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SYNTHESIS OF DESIGN PARAMETERS OF MULTI-PURPOSE DYNAMIC SYSTEMS

Two problems related to the optimization of linear stationary dynamic systems are considered. A general formulation of the multi-purpose problem of
optimal control with the choice of design parameters is given. As a special case, the problem of multi-objective optimization of a linear system according
to an integral quadratic criterion with a given random distribution of initial deviations is considered. The solution is based on the method of
simultaneously reducing two positive-definite quadratic forms to diagonal form. Analytical results have been obtained that make it possible to calculate
the mathematical expectation of the criterion under the normal multidimensional distribution law of the vector of random initial perturbations. The
inverse problem of stability theory is formulated: to find a vector of structural parameters that ensure the stability of the system and a given average
value of the quadratic integral quality criterion on a set of initial perturbations. The solution of the problem is proposed to be carried out in two stages.
The first stage involves deriving a general solution to the Lyapunov matrix equation in terms of the elements of the system matrix. To achieve this, the
state space is mapped onto the eigen-subspace of the positive-definite matrix corresponding to the integral quadratic performance criterion. It has been
established that this solution is determined by an arbitrary skew-symmetric matrix or by the corresponding set of arbitrary constants. In contrast, when
the system matrix depends linearly on the vector of design parameters, a linear system of equations can be formulated with respect to the unknown
parameters and arbitrary constants present in the general solution of the inverse stability problem. In general, such a system is consistent and admits an

infinite number of solutions that satisfy the initial requirements for the elements of the symmetric matrices in the Lyapunov.
Keywords: stability, integral quadratic functional, Lyapunov matrix equation, inverse stability problem, multi-purpose dynamic systems, linear

stationary systems, parametric optimization.

1. Introduction. The problem of optimizing the
parameters of stable dynamic systems based on integral
quadratic functional (IQF) of transient processes has been
studied and solved in various theoretical and applied
contexts. Fundamental results in this area were obtained in
[1, 2, 3]. These results have been regarded as classical for a
long time.

They differ somewhat in the formulation of the
problem of optimal control for dynamic systems combined
with the selection of design parameters. The mathematical
formulation of the optimal control problem with parameters
based on the maximum principle is addressed in [4, 5]. The
issue of parametric optimization of the 1QF with a known
statistical distribution of initial perturbations is discussed in
[3]. This work also formulates and proposes a solution to
the problem of selecting the elements of the matrix of a
linear stationary dynamic system that optimize the mathe-
matical expectation of the IQF. The general solution to this
problem is expressed in terms of matrix algebraic equations
involving several parameters and a set of auxiliary
variables. Analyzing the entire spectrum of research in the
field of theory and practice of ensuring the stability of
dynamic systems, the field can be divided into two primary
classes: problems of analysis and problems of synthesis of
stable systems, corresponding to the direct and inverse
problems of stability theory. Direct problems focus on
determining whether a system with specified parameters is
stable. In contrast, inverse problems aim to identify a vector
of parameters that ensures the stability of the system to be
constructed.

Among the methods for solving inverse problems of
stability theory, two fundamental directions can be
distinguished. The first direction is related to the control of
the distributed roots of the characteristic equation of the
system of differential equations. These methods are
indirectly related to the control of the coefficients of the
characteristic equation by selecting the appropriate design
parameters [6]. The theory of modal control is closely
related to this direction [7]. Information on the distribution
of roots also makes it possible to find indirect
characteristics of transient processes, such as the degree of
stability and the degree of oscillation of the synthesized
system but does not make it possible to calculate direct
indicators: the time of the transient process and the degree
of oscillation.

The second direction gained significant momentum in
the second half of the last century and is associated with the
works [8-10], particularly in the context of the Lyapunov
matrix equation, as well as related studies [11,12] on IQF.
The direct stability problem, based on Lyapunov equations,
involves evaluating the solutions for given parameters of
the dynamic system matrix. The inverse problem can be
formulated as the task of finding the parameters of the
dynamic system matrix that satisfy the Lyapunov matrix
equation.

2. Formulation of a parametric multi-criteria opti-
mal control problem. Among the variety of formulations of
optimal control problems for continuous dynamic systems,
there exists an important problem that has been formulated
and solved in general form. Let us briefly outline the mathe-
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matical formulation. A stationary dynamic system of the
following form is given:

x = f(x,u,a), D

where: X € X — is the state vector of the system, dim X =n;
ueU — vector of control parameters,dimU =m; a € A—
vector of design parameters, dim A = s. Vector function f

and its partial derivatives a@_f ? are assumed to be conti-
X' Oa

nuous at ueU and any X, a. The control objective is defi-
ned by a target vector

€ =Xy, X, 7), 3

where x, € X —is the vector of the initial state, x, € X —the

vector of the final state, r— is the time of transition of the
system from x, to x,.The quality criterion of the controlled

process is expressed as
J(c,u,a) = jo’ f, (x, u,a)dt. @)

The problem of optimal control of a system (1) with
variable parameters is formulated as follows: for a given
system objective, find the constant vector « and the func-

tion u(t) that minimizes the quality functional (3). In works
[4, 5], necessary conditions for solving the formulated
problem were obtained based on the maximum principle. It
follows from these conditions that the optimal functions a
and u(t) are functions of the vector ¢, and the explicit
form of these functions in general is unknown.

Let the system being constructed be multi-criteria,
i.e., a subset is given:

Cc XxXxT, Te(0,x) (4)

defines the set of objectives of the form (2) that can be a goal
for the control system and let a probability measure p(c) be

defined on the subset C that defines the probability of
achieving the given objective. It would be natural to pose the
following parametric optimization problem for the multi-
objective system (1) and a set of objectives (4), find a
parameter ¢ vector that minimizes criterion (3) at each point
of the set C. In general, such a formulation of the problem is
not correct, since the vector of parameters that is optimal for
one of the goals of the system will not be optimal for another.
In this regard, we will optimize a certain average criterion for
all permissible goals of the system. Let's introduce the
function:

Y(c,a) = nunun J(c,u,a) (5)

which is the minimum value of criterion (3) with a fixed
vector of constructive parameters a and a fixed target

vector c. Let's find the mathematical expectation of
function (5):

(@)= [ p(e)¥(e,a)dC, (6)

determining the average quality of the system with a fixed
parameter vector.

Now the formulation of the parametric optimization
problem can be proposed as follows: for the system (1), the
set of goals (4) and criterion (3), choose a vector of design
parameters ¢ that minimizes the average quality (6). The
vector of design parameters determined in this way
provides optimization of criterion (3) on average for a set
of system goals. In many important practical cases, the
system is designed for a single use. In these cases, the
criterion of the form (6) loses its physical meaning, since it
presupposes the repeated use of the system. In this case, it
is proposed to optimize the worst conditions of the system's
functioning, i.e., instead of functional (6), to optimize the
functional

I(a) = max p(c)¥(c,a).

The formulation of the optimization problem in this
case is similar to the previous one. In the implementation of
the above-mentioned formulation of the problem, the main
difficulty is to determine the function ¥(c,«) for the finding

of which at each point (c,a«) it is necessary to solve the

problem of optimal control, which in most cases does not
have an analytical solution. However, in many cases, and
particularly the problem of optimal stabilization, it is pos-
sible to obtain an analytic dependence ¥(c,a)

3. Multi-purpose stabilization of a linear dynamic
system. Let us consider a dynamic system of the form
x = F(a)x, @)

where F(a) —nxn is the matrix-function of the s-dimen-

sional vector a of the constructive parameters. Let the
control objective be defined as

c=(x, € X,0,7 =0). (8)
In other words, a set of stabilization problems under
arbitrary initial conditions and infinite time is considered.

The perturbed motion of the system caused by the deviation
X, from the zero-equilibrium point will be evaluated using

the IQF.
| = j: X" ()Qx(t)dt, 9)

where Q — given positive symmetric matrix. In this case

[8] the value of the criterion | is in the formof | = Xj Sx,,
where S — positive solution of the Lyapunov matrix equ-
ation
F"(«)S+SF(a)+Q=0. (10)
It should be noted [13], that the positivity of the matrix
S for arbitrarily positive matrix Q is a necessary and suf-
ficient condition for the matrix F(a) in the context of Hur-
witzness criteria.
Let the initial perturbations x, be distributed accor-

ding to a normal law with zero mathematical expectation
and a covariance matrix P:
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() = b e 2" 1)
" o)™ IP]

It is known [13], that there exists a coordinate
transformation z = Hx, such that the quadratic forms in
| = x]Sx, and V =x;P'x, the coordinate system z,,
Z,,...,z, Will have a diagonal form | = z;Az,, V =z, z,,
where A =diag(4,4,,...,4); 4, — solutions of the
characteristic equation of a bundle of quadratic forms

(1, V) [13]:
|s-4P7|=0. (12)

In coordinates z,,z,,...,z, the mathematical expec-

tation of the IQF on the set of initial perturbations with
distribution (11) will take the form

1 n
- o ‘*Z(Zok)z n
J:kLﬁZH > 2,(2,;)2 02y, 02, ... 025, (13)
i=1

1

here K=———.
W (27[)”l2|P|n/2

The ratio (13) is equivalent to the following:

J= kzn:ﬂ,j I: 238
j=1

It is not difficult to show that the integral in (14) can be

n

calculated by the formula (27)2, which after substituting in
(14), will give the following result:

15 2
’EZ(ZOK )
=3

dzy,dzy,,...,dz,,,. (14)

JP[™ > 4. (15)
j=1
Ratio (12) can be written in the equivalent form
|PS—AE |=0, (16)

from which it follows that the numbers 4,, 4,,..., 4, coin-

cide with the eigenvalues of the matrix PS. Therefore, the
average values of the IQF on the set of random initial per-
turbations (15) will take the form

J =P [ tr(PS). 17)

Thus, the problem of optimal stabilization of a linear
dynamical system over the mean value of the IQF on a set of
initial states distributed according to a normal law can be
formulated as follows: minimize the criterion (17) at S,
satisfying equation (10) and the given dependencies for
F (a) where a € A. ltis not difficult to see that the solution

of such an optimization problem in a general form is
impossible and quite difficult in numerical formulation. In
this regard, let us consider a slightly different approach to
solving the problem of stabilization based on the inverse
problem of the theory of stability.

4. Inverse problem of stability theory. Let two sym-
metric positive-definite matrices Q and S be given, which,

as before, represent the matrices of the IQF and the solution
to the Lyapunov equations

F'S+SF+Q=0. (18)
It is necessary to find a solution to equation (18) with
in terms of the matrix F. Since the matrix equation (18) is

n(n+1)
2

equivalent to a system of linear equations for n

unknowns, such a system will generally be compatible and
have an infinite number of solutions. To find these
solutions, we will proceed as follows. Find the coordinate
transformation

y = Rx (19)

such that the matrices S and Q simultaneously take a
diagonal form E and A, where A=diag(4,4,,...,4,),
Ay Ay,- ., A, arethe solutions of the equation |Q — AS |=0.

In [13] the algorithm for finding the transformation
(19) is given. Since the matrix R satisfies the ratio:

R'SR=E, (20)
then from (20) it follows
S=(R")'R™ (21)
Substituting (21) in (18), we get
FT(RD)'R*+(R")'RF+Q=0. (22)

Multiplying (22) on the leftby R™ and right by R, we
get

FT+F =-4, (23)

where F =R™FR. According to the general theory of

solving systems of linear equations, the solution (23) can
be representedas F = F, +F,, where F, —partial solution

of the inhomogeneous system (23), and If2 — general solu-
tion of the corresponding homogeneous system

F'+F =0. (24)

Let's present an arbitrary skew-symmetric matrix K,
as a linear combination of basic skew-symmetric matrices

K;, consisting of zeros, except for the elements

ky =—k;; =1. Then the matrix K will take the form

n n(n-1 .
K= Z c; K, Where ¢; = (2 ), are arbitrary cons-
i,j=li<j
tants.

From (23) it follows directly that IE1 = —%A, and from

(24) it follows that F, = K . Thus

1

ﬁ:—EA+K. (25)
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Let's move on to the initial basis by converting the
inverse to (24)

F =RFR™. (26)
After substituting (26) in (25), we get the final form of
the set of solutions of Lyapunov's equations in terms of the
matrix F :
F:—%RAR*+RKR? 27)
As a partial solution of equation (18), we can also take
the matrix
F =—%S‘1Q, (28)
which is not difficult to verify by the direct substitution of
(28) in (18). It is also evident that the general solution
corresponding to (18) of a homogeneous system has the
form F, = S7'K.
Thus, the general solution of the Lyapunov equation in
terms of the matrix F can be written as

F=sl(—%Q+K). (29)

Finally, (29) let us present it in the form of

1ey a
F :_ES Q+(izj‘;cij|:ij, where F; = S7'K,.
Now the problem of choosing a vector of parameters
a of a dynamical system that provides the specified
dynamic characteristics based on the IQF is reduced to
solving the system of equation (30) in terms of the a and
Gt
F(a)=F + ) c,F;.
(.7
Confine ourselves to the case of a linear matrix F (a)

(30)

in terms of parameters a: F(a):F°+ZaiFi, where
i=1

F° F',...,F™ are the given fixed matrices. In this case, the

problem of synthesis of a stable system under consideration
is reduced to the solution of a linear system of equations:

2%P—%%ﬁ:ﬁ—ﬂ.

(1)

System (31) can be represented as a system n’ of linear

n(n-1)
2

equations in context of m+ unknown a; and c;.

The condition for the compatibility of such a system is the

n(n-1)
2

condition m+ > n?. The number of unknowns must

be not less than the number of equations. The last inequality
can be rewritten as

mzm_
2

In the general case, let us assume that instead of (32)
there is a strict inequality. Let us also assume that the

(32)

system of matrices F; and F', included in (31), has a

maximum rank. Let's vectorize the matrices in (31). As a
result, we get a linear system of the equation

Az =b, (33)

where 2" = (e, @,;,Cyp1---,Cyyy) — Vector of unknown

constants, and the matrix A and vectors are constructed
from the elements of the matrices F', F; and F° in

accordance with the matrix equation (31). Since the matrix

A is rectangular, of n? x[m +@j dimensions, then,

in accordance with the general theory of systems of linear
equations, the general solution of the system of equations
(33) can be found in the form:

1=2,+Y &z, r:M—m,
i=1

5 (34)

where z, — partial solution of the system (33). z, — linearly

independent solutions corresponding to a homogeneous
system, & — arbitrary constants.

The ratio (34) sets a set of parameters of the system «
that ensure stability (7). To select specific values
a,,a,,...,a, it is necessary to consider the system of

restrictions on their values, but this issue is not the subject of
investigation in this work.

Conclusions. The paper presents a general formulation
of the multi-objective optimal control problem with the
selection of design parameters for the controlled system. As
a special case, the problem of selecting the average value of
quality is formulated based on the integral quadratic
functional over a set of initial deviations from the zero
equilibrium position, distributed according to a normal
distribution.

The inverse stability problem for linear dynamic
systems is considered, which involves finding a set of system
matrices that satisfy the Lyapunov equation, given the
matrices of intensive quadratic forms that appear in the
equation. A general expression for the set of the sought stable
matrices of the dynamic system is derived.
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CHUHTE3 KOHCTPYKTUBHUX ITAPAMETPIB BAT'ATOIIJIbOBUX TMHAMIYHUX CUCTEM

Posrisinatoreest 1Bi 3ajadvi, TOB’s3aHi 3 ONTUMI3AI€l0 JTiHIHHUX CTAllilOHAPHUX JWHAMIYHUX CHCTEM. 3allpONIOHOBAHO 3arajbHy MOCTAHOBKY
0araTolinboBOi 3a/7a4i ONTUMAJBHOTO KEPyBaHHS 3 BHOOPOM KOHCTPYKTMBHHMX MapaMeTpiB. SIK OKpeMHH BHINAJOK, aHaNI3yeThCs 3ajaya
OaraTokpHTepiabHOI ONTHMi3alii JIHIHOI cHCTeMH 3a iHTErpaJbHMM KBaJpPaTHYHUM KPHTEPIEM 32 YMOBH 3aZaHOTO BHIIAJKOBOTO PO3IOILLY
MOYaTKOBHX 30ypeHb. PO3B 130K IPYHTY€EThCS Ha METOJIi OJJHOYACHOTO 3BEJCHHS JBOX BHPA3HO MO3SMTUBHMX KBAaAPAaTHYHHX (HOPM 10 JiarOHAIBHOTO
Burany. OTpUMaHO aHANITHYHI BHMpa3u, IO JAIOTh 3MOTYy OOYMCIMTH MaTeMaTHYHE OYiKyBaHHS KpPUTEPIlO JUIsl BUMAJAKY OaraTOBHMipHOTO
HOPMAJIBHOTO PO3IOALTY BEKTOpa II0YaTKOBHX BUIAAKOBUX 30ypeHb. ChopMyIp0BaHO 0OEpHEHY 3aady Teopii CTIKOCTi: HEOOXiTHO BiTHAWTH BEKTOP
CTPYKTYpPHHMX TTapaMeTpiB, 110 3a0e3euye CTiHKICTh CHCTEMH Ta 3a]1aHe CePEIHE 3HAYCHHS IHTErPaJIbHOI 0 KBaAPaTHYHOTO KPUTEPIIO SKOCTI HA MHOXKHHI
MOYaTKOBHX 30ypeHb. PO3B’A3aHHS NMPOIOHYETHCS BUKOHYBaTH y JBa eramu. Crepily BUBOIAMTBCS 3arajbHUH PO3B’SI30K MATPUYHOTO DPIBHSAHHS
JlamyHOBa B TepMiHaX €JIEMEHTIB MaTPHI cUCTeMH. JIJI bOTO MPOCTIp CTaHIB BiOOpaXkaeThCs Ha BIACHUH MiANPOCTIP JOJATHOO3HAUCHOI MATPHIIi,
IO BiJMOBiZae iHTErpaJbHOMY KBaJpaTHYHOMY KpHTepito. BcTaHOBIEHO, 1O 3araibHUN PO3B’SI30K 3yMOBIICHHIl JOBIIBHOK KOCOCHMETPHYHOIO
MaTpuIeo abo BiANOBITHUM HAOOPOM JOBUIBHUX CTaIMX. 3 IHIIOrO OOKY, KOJIM MAaTPUIsl CUCTEMH JIHIHHO 3aI€KUTh BiJl BEKTOPAa KOHCTPYKTHBHUX
IapaMeTpiB, MOXIINBO C(HOPMYITIOBATH JIIHIHHY CHCTEMY PIiBHSHb BITHOCHO IUX HEBIZOMHX IapaMeTpiB Ta IOBUIBHHUX CTAIHX, IO (IrypyroTs y
3arajibHOMY PO3B’S3Ky OOEpHEHOI 3ajadi CTiHKoCTi. 3arajom, Taka CHCTEMa € CyMIiCHOIO Ta JIONyCKae HECKiHYEHHY KiJIbKiCTh PO3B’S3KiB, SKi
3a/I0BOJIbHSIOTH I0YaTKOBI BUMOTH JI0 €IEMEHTIB CUMETPUYHUX MATPHIlb, IPUCYTHIX Y piBHAHHI JIsmyHOBa.

KrouoBi cioBa: CTiliKicTh, IHTerpaJbHUM KBaJpaTHYHHN (yHKIIOHAN, MaTpHuHe piBHAHHS JIsmyHoBa, obepHeHa 3amada CTIHKOCTI,
6araToniiboBi IMHAMIYHI CHCTEMH, JIiHIHHI CTAlliOHaPHI CHCTEMH, MapaMeTPUYHa ONTHMI3allis.
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