when the list-
modules command is run. They include Java SE and JDK
modules. Application modules are those modules that are
usually created when there is a need to use multimodularity.
They are defined in the compiled «Module-info.class» file
included in the compiled JAR file. Automatic modules are
unofficial modules that can be added to a project by
appending existing JAR files to the module path. The
module name will be derived from the name of the JAR file.
Automatic modules receive full read access to all other
modules that have been written to the path. Unnamed
Module - In situations where a class or JAR file is loaded
on the classpath but not on the module path, it automatically
becomes part of the unnamed module. Thus, it is a universal
module that allows backward compatibility with previously
written Java code.

Modules have two distribution methods. The first is in
the form of a JAR file or in the form of a «disassembled»
compiled project. It is also possible to create multimodule
projects consisting of a «main program» and several library
modules. When creating new modules, you need to make
sure that there is only one module in each JAR file. When
setting up the build file, it is necessary to combine each
project module into a separate JAR file. To configure the
module, you need to place a specialized file named
Module-info.java in the root of the packages. This file is

Bicnux Hayionanvnozo mexuiunoeo yHieepcumemy «XI11y. Cepis
ananis, ynpasninis ma ingopmayiini mexnonoeii, Ne 1 (11)°2024

: Cucmemnuii

81

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

known as a module descriptor, containing all the data
necessary to create and use a new module.

It is worth highlighting a number of problems
associated with using the Java Platform Module System.
Large number of projects (especially in the corporate
environment) are currently avoiding the implementation of
this technology due to the difficult migration of existing
projects, since it requires quite significant resources and
changes. Also, managing dependencies between modules
can add complexity to the development process. JPMS
requires explicit definition of dependencies, which in turn
creates the possibility that the project structure will become
more granular and more additional code will need to be
written to manage dependencies. Another problem is the
limited support for JPMS by the currently extremely
popular Maven and Gradle build and deployment systems,
which often results in a refusal to implement JPMS into a
project. Quite often third-party libraries and frameworks do
not have support with JPMS, in cases where their
dependency structure is quite complex, or the Java
Reflection API is used. In this case, it is necessary to create
additional «adapters» that will allow the implementation of
JPMS. In some cases, the use of JPMS, like any complex
module management structure, can lead to a drop in
performance and additional resource costs, which can be
especially sensitive for some projects.

Perhaps, the lack of sufficient experience with this
technology and, accordingly, its support by third-party
frameworks and code makes JPMS a rather controversial
option for implementation as a project modularization
system, inferior in capabilities to the same tools for
assembling and deploying applications such as Gradle and
Maven.

Popular solutions. Let's look at popular solutions to
improve the process of working with monolithic
multimodule applications. The very first and obvious thing
is to use popular project build systems for Java projects,
such as Apache Maven and Gradle.

Apache Maven is a dependency management and
build automation tool primarily used for Java projects [9].
The core concepts of Maven include the POM (Project
Object Model) approach, which is an XML file that
describes the project structure, its dependencies, plugins
and other settings. This file is the main configuration
element for Maven and, in turn, contains project
information such as name, version, dependencies, etc.

The next concept of Maven is the automatic
downloading and management of dependencies, which are
specified in the POM file and downloaded automatically
using the central Maven repository or other remote
repositories. This process build system contains a division
of the project build process into several phases, which
include compilation, testing, packaging, deployment and
others. Each such phase is performed in a specific project
and can be configured using plugins. Plugins, in turn, allow
you to expand functionality by introducing new build goals
or performing other tasks. Maven has both built-in plugins
and support for creating your own plugins.

Let's look at how to use Maven for a new project. To
do this, we will generate code using the application

archetype «maven-archetype-quickstarty. We will use the
next example command:

mvn archetype:generate -Dgroupld=com.example -
Dartifactld=my-project =~ -DarchetypeArtifactld=maven-
archetype-quickstart -DinteractiveMode=false

Further, as the code is written, the necessary
dependencies will be added to the project, for example, the
JUnit testing framework. To do this, we need to edit the
«pom.xml» file and declare the dependency in it. The
example for JUnit dependency is displayed on fig. 1.

<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>

Fig. 1. The example of the «pom.xml» modification

And when everything is ready, we can run the
following command to get the project JAR file in the local
Maven repository «mvn clean instally.

Gradle is also a tool for automating project build,
testing, and deployment, with an emphasis on a declarative
paradigm as opposed to an imperative one [10]. The project
structure and its dependencies are described using DSL
(Domain Specific Language). This tool is more flexible in
describing the project structure; DSL can be used based on
Groovy, Kotlin. There is also support for parallel builds,
incremental builds, the ability to create separate tasks, and
much more. For example, the ability to define various
assembly tasks, configure dependencies, source code
sources, resource management, etc. While Maven can also
be used for monolithic, multimodule Java projects, Gradle,
due to its flexibility and rich customization options, is often
preferred for more complex projects with a large number of
modules and components.

Let's look on at a simple example of how Gradle
allows us to create a task to package, test, further build and
deploy a JAR file of a specific module to a specific path.
The example is on fig. 2.

The image describes the general example structure of
the «build.gradle» files. With defining the plugins, group,
version, module dependencies, configured repository
sources and specific tasks created manually. This file is
placed in each module of the project supported by Gradle
build system. The configuration properties could be
changed in the «gradle.properties» file placed in resources.

This «build.gradle» file defines the following tasks.
«buildModule» — the task that builds the module will first
execute the «clean» (to clean up previous builds) and «test»
(to run tests) commands, after which a JAR file will be
created using the corresponding «Jar» plugin.
«testModuley is a task that runs unit tests for the module.
«deployModuley — this task deploys the assembled JAR file
to the specified directory. Thus, you can execute all three
commands by running only one of them.

Bicnux Hayionanvrnozo mexuiunoeo ynisepcumemy «XI1Iy. Cepia: Cucmemnuii

82

auanis, ynpaenints ma ingpopmayiini mexnonozii, Ne 1 (11)°2024

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

plugins {
id 'java“'
}

group ‘com.example’
version *1.0-SNAPSHOT"

repositories {
mavenCentral()
}

dependencies {
testImplementation ‘junit:junit:4.12°
}

task buildModule(type: Jar) {
dependsOn ‘clean’, ‘test’
archiveFileName = "${project.name}-${project.version}.jar"
destinationDir = file("$buildDir/libs™)
from sourceSets.main.output

}

task testModule(type: Test) {
testClassesDirs = sourceSets.test.output.classesDirs
classpath = sourceSets.test.runtimeClasspath

¥

task deployModule(type: Copy) {
dependsOn ‘buildModule’
from "$buildDir/libs"
into 'path/to/deployment/directory’

Fig. 2. The example of the «build.gradle» file

Gradle has incremental (enabled by default) and
parallel project builds.

Parallel assembly, while reducing time costs,
especially for multicore systems, can also significantly
increase the required computing resources of the system
where it occurs.

And the next recommendation is to use Docker to
simplify the deployment process [11]. The use of this
technology will bring a number of advantages to the
project. The ability to flexibly configure Docker files for
each module has a positive impact on the scalability of the
project.

Perhaps one of the few disadvantages of this
technology is the complexity of configuring the Docker
images themselves, especially for beginners and in cases
where the project has a complex structure with a large
number of dependencies. Docker containers themselves
will require additional computing resources to operate. This
may result in increased costs for maintaining the
application deployment environment [12].

Thus, Docker may introduce additional costs for
maintenance and support, including container orchestrators
(for example, Kubernetes). However, for large projects this
is a good solution that will make the deployment process
much more efficient.

Let's look at how to use Docker in practice. Let's
imagine that we have a monolithic project in Java, which
has several modules, let's call them abstractly «repository»,
«api», «servicen, «weby. First of all, we will define a
Dockerfile for each of the modules. The example of the
Dockerfile for «api» is displayed on fig. 3.

The next step will be building and running the Docker
images for each of the modules with the next type of
commands. «docker build -t myproject-api:1.0 api/» and
«docker run -d --name api-container myproject-api:1.0»
And this is how we get a running container for the «api»
module in the background.

¢ Using a base JDK image

FROM openjidk:11

¢ Copy a JAR-file from the project build te the container
COPY build/libs/api.jar /app/api.jar

¢ Define a command for project start

CMD ["jawva", "-jar", "/app/api.jar"]

Fig. 3. The example of the Dockerfile

Conclusions. The result of this article, is examined
features of working with multimodule monolithic Java
projects.

Listed the key problems of this type of project
architecture, ways to solve them, as well as technologies
and tools that can improve the efficiency of the
development and deployment of these projects, and gave
practical examples of their use. Discovered the ways to
replace the monolithic architecture with the microservice
architecture.

As a summary, the main recommendation discovered
in this article is to get rid of most of the problems is to
switch to a microservice architecture whenever possible,
use the Gradle project build tool and Docker
containerization. This makes the development process
more effective and reduces the project support costs.

References

1. Atlassian. Microservices vs. monolithic —architecture. URL:
https://www.atlassian.com/microservices/microservices-
architecture/microservices-vs-monolith (1ata 3BepHenHs: 3.05.2024).

2. Martin R. Clean architecture. Prentice Hall, 2017. 432 p.

3. Microservices.io. Pattern: ~ Monolithic Architecture. ~ URL:
https://microservices.io/patterns/monolithic.html (naTa 3BepHeHHS:
10.05.2024).

4. Fowler M. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, 2003. 560 p.

5. Android Developers. Guide to android app modularization. URL:
https://developer.android.com/topic/modularization (mata
3BepHeHHs: 10.05.2024).

6. Bloch J. Effective Java. Addison-Wesley Professional, 2017. 416 p.

7. Franklin C. 4 guide to java 9 modularity. Baeldung. URL:
https://www.baeldung.com/java-9-modularity ~ (zaTa 3BepHEHHI:
10.05.2024).

8. Parlog N. Java module system. Manning Publications Co. LLC, 2019.
440 p.

9. LalouJ. Apache Maven Dependency Management. Packt Publishing,
2013. 158 c.

10. Muschko B. Gradle in action. Manning Publications Co. LLC, 2014.
480 p.

11. Mouat A. Using docker: developing and deploying software with
containers. O'Reilly Media, Incorporated, 2015. 354 p.

12. Oggl B., Kofler M. Docker: practical guide for developers and
devops teams (the rheinwerk computing). Rheinwerk Computing,
2023. 491 p.

References (transliterated)

1. Atlassian. Microservices vs. monolithic architecture. Available at:
https://www.atlassian.com/microservices/microservices-
architecture/microservices-vs-monolith (accessed 10.05.2024).

2. Martin, R. C. Clean Architecture. Prentice Hall, 2017. 432 p.

3. Microservices.io. Pattern: Monolithic Architecture. Available at:
https://microservices.io/patterns/monolithic.html (accessed
10.05.2024).

4. Fowler M. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, 2003. 560 p.

5. Android Developers. Guide to Android app modularization.
Available at: https://developer.android.com/topic/modularization
(accessed 10.05.2024).

6. Bloch, J. Effective Java. Addison-Wesley Professional, 2017. 416 p.

Bicnux Hayionanvnozo mexuiunoeo yHieepcumemy «XI11y. Cepis
ananis, ynpasninis ma ingopmayiini mexnonoeii, Ne 1 (11)°2024

: Cucmemnuii

83

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

7. Franklin, C. 4 Guide to Java 9 Modularity. Baeldung. Available at: 10. Muschko B. Gradle in action. Manning Publications Co. LLC, 2014.

https://www.baeldung.com/java-9-modularity (accessed 10.05.2024). 480 p.
8. Parlog, N. The Java Module System. Manning Publications Co. LLC, 11. Mouat A. Using docker: developing and deploying software with
2019. 440 p. containers. O'Reilly Media, Incorporated, 2015. 354 p.
9. Lalou, J. Apache Maven Dependency Management. Packt Publishing, 12. Oggl B., Kofler M. Docker: practical guide for developers and
2013. 158 p. devops teams (the rheinwerk computing). Rheinwerk Computing,
2023.491 p.
Received 15.05.2024
VIIK 004.41

M. JI. BEPEC, cryneur, XapkiBchbKkuil HalliOHAIbHH YHIBEPCHTET paliOeIeKTPOHIKH, M. XapkiB, Ykpaina, 61166; e-mail:
maksym.veres@nure.ua; ORCID: https://orcid.org/0009-0009-1768-8693

H. B. I'OJIAH nouent xadenpu nporpamuoi imkeHepii, XapKiBChbKUi HAllIOHAIBHUN YHIBEPCUTET PaIiOENEKTPOHIKH,

M. XapkiB, YkpaiHa, 61166; e-mail: nataliia.golian@nure.ua; ORCID: https://orcid.org/0000-0002-1390-3116

ONITUMIBALIA MPOLECY PO3POBKN MOHOJIITHUX BATATOMO/AYJIbHUX ITPOEKTIB HA JAVA

B ocraHHI pokM crocTepiraeTbcsi 3pocTaHHs CKJIAJHOCTI PO3POOKM MPOrpaMHOro 3a0e3NedeHHs Ha Java Ta 3MiHa OOCATY MPOEKTIB, y TOMY YHCII
301IbIICHHS KiTBKOCTI MOZYIIB Y IPOEKTaxX. baraToMoaybHICTh IPOEKTIB X04Ua i MOKpalTye MeBHOIO MipOI0 KEPOBAHICTh, ajle YaCTO CTBOPIOE HU3KY
mpobieM, SKi MOXKYTh YCKIIaJHUTU pO3pOOKy Ta, MpobiieMy, sika 3’IBUTHCS B MaHOyTHROMY, BUMaraTH Oiblle pecypeiB Uil MATPUMKH. Y Wil cTaTTi
Oyne MpoaHaTi30BaHO OCHOBHI MPOOJIEMU MOHOJNITHUX 0araToMOIy/bHUX Java-IpoeKTiB 1 3pobieHa crnpoba po3rIsTHYTH Psi MOXKIMBHUX PIIICHb IS
[OJOJIAHHS BHINE3a3HAYCHUX MpOOIeM. Y CTarTi pPO3MILAAlThCS OCOONMMBOCTI poOOTH 3 6araTOMOAYIPHHMH MOHOJITHHMH MPOEKTAMH 3
BUKOPUCTAaHHSM Java sIK OCHOBHOI MOBM IpOrpaMyBaHHs. METOIO HaHOI CTATTi € BHUABICHHA OCOOJIMBOCTEH 1 MEpEelIKOA NpU BHKOPUCTAHHI
BUIIE3a3HAUCHOTO apXIiTEKTYPHOTO MiAXOAY INPOrpaMHOro 3a0e3leucHHs, aHali3 OCHOBHMX MOXJIMBHX TIpoOieM pOOOTH 3 MOHONITHUMH
GaraToMOxyIbHUMHE Java-IIPOEKTaMH, a TAKOX HAaJTAaHHS PEKOMEH/ALH {010 YCYHEHHS [IUX MEPEIIKO abo OmiCy 0CO0IMBOCTEll MPOLIECy, KUl MOXE
JIONOMOT'TH iHKEHepaM y MiATPUMILi TAKOTO POy HPOEKTIB. [HIIMMH CIIOBaMH, OCHOBHOIO METOIO aHOI pOOOTH € CTBOPEHHS PEKOMEH/IAIlIN, HalaHHS
CYYaCHHUX KpallUX MPAKTUK POOOTH 3 MOHOJITHOIO 0araToMOYJIbHOIO apXiTEKTYPOIO IPOrpaMHOTO 3a0€3MeYEHH Ta HAUTIOMYJIAPHIIIMMH Cy4acCHUMH
TEXHOJIOTIYHUMH PIICHHSIMH, SKi BUKOPHCTOBYIOTHCSI B KOPHOPATHBHIH po3po0dii. 3aIponoHoBaHi pPeKOMEHAIi] J03BOIAIOTH KOMAH i, HacaMIIepes
PO3pOOHUKAM Ta iHXXCHEPHiH CTOPOHI, YHUKHYTH MOXUIMBUX MEPEIIKOA, SIKi MPU3BOAATH 0 BTPATH €(PEKTHBHOCTI MPOLECY PO3POOKH MOHOIITHOIO
nporpaMHoro 3adesnedenns. HaiiBaxmBimoro nepeBaroro, 3 peKOMEHAAMLiH, HABEJICHUX y CTATTi, € ONTUMI3allis BUTPAT pecypciB (YaCBHX, IPOLIOBUX
i TpymOBHMX) Ha Tmpolec pO3poOKH. Y pe3ymbraTi CTarTi OTPUMAHO 3arajbHUH CIHCOK PEKOMCHIALM, SKHil JO03BOJSE PO3POOHMKY Kparie
MPOAHATI3YBATH, IKi 3MiHU B IPOEKTI HEOOXITHO (SIKIIO HEOOXiIHO) BHECTH JUTS ONTHMI3aLlii poweciB po3poOKH, 30ipKH Ta pO3ropTaHHs MOHOJITHOTO
Java-npoekTy, a Takox Mopajay I PO3POOKH HOBOTO IPOrPaMHOro 3a0e3Me4eHHs, 100 YHUKHYTH OCHOBHHX MEPELIKO MOHOJITHOI apXiTeKTYpH B
MalOyTHBOMY.
Kuro4osi ciioBa: MOHOIIITHA apXiTeKTypa, araToMo/lyibHa apXiTeKTypa, Java, 30ipka IpPO€EKTY, MOIYIIb, PO3POOKA, POTOPTAHHS TIPOEKTY.

Iosni imena aemopis / Author's full names

ABTop 1/ Author 1: Bepec Makcum JImutposud / Veres Maksym Dmytrovych
ABTop 2/ Author 2: T'onsa Haranis BikropiBHa / Golian Natalia Viktorivna

Bicnux Hayionanvrnozo mexuiunoeo ynisepcumemy «XI1Iy. Cepia: Cucmemnuii
84 auanis, ynpaenints ma ingpopmayiini mexnonozii, Ne 1 (11)°2024

