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MODIFICATION OF THE DECOMPOSITION METHOD OF CONSTRUCTING MULTIVARIATE
POLYNOMIAL REGRESSION WHICH IS LINEAR WITH RESPECT TO UNKNOWN COEFFICIENTS

The authors created a universal method of constructing multivariate polynomial regression given by a redundant representation. The method is synthetic,
it organically combines a decomposition method and the modified group method of data handling. First, the decomposition method is implemented, it
consists in the decomposition of the multivariate problem into a sequence of subproblems of constructing univariate polynomial regressions and the
corresponding systems of linear equations, the variables of which are estimates for the nonlinear terms of the multivariate polynomial regression. Partial
cases that guarantee the finding of estimates with a predetermined value of their variances were considered. The formal algorithm for constructing
coefficient estimates for nonlinear terms of the multivariate polynomial regression stops working on the first coefficient whose estimation with a
predetermined accuracy is not achieved under the specified limitations on the number of tests. The estimation of all coefficients that were not found by
the decomposition method is done by a heuristic method, which is an efficient modification of the group method of data handling. The increase in the
efficiency of the synthetic method is achieved primarily by finding such new theoretically substantiated algorithmic procedures (aggregated operators)
of the decomposition method, which significantly, in comparison with its previous version, increases the number of coefficients for nonlinear terms of a
multivariate polynomial regression that can be found in advance given accuracy. The authors showed that this effect is achieved due to new theoretical
provisions used in the visual analysis of the structure of the multivariate polynomial regression given by the redundant representation by a professional
user. The given illustrative example facilitates the use of the presented results when solving practical problems.

Keywords: regression analysis, multivariate polynomial regression, redundant representation, decomposition method, individual algorithm, least
squares method.

1. Introduction. Construction of a multivariate re-
gression based on the results of an active experiment is still
theoretically and practically relevant as shown, in particu-
lar, in [1-15]. As noted in the abstract, the authors proposed

dition for finding estimates with a given accuracy), E isa
random variable, its mathematical expectation is ME =0,

its variance Var(E)=o’ <. o2 is known or its efficient

a universal synthetic method for constructing a multivariate
polynomial regression (MPR) given by a redundant repre-
sentation. The originality and efficiency of the method were
protected by relevant publications. In this paper, we
propose to qualitatively increase its efficiency by
expanding the theoretical and practical capabilities of the
decomposition method, which is a part of the synthetic
method.

1.1. The problem statement. An MPR is given by the
following redundant representation [14]:

Y (%)= b2 ()" (%) +E @

V(il ..... i()EK,V(jl,.“,j()eK(il,m,i,)

where X =(X,..., X, )T is a deterministic vector of input

variables, x, [c;,, d,], 0<¢ <d; (this is the strictest con-

upper estimate is known. The values of the coefficients
bl:-% are unknown (b is an unknown constant).

We need to estimate the unknown coefficients at non-
linear terms of the MPR according to the results of an active

experiment (xi >V, i :1,n).

1.2. Basic provisions of the decomposition method
[1]. The decomposition method [14] implements a method-
ology of reducing the finding of estimates for nonlinear terms
of the MPR (1) to the sequential construction of univariate
polynomial regressions (UPR) and the solution of the
corresponding systems of linear equations. Variables in these
equations are estimates for nonlinear terms of the MPR (1).
The general formal algorithmic procedure for obtaining
estimates of all coefficients for nonlinear terms of the MPR
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(1) consists in the sequential execution of the first and then
the second subalgorithm. The first subalgorithm is
implemented step-by-step for all members of the MPR, each
of which contains at least one scalar variable of power
greater than or equal to two.

Remark 1. The procedure for choosing nonlinear terms
and choosing for each of them a single coefficient of the form

(xip )Jp » §, > 2, is substantiated in [1].

At each step of the first subalgorithm, the scalar varia-
ble x; is replaced by a virtual scalar variable z :

X, =8 z+b . (2)

The coefficients a , b are found according to [1].

T

The values x

i, 1=1n, of the real input variable x; are
found according to (2) by the given in advance values of the
virtual variable z . Other input variables take fixed values.
The results of the active experiment on the obtained real uni-
variate regression are transformed as the result of the virtual
active experiment on the virtual UPR relative to the virtual
scalar input variable z .

Remark 2. It is substantiated in [1] how many virtual
UPRs are built at each step of the first subalgorithm. Their
number determines the dimension of the systems of linear
equations, which variables are the estimates of the coeffi-
cients at the nonlinear terms of the MPR (1).

Remark 3. It is shown in [1] that the reduction of real
UPRs to virtual ones in the case when a system of linear
equations has only one variable allows one to efficiently find
the variance of the estimate for the nonlinear term of the
MPR (1) before conducting a real experiment and to find the
necessary number of repetitions of the main experiment to
obtain the variance of the given value. If this quantity is
excessive, the corresponding coefficient cannot be found
with the specified accuracy by the decomposition method.

The steps of the second subalgorithm [14] relate to

finding nonlinear terms of the MPR of the form b.fll‘ . For

this case it is proposed in [1] to replace all input variables
included in this term by the virtual variable z, other input
variables take fixed values in the experiments.

It was proved in [1] that the implementation of the first
and second subalgorithms formally allow obtaining es-
timates of the coefficients for all nonlinear members of the
MPR (1).

1.3. The main drawback of the formal algorithmic
procedure of the decomposition method. The theoretical
substantiation of the decomposition method guarantees that
the successive use of the first and second subalgorithms at
the preliminary stage of the problem analysis leads to the
guaranteed obtaining of estimates of all coefficients at non-
linear terms of the MPR. But with the limited number of
experiments given in advance, the specified accuracy (by the
variance value) is not guaranteed. When finding the es-
timates of the following coefficients, the estimates of pre-
viously found coefficients at nonlinear terms of the MPR are
used. Thus, the result obtained may be unsatisfactory in
general. Therefore, when solving practical problems, the al-
gorithm of the decomposition method stops working on the

first nonlinear term of the MPR that has the estimate of the
coefficient significantly different from the given one by
variance at the stage of the preliminary analysis.

2. Methodology of qualitative improvement of the
efficiency of the decomposition method. The methodol-
ogy of qualitative improvement of the efficiency of the de-
composition method is that a qualified user, analyzing the
structure of the MPR, the coefficients of the nonlinear terms
of which have to be estimated (by the variance value) with a
given accuracy, using extended theoretical possibilities of
the decomposition method (see Section 3), finds by himself
the step by step sequence of the algorithm at the stage of the
preliminary analysis of the problem solution (before
conducting real experiments). That is, in what sequence will
the active experiment be implemented to construct the found
number of UPRs for a user-defined sequence of nonlinear
terms of the MPR, which guarantees at each step finding the
coefficient estimates with a given accuracy. Conducting an
active experiment for each UPR in the found order after the
preliminary analysis stage is used to build the estimates of
the coefficients at the highest degree of each UPR. This
sequence of steps can be obtained by a formal procedure only
by enumerating all possible options, which is obviously
unconstructive.

3. Expanding the theoretical possibilities of the de-
composition method for the efficient construction of an
individual algorithm for the preliminary analysis of the
problem solution. Section 3 describes four different theo-
retically substantiated methods (aggregated operators) of
constructing an UPR for estimating the coefficients at non-
linear terms of the MPR at the stage of preliminary analysis
of the individual algorithm of the decomposition method.
The sequence of their use is set by the user as a result of their
analysis of the MPR structure. As a result of the im-
plementation of the previous stage, the individual algorithm
(the second stage) becomes fully formalized, namely, the
sequence of active experiments to be conducted (with known
values of the input variables) is specified, the result of each
of the experiments is the estimate of the coefficient at the
highest degree of a specially designed UPR, which allows to
estimate with a specified accuracy the coefficient at the
corresponding nonlinear term of the MPR.

3.1. The first human-computer algorithmic proce-
dure (the first aggregated operator (AO)). The user selects
the nonlinear term of the MPR

ot ()" (5 )" (x ) ©

that contains his chosen input variable x, in the power of

Jx = 2. Algorithmically, the verification of the following
condition is carried out: there should not be any nonlinear

term of the MPR containing (xik )]' Vj, > j, . If such terms

are present, the coefficients for them with the specified ac-
curacy will be found as a result of the implementation of an
active experiment in the previous steps of the second stage
of the individual algorithm. In the main active experiment,
the variable x, will take the value x ;=a z +b,,

i =1,n, where the coefficients a, , b , and the value z;,
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i=1n, of the input virtual scalar variable z of the spe-
cially constructed virtual UPR [1] are given by formulas
(7), (8) [1]. Other input variables x;, i=1,m, i=i,, take
fixed values in the active experiment, and the input varia-
bles included in (3) take maximally large modulo values
(all others take minimally small modulo values). At the
same time, according to [1], the statistical data of the results
of the virtual active experiment are given in the form

(zi 95 = % I ()" (x,)" j (4)

g -+ iy

where the coefficients b, will be found with the speci-

fied accuracy in the previous steps of the second stage of
the individual algorithm. In this case, according to [1], the

variance of the estimate of the coefficient biljfjji'("‘ (see (3))
has the form

Dbk = ‘D7, ®)

where, according to [1], 7; is an estimate of the

coefficient at z of the maximum power j, of the virtual

UPR (for simplicity, both the random variable and its
realization are denoted by 7; ).

As shown in [1], for the virtual variable z, which in the
virtual active experiment takes the value z, <z, <...<Z,

where Vi z,—z,_, =const, n=10, z, =-50, z,, =50, the

variances of the estimates of the coefficients of the virtual
UPR are the following:

D7, =17-10°0", Dy, =4.7-10°0",
Dy, =2.6-10"c°, Dj; =4.5:10"6",

that is, the variance of each subsequent term decreases by
three orders of magnitude. The analysis of expression (5)
allows at the previous stage of the individual algorithm to
set the values of the input variables in the active experiment
(considering possible repetitions of the main active experi-
ment [1]). This allows us to obtain an estimate of the coef-
ficient (3) with the given accuracy or conclude that the co-
efficient (3) cannot be obtained with the given accuracy by
the individual algorithm of the decomposition method.

3.2. The second human-computer algorithmic pro-
cedure (the second AO). The user selects the nonlinear term

of the MPR
2 () (5 ) () ©

sets the input variables X o X v X which in the main

experiment will take values

vix i=a z;+b ,i=1n, O]

IlI

where, as in Subsection 3.1, coefficients a, bit. are setac-

cording to formulas (7), (8) [1]. Other input variables in the
active experiment take fixed values, as in Subsection 3.1.
Algorithmically, the following condition is checked: there
should not be any nonlinear term of the MPR containing
input variables X, , ..., X, or their subset, the total degree
of which is greater than or equal to Z::l Ji,- 1f such terms
exist, then their coefficients must be found with the speci-
fied accuracy in the previous steps of the second stage of
the individual algorithm of the decomposition method.

If this condition is fulfilled, the description of the se-
quence of steps repeats Subsection 3.1 completely. In this
case, according to [1], we obtain the variance of the coeffi-

cient estimate bif%jji'l"‘ at the stage of preliminary analysis:

D7, . ®

i=1 m=1

in#h,-.h

As well as in Subsection 3.1, the analysis of expression
(8) allows at the preliminary stage of the individual algorithm
of the decomposition method to set the input values of the
active experiment (considering possible repetitions of the
main experiment [1]). This allows us to obtain an estimate of
(8) with the given accuracy or to conclude about the
impossibility of implementing such an active experiment.
3.3. The third human-computer algorithmic proce-
dure (the third AO). The user selects the nonlinear term of
the MPR
BEtx X e X 9)

T T i

In the main active experiment, the input variables will take
the values X, ; =z, +b, ,1=1ti=1n; a , b, , z areset

as in Subsection 3.1. Other input variables in the active ex-
periment take the minimum possible values. Algorithmi-
cally, the verification of the following condition is carried
out: there should not be any nonlinear term of the MPR

containing input variables x; , | =1,t, or their subset, the to-

tal degree of which is greater than or equal to t. If such
terms exist, then their coefficients with the specified accu-
racy must be found in the previous steps of the second stage
of the individual algorithm.

If this condition is fulfilled, similarly to Subsec-
tions 3.1, 3.2, we obtain the variance of the coefficient es-

timate of b, (8) at the preliminary stage of the individual

algorithm:

1

Dﬁiij_li[ =" Dy.,. (10)

t

[1(a)

1=1

Remark 4. Implementation of Subsection 3.3 is real if
the values of all positive coefficients a; [1] are close to or

exceed one. For example, if in [1] z,,—2, =100, then the
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values of d. —c,,i=1,10, should be close to or greater than
100.

3.4. The fourth human-computer algorithmic proce-
dure (the fourth AQO). The user selects the nonlinear term of
the MPR

BEdx X X (11)

I A i

A subset of its input variables i, ,...,i, ,m<t, m>2,inthe

ty?

main active experiment will take the value X; ;
"

=a, 7+
+b, I=1m, m<t, i=1n, as in the previous Subsec-

tions 3.1-3.3, according to [1]. In the main active experi-
ment, the other input terms of (11) take maximally large val-
ues, and the rest take minimally possible values. The fulfill-
ment of the following condition is checked: there is no non-
linear term of the MPR containing input variables X o X

I[m

or their subset, the total degree of which is greater than or
equal to m . If there are such terms, then their estimates will
be found with the given accuracy in the previous steps of the
second stage of the individual algorithm.

When this condition is met, the variance of the estimate
of the coefficient (11) is equal to

1 1
(a) 11

11 11
Vireliy ool |

Db = (12)

2 Dym

(%i4)

Remark 5. According to [1], the estimate of the coef-
ficient at the corresponding term of the virtual UPR accord-
ing to the results of the main virtual active experiment is
given by the expression

fi:iVin(zi)'

where Qj(z) are normalized orthogonal polynomials of

Forsythe (NOPF) found by the values z;,i = 1,n, of the vir-

tual input variable z . Thus, the estimates of coefficients,
based on the results of real active experiments, are found
using only a single set of NOPFs, the coefficients of which
are found in advance with a given accuracy.

Remark 6. Estimates of the coefficients for nonlinear
terms of the MPR are found by the formulas:

a) for the first human-computer algorithmic procedure
(Subsection 3.1):

(13)

1 A

; ax (14)
(aik) ' H (Xi,,¢)

6]1]1 —
- g t
1=, I#iy

b) for the second human-computer algorithmic proce-
dure (Subsection 3.2):

Bilj.l::i;j( =7 i 1t i '7;| ) (15)
e 1T () %
Vi #t o0y

c) for the third human-computer algorithmic procedure
(Subsection 3.3):

~ 1 A
b, s =7 (16)

1=1

d) for the fourth human-computer algorithmic proce-
dure (Subsection 3.4):

Sl 1 ~

(N m

t
Hai‘.' IT x.
1=1 1=1

V(i -y |

Formulas (14)—(17) are a consequence of the equation
expressing the coefficient at the maximum term of the virtual

UPR through its corresponding coefficient b/~*. The

corollaries of these equations are also the formulas for the
variances of the coefficients (5), (8), (10), (12).

Remark 7. If there are input variables, the range of ad-
missible values of which contains zero, then using the pos-
sibility to fix a zero value for an input variable in an active
experiment can increase the number of coefficients for non-
linear terms of the MPR, the estimate of which is the solution
of a linear equation with a single unknown (see the
illustrative example in Section 4).

Remark 8. The redundant representation of the MPR
may contain input variables of a power greater than the
maximum degree of the NOPFs, the coefficients of which are
found in advance with a given accuracy. Then, the values of
such variables should be fixed in all active experiments.

4. llustrative example. Let us set a redundant repre-
sentation of the MPR in the form:

2,3 2,2
Y(xi,xz,xs,x4,x5,x6)=bo+b1x1x3x2+b2x1x2x4+
2 2,2 3y2 3
+0,%5 X, X, + B, X5 X X, 4+ B XX, X + DX X, X, X +

+o, XK + XXX, + DX X, X, X, X, + E, (18)
where ME=0, DE =4, E distributed according to the
normal law.

The true values of the coefficients are as follows:

b,=1,b,=2,b,=0,b,=1,b,=0,b,=2, b,=1,
b,=2,b,=1by=2.

Thus, the true representation of the MPR lacks the
terms with coefficients b,, b, .

Areas in which input variables can take values are as
follows: x, €[1,10], x,e[110], x,e[L10], X, €
IS [1, 10], X e[O, 5] , X e[l, 5].

Remark 9. The values of the input variables, which take

different values in the simulation of a real active experiment
at each step, are set according to formulas (7), (8) [1]:

d —-c d —c,
a=——-=b=c,-———=12
Iy~ 4 Iy —4

1)
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X; =z, +b;,1=110.

Remark 10. The MPR (18) does not contain linear
components because, according to the theoretical provisions
of the decomposition method, their estimate is inefficient and
is found using the modified group method of data handling
[1], and the presence of a linear part in an MPR does not
affect the accuracy of coefficient estimates for nonlinear
terms of an MPR.

Remark 11. The maximum degree of a NOPF is equal
to five.

The user visually sets the sequence of steps of the in-

the first step for the coefficient b, (the second AO, Sub-
section 3.2), the second step for b, (the second AO), the
third step for b, (the second AO), the fourth step for b, (the
first AO, Subsection 3.1), the fifth step for b, (the first AO),
the sixth step for b, (the first AO), the seventh step for b,
(the second AO), the eighth step for b, (the second AO), the
ninth step for b, (the fourth AO, Subsection 3.4). The results

of the calculations are given in tables 1-4.
Remark 12. Due to the limited size of this article, the
values of the input and output variables in the simulation of

dividual algorithm at the preliminary stage of the analysis:

Table 1 — Realizations of the random variable E used according to steps 1-9 in the simulation of the main active experiment

Step 1 Step 2 Step 3
—-1.0659694104455328 —2.195369811977885 0.807950141301234
3.7710681456850645 —-0.12063419142686603 2.6127415396270233
—0.7377368040485024 —1.7907751802465064 1.9923563564870557
-0.0769108594611502 —2.1026649535817645 —0.005506315074662242
1.659240003527758 —-1.5447658191004847 1.2290579479034371
0.6385687090711256 —0.2002561262551154 0.1419919936945139
1.393884665512836 2.6798399955112573 0.7288220117347707
—0.9162780984774989 —2.7977613703718434 —0.5038414467160576
—4.381571522845034 2.4754704037663915 —0.24207886186565378
—5.414570636039612 1.056266088850859 1.4330913734546347
Step 4 Step 5 Step 6
—0.6893135072283657 —0.6893135072283657 1.540866648948249
—1.1931899114947138 —1.1931899114947138 1.869030207418431
3.0249102665371534 3.0249102665371534 —2.4896342020289994
0.5270108534316472 0.5270108534316472 —1.3621035826330083
1.7601025580636376 1.7601025580636376 —1.3059043929109533
2.666542829364775 2.666542829364775 2.3330867000197006
3.0458456722762604 3.0458456722762604 0.12292969415601586
2.130621053328643 2.130621053328643 1.6969924752545953
—2.6190016516637336 —2.6190016516637336 0.5081198977551179
—0.2229956051703742 —0.2229956051703742 1.0298668767026709
Step 7 Step 8 Step 9
—1.0904479093952715 —-1.789867368121218 -1.789867368121218
0.9699664610876225 1.6833116410256515 1.6833116410256515
3.2737368583418776 —0.8595534529753378 —0.8595534529753378
0.6159984517967693 —0.7063717798945163 —0.7063717798945163
—-1.4712753850010287 —0.5767283796110184 —0.5767283796110184
1.7289268018974024 —0.8432436883496297 —0.8432436883496297
—1.2971084475562134 —1.2037914210764402 —1.2037914210764402
—0.7872578872282519 1.1739094496264404 1.1739094496264404
0.7516094848925081 —3.719826795861956 —3.719826795861956
0.3787300161358095 2.5730133007139497 2.5730133007139497
Table 2 — Found coefficients of the NOPFs
QO Q1 Qz Q3 Q4 Q5
5 0.31622776601683 |0 —0.3590304652533|0 0.37601029391503|0
794 0308508 510256
q;1 0.00990875675817 |0 —0.0237237389744|0 0.04073337742261
27680483 04719567 610065
a5 0.00035250853500 |0 —0.0012936966199|0
849863344 861974775
Qs 0.00001311694894 |0 —0.0000674335625
4919936589 32976568096
U4 5.11168934494366 |0
79076-1077
Qs 2.11434860415668
52428-10°%
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Table 3 — Calculation results for the illustrative example

Step The maximum degree of The coefficient variance at the maximum Estimates of the corresponding
number virtual UPR degree of virtual UPR coefficients of the virtual UPR
! 5 D7, =4-45-10" 7. =0.000118172133464
2 4 D7, =4-2.6-10" 7, =—0.00000022924202
8 4 Dy, =4-26-10" 7, =—0.0000000981927
4 2 D7, =4-1.7-10° 7, = 0.80686953376847
> 3 Dy, =4-47-107 7, =0.36436409237099
6 3 D7, =4-4.7-10° 7, = 0.72882533637497
! ° Dy, =4-45-107° 7. =0.1845281295144
8 5 Dy, =4-45-10" 7, =0.0000117372678
9 2 Dy,=4-17-10"° 7, =8.09982106030674

Table 4 — Calculation results for the illustrative example (continued)

Step number, coefficient, input variables Equation for estimating the Estimate of the The estimate
which do not take a fixed value in the coefficient at the nonlinear coefficient at the variance
active experiment term of the MPR nonlinear term
Ly, X, X b,-a2-al-10=7, b, =2.001 5.128473-107
2,by, X, %, b,-a2-a’-10=7, b, =—0.0003 2.428001-10°°
3,b,, %, %, 0, -a%-a2-10=7, b, =—0.0001 2.428001-10°°
4,1, X, 0, -a2+10-10 =7, 9, =0.9961 1.096121-10°°
5,b;, X, %5, =0 0, -a2+10-10-5=7, 0, =0.9996 1.420843-1077
6, b, X, 0, -ad 10 5= 7, %, =1.9995 1.420843-1077
7,b;, X, X, 0, -a2-ad 5% =7, b, = 2.0000 2.100622-107"
8, by, X, Xg 0, -a2-al-10=7, b, =1.0062 1.314371-10°°
9,0y, %, X, b, -a,-a,-10-10-5=7, b, =1.9999 4.384485-10”

areal active experiment at each step are not presented. Below
are the tables for NOPFs and intermediate results of
calculations necessary to obtain estimates of coefficients
b,,...,b

The NOPFs were built for z,, i=110, z =-50,

z,, =50, and their coefficients were found with an accuracy

of up to 17 decimal places (Table 2).
Formulas for finding coefficient estimates of the virtual
UPR:

9-

7;1' :Zyin(zi)v ] :(TS;

Y = Wsls; +...+W;q;, | =0,5,

where Y, is the value of the output variable of the virtual

active experiment (given by formula (4)), y; is the value

of the output variable of the corresponding real main
experiment.

Remark 13. In all experiments, the minimum values of
the fixed input variables are equal to one.

Remark 14. If the formal procedure of the first subal-
gorithm [1] were used to find coefficient estimates, then their

estimates would be the solution of the corresponding linear
systems of algebraic equations of the dimension 2x2. The
coefficients at the variables of these equations depend on the
choice of fixed values of the corresponding input variables
from the area of their definitions. But, in contrast to equations
with a single variable, there is currently no strategy for the
efficient selection of their values to minimize the variance of
estimates of unknown coefficients.

Conclusions.

1. The possibility of using the theoretical provisions
of the decomposition method to estimate unknown
coefficients at nonlinear terms of an MPR is being
investigated in order to build an individual algorithm cre-
ated by a user based on the analysis of the structure of the
MPR given by a redundant representation.

2. Four aggregated operators are proposed, which al-
low solving the formulated problem. The first two general-
ized operators are used to estimate the coefficients at non-
linear members of the MPR which contain at least one var-
iable to the power greater than or equal to two; the last two
ones are for the case when all variables in the nonlinear
term of the MPR are to the power of one.

3. An example is given that illustrates the efficiency of
building an individual algorithm for estimating coefficients
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at nonlinear terms of an MPR in comparison with the formal
algorithmic procedure of the decomposition method.
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MOJIUPIKAILIA JEKOMIIO3UIIMHOIO METOJIY MIOBYJIOBA BATATOBUMIPHOI
MOJITHOMIAJIbHOI PETPECII, JITHIHHOI BITHOCHO HEBIJIOMHX KOE®IIICHTIB

ABtopamu OyB CTBOpPEHHI YHiBEpCaJbHUII MeTOJ| MOOYIOBU 0araTOBUMIpHOI MOJIIHOMialbHOI perpecii, 3amaHoi HaIJIHIIKOBHM OIHMCOM. MeTox €
CHHTETUYHHM, IO OPraHIYHO IIO€JHY€ NEKOMIIO3ULIHHUHM MeTon Ta MoAu(iKOBaHHII MeTOJ TpPYIOBOTO ypaxyBaHHS apryMmeHTiB. CrodaTky
peaiti3yeThesi JeKOMITO3UIIHHUA METOI, 110 MOJrae B ASKOMITO3HLIT 6araTOBUMIpHOI 3a7adi HA MOCIIIOBHICTD MiA3aAad MOOYIOBH OIHOBHMIPHUX
MOJTIHOMIaNIbHUX PErpeciii Ta BiANOBITHUX CHCTEM JIHIMHUX pIBHAHb, 3MIHHUMM SKHUX € OLIHKM IpPU HENIHIHHUX wWieHax OaraToBUMipHOI
nosliHoMianbHOI perpecii. Po3risHyTi 4acTKOBI BHIAIKM, IIO TApaHTYIOTh 3HAXOJUKEHHS OLHOK 3 Halepe] 3aJaHOI0 BEIMYHHOIO IX JHCIEpPCii.
@DopManbHUIT anropuT™ MoOyA0BH OLIHOK Koe(illieHTIB MpPH HENiHIHUX 4ieHaX 0araToBUMIPHOI IOJiHOMianbHOI perpecii mpunuHsie podoTy Ha
nepioMy KoedilieHTi, OliHKa SKOTr0 3 Hanepe/ 3/1aHOI0 TOUHICTIO He 0CATAETHCS IIPH 3aJaHNX OOMEKEHHSX Ha KUIbKICTh BUIIPoOYBaHb. OmiHKa BCiX
koe(irieHTiB, mo He OyiM 3HaNACHI IEKOMIIO3UI[IMHIM METO/IOM, 3HAXOJUTHCS €BPUCTHYHUM METOJOM, II0 € eeKTUBHOK MOAH(IKaIi€r0 METoaa
TPYNOBOrO ypaxyBaHHs apryMeHTiB. I1ifBuIeHHs eeKTHBHOCTI CHHTETHYHOTO METOJY JOCSTa€ThCs B IIEPIIy YEpry 3a PaXyHOK 3HAXOKCHHS TaKHX
HOBUX TEOPETUYHO OOTPYHTOBAHHUX aJITOPUTMIYHUX NPOLENYp (arperoBaHiX ONepaTopiB) AEKOMIIO3ULIHHOTO METOY, 1110 CYTTEBO, B OPiBHSIHHI 3 HOTO
HIOIIEPETHBOI0 BEpCi€ro, 30iMblIye KiNbKicTh KOe(iLi€HTIB IpH HENHIHHUX WieHaX 0araToBHMIpHOI IOJMiHOMianbHOI perpecii, IO MOXYTb OyTH
3Hali/IeHi 3 Hamepes 3a/laHOI0 TOYHICTIO. ABTOPH MOKa3adH, W0 Leil eeKT nocsaraeTbcs 3a PaXyHOK HOBHX TEOPETHYHHUX IOJOKEHb, IO
BUKOPHCTOBYIOTBCSI TIPU Bi3yalbHOMY aHanlizi OpoeciiHUM KOPHUCTyBa4eM CTPYKTypH OaraTOBHMIpHOI IIOJIHOMIanbHOI perpecii, 3amaHol
HaJIMIIKOBYM omricoM. HaBeneHuii imocTpaTHBHAI IpHKIIA] MOJIETITYE€ BUKOPUCTAHHS IPUBEACHUX PE3yIIbTaTiB IIPU PO3B’sI3aHHI MIPAaKTHYHUX 3a1ad.

KurouoBi ciioBa: perpeciitnuii anani3, 6araroBuMipHa nojtiHOMiajbHA PErpecis, HaUTUILIKOBUIT OUC, IEKOMITO3ULIIHUI METO, iHAMBI Ay aTbHUH
QITOPHUTM, METO/ HAMCHIIINX KBaJPATiB.

Toeni imena asmopie / Author's full names

Astop 1/ Author 1: TTasnos Onekcanap Anatomiiiopud, Pavlov Alexander Anatolievich
AsTop 2 / Author 2: T'onosuyernko Makcum Murkomaitosud, Holovchenko Maxim Nikolaevich
AsTop 3 / Author 3: JIposn Banepis Banepiisuaa, Drozd Valeriia Valeriivna

Bicnux Hayionanvnoco mexuiynozo ynisepcumemy «XI1». Cepis: Cucmemruti
10 ananis, ynpasuinua ma ingopmayitini mexnonoeii, Ne 2 (12) 2024



