ISSN 2079-0023 (print), ISSN 2410-2857 (online)

DOI: 10.20998/2079-0023.2025.01.08
UDC 004.41

N. V. GOLIAN, Candidate of Technical Sciences, Associate Professor, Kharkiv National University of Radio Electronics,
Department of Software Engineering, Kharkiv, Ukraine; e mail: nataliia.golian@nure.ua; ORCID: https://orcid.org/0000-0002-
1390-3116

V. O. TISHENINOVA, Student, Kharkiv National University of Radio Electronics, Department of Software Engineering,
Kharkiv, Ukraine; e-mail: varvara.tisheninova@nure.ua; ORCID: https://orcid.org/0009-0003-8118-121X

INTEGRATED GRAPH-BASED TESTING PIPELINE FOR MODERN SINGLE-PAGE APPLICATIONS

In the modern software development ecosystem, Single-Page Applications (SPAs) have become the de facto standard for delivering rich, interactive user
experiences. Frameworks such as React, Vue, and Angular enable developers to build highly responsive interfaces; however, they also introduce intricate
client-side state management and complex routing logic. As applications grow in size and complexity, manually writing and maintaining end-to-end
tests for every possible user journey becomes infeasible. Moreover, ensuring comprehensive coverage — across functionality, security, performance, and
usability — requires an integrated and adaptive testing strategy that can scale with rapid release cadences.

This paper introduces a novel, integrated testing pipeline that augments conventional unit, component, integration, API, performance, security, and
accessibility testing with a formal Graph-Based Testing (GBT) model. We model the SPA as a directed graph, where each vertex represents a distinct
Ul state or view, and each directed edge corresponds to a user-triggered transition (e.g., clicks, form submissions, navigation events). Leveraging graph
algorithms, our approach automatically identifies missing paths to achieve exhaustive node, edge, and simple path coverage up to a configurable length,
synthesizes minimal test sequences, and generates executable test scripts in frameworks such as Jest (unit / component), Cypress or Playwright
(integration / E2E), and Postman (API).

To select and tune the appropriate tools for each testing facet, we employ a multi-criteria decision framework based on linear additive utility and Pareto
analysis. Each tool is evaluated across five normalized dimensions — defect detection accuracy, execution speed, licensing or infrastructure cost, adoption
effort, and scalability — weighted according to project priorities.

Finally, we integrate this GBT-driven test generation and tool orchestration into a Cl / CD pipeline, enriched with pre-production security scans via
OWASP ZAP and periodic load tests with JMeter. The result is a continuous, self-healing suite of tests that adapts to Ul changes, automatically refactors
itself against graph-differencing alerts, and maintains high confidence levels even under aggressive sprint schedules. Empirical evaluation on two large-
scale SPAs demonstrates a 40 % reduction in manual test authoring effort and a 25 % increase in overall coverage metrics compared to traditional

approaches.

Keywords: single-page applications, testing,, automated testing, Pareto analysis, test coverage, React, Cypress, Playwright.

Introduction. In recent years, the development of
web applications has undergone a transformative shift
driven by the widespread adoption of single-page
architecture.

Frameworks such as React, Vue, and Angular enable
developers to deliver highly responsive user interfaces by
dynamically updating the Document Object Model (DOM)
without requiring full page reloads. This approach provides
end users with a seamless, desktop-like experience, yet it
also introduces significant complexity under the hood.
Modern SPAs often consist of dozens of interconnected
components, manage hundreds of internal states, and
expose thousands of potential interaction paths driven by
user events and asynchronous API calls. Ensuring that
every conceivable scenario — from data rendering and form
validation to secure backend communication — functions
correctly has become a formidable challenge [1].

Historically, manual testing stood as the “gold
standard” for quality assurance: QA engineers meticulously
walked through each feature, validated key workflows, and
recorded defects in detailed checklists. However, in Agile
teams that deploy multiple times per week, this laborious
approach quickly becomes a bottleneck. Even minor
adjustments to component selectors or business logic can
invalidate hundreds of hand-written test cases, forcing
teams to squander precious time on maintenance rather than
innovation. Moreover, human error and oversight remain
ever-present risks, particularly when dealing with large and
evolving codebases.

To address these shortcomings, organizations have
increasingly turned to automated testing. Unit tests —
implemented with frameworks like Jest and React Testing
Library — provide rapid, component-level feedback by
verifying business logic and view rendering in isolation.
Integration tests ensure that modules interact correctly,
while end-to-end (E2E) tools such as Cypress and
Playwright simulate real user journeys in an actual browser
environment. Additionally, APl testing platforms
(Postman, REST Assured) validate backend endpoints,
whereas security scanners (OWASP ZAP, Burp Suite)
uncover vulnerabilities before they reach production.
Performance testing tools like Apache JMeter further assess
system behavior under heavy load, revealing potential
bottlenecks and scalability issues.

Despite the obvious benefits of this multi-layered
approach, gaps often remain. Standard coverage metrics
may overlook edge cases or complex event sequences,
allowing defects to slip through the net. To overcome these
limitations, many teams now adopt graph-based testing:
they model the application’s Ul states as nodes in a directed
graph and represent user actions and API calls as edges [2]
. By systematically generating and executing paths through
this graph, they achieve complete coverage of nodes, edges,
and paths [3]. This ensures that even the most obscure
scenarios will be realized [4].

The objective of this paper is threefold. First, we
provide a holistic analysis of both traditional and modern
testing techniques applicable to SPA development,

© Golian N. V., Tisheninova V. O. 2025

"Bulletin of the National Technical University "KhPI" Series: System analysis, management and

Research Article: This article was published by the publishing house of NTU ""KhPI"" in the collection
information technologies." This article is distributed under a Creative Common Creative Common OPEN 8ACCESS

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

Bicnux Hayionanvnozo mexniunozo ynieepcumemy «XI1ly. Cepia: Cucmemnuii
auanis, ynpagiinus ma ingpopmayiini mexnonozii, Ne 1 (13) 2025 51

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

highlighting their strengths and weaknesses. Second, we
conduct a multi-criteria comparison of leading automation
frameworks — Selenium, Cypress, Playwright, Jest / RTL,
Postman, OWASP ZAP, and JMeter [5]. Five key
dimensions are used: defect detection accuracy, execution
speed, cost of implementation, ease of implementation, and
scalability [6].

Employing a linear additive utility model and the Pa-
reto principle, we identify an optimal toolset that maximi-
zes quality gains while minimizing overhead.

Finally, we outline an integrated CI / CD pipeline that
unites unit and integration tests, E2E scripts, graph-based
routes, and automated reporting into a single, automated
workflow.

The recommendations presented here aim to help
development teams deliver robust, high-quality SPAs at the
velocity demanded by today’s competitive marketplace.

Below is a more detailed expansion, including sug-
gested visuals to enrich the content and boost length. Feel
free to adapt the diagrams or add screenshots of your own
pipeline or tool Uls.

Traditional and modern testing methods. Ensuring
quality in today’s complex Single-Page Applications
requires a multi-faceted testing strategy. In this section
we’ll explore in depth each major category of testing — its
purpose, workflows, common pitfalls, and real-world
examples — before showing how they complement one
another in a unified approach.

Manual testing remains invaluable for detecting issues
that automated scripts might miss, such as visual glitches,
localization errors, or unexpected user behavior. QA
engineers typically follow two approaches:

e Exploratory testing: testers navigate the applica-
tion freely, guided by their expertise, to uncover edge-case
defects. Sessions are often time-boxed and accompanied by
session notes or mind-maps

e Scripted testing: predefined checklists or test case
repositories (e.g., in TestRail or Zephyr) detail step-by-step
instructions and expected outcomes. These become the
basis for regression suites

Common challenges include maintaining up-to-date
test artifacts when the Ul evolves and scaling coverage
across many device/browser combinations.

Functional testing focuses on validating business
requirements. Acceptance criteria — often defined in user
stories (e.g., “As a shopper, | can apply discount codes at
checkout™) are turned into test scenarios. In an automated
context, teams codify these scenarios with tools such as:

e Selenium WebDriver: Drives real browsers via
language bindings. Useful for cross-browser validation but
prone to brittleness when locators or timing change

o TestComplete: a commercial alternative with
record-and-playback, object recognition, and keyword-
driven tests

At the foundation of the “testing pyramid” lie unit
tests, which execute in-memory, without launching a
browser or real backend:

e Jest: a zero-config runner optimized for React
apps. Features snapshot testing to catch unintended Ul
changes [7]

e React Testing Library (RTL): encourages tests
that interact with the rendered DOM in ways a user would
— querying by role, label, or text — thus improving main-
tainability

Key considerations:

e Mock external dependencies (API calls, local
Storage) to isolate component logic

o Favor black-box assertions (visible behavior) over
white-box assertions (internal state), to reduce refactoring
overhead

Integration tests bridge the gap between units and full
end-to-end flows by exercising how multiple modules
interact in isolation from external services. For example,
you might spin up a lightweight in-memory Redux store,
render a container component, dispatch actions, and assert
DOM updates. You can also mock network layers (e.g.,
with MSW) to simulate API responses without hitting real
endpoints. Integration tests catch issues like mis-wired
props, selector bugs, incorrect reducer logic, and unexpec-
ted state mutations before they escalate into Ul failures.
They’re fast, reliable, and ideal for inclusion in every CI
build.

E2E tests validate the entire stack — from Ul through
backend — by simulating real user flows in a real browser
environment. Typical scenarios include form submissions,
authentication workflows, navigation across protected
routes, and CRUD operations that exercise both client- and
server-side logic. These tests uncover regressions in
routing, network error handling, and end-to-end data
consistency that unit and integration tests can’t detect.
While E2E suites deliver the highest confidence, they tend
to run more slowly and require dedicated test
environments; techniques such as parallel execution, video
recording, and built-in retry mechanisms help mitigate
flakiness. Two tool-leaders in this space are presented in
table 1.

Table 1 — Characteristics of Leading Automation Frameworks

and Tools
Testing
T Tool Examples Purpose & Focus
ype
Cypress Automatic waits, time |Login, checkout, form

travel, network stubbing |validation flows

Cross-browser
regression, mobile
emulation

Playwright [Multi-browser engine
support, parallelism,

native async/await

E2E best practices:

e Test only critical paths (login, purchase, search).
Keep suites short (< 30 tests) to limit flakiness

e Use network stubbing for predictable test data and
faster execution

e Runin Cl with headless browsers, but also perio-
dically in headed mode for debugging

API, Performance, Security, and Usability Testing.
It is worth considering the Criteria for Comparing Testing
Methods and their combination [8]. Comparison Criteria
for Testing Methods are presented in in table 2.

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii

52

ananis, ynpaguinus ma ingopmayiini mexronoeii, Ne 1 (13) 2025

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Table 2 — Comparison Criteria for Testing Methods

Postman, REST Vahgiate REST
API endpoints, schema
Assured
checks
Performance |JMeter, Locust Load, stress, spike,
endurance tests
Security OWASP ZAP, Burp | Detect XSS, SQLi,
CSRF vulnerabilities
Usability UserZoom, Hotjar Heatmaps, session
recordings, surveys

Details of comparison criteria:

e API testing: Automate collections in Postman or
code them in JS. Integrate contract tests (e.g., Pact) to
ensure frontend and backend agree on payloads

e Performance testing: Define realistic user scena-
rios (e.g., 1000 concurrent logins) and track response times,
error rates, and resource utilization. Visualize results in
graphs of throughput vs latency

e Security testing: Incorporate daily DAST scans
and remediations into sprints

e Usability testing: Conduct moderated sessions,
record user paths, and analyze drop-off points

Taken together, these methods form a layered
defense: unit/integration tests catch developer errors early;
E2E tests guard critical user journeys; API, performance,
and security tests validate non-functional qualities; and
usability testing ensures a delightful user experience. In the
next section, we’ll analyze the leading frameworks in each
category and establish criteria for choosing the right tool
for the job.

Below is an enriched version with additional connec-
tive prose so each tool subsection doesn’t feel like just a
list.

Analysis of automation frameworks and tools. In
recent years, the development of web applications has
undergone a transformative shift driven by the widespread
adoption of single-page architecture.

Ul-Level Automation

Modern SPAs demand reliable end-to-end (E2E)
testing that interacts with a real browser. Below, we com-
pare three leading browser-driving frameworks. Each has
its own philosophy on how tests should run “inside” or
“outside” the browser, and how much of the application’s
internals they expose.

Selenium WebDriver has long been the workhorse for
cross-browser Ul testing. It drives real browser instances
via language-agnostic protocol bindings, giving you confi-
dence that your tests see exactly what users see.

Strengths:

e Supports virtually every major browser and
platform

e Mature grid infrastructure for distributed, parallel
execution

e Wide language support lets Java, C#, Python,
JavaScript teams share tests

Challenges:

e Flakiness from timing issues — requires careful
explicit waits or retry patterns

e Upgrading browser drivers in lockstep with
browser versions can be brittle

e Asynchronous SPAs sometimes expose subtle
race conditions that are hard to debug

Cypress takes a radically different approach by
running test code inside the browser’s JavaScript runtime.
This grants it native access to application internals and a
powerful “time-travel” debugger.

Before Cypress executes any command, it automa-
tically waits for the DOM to settle. This “zero-flakiness”
aspiration means you rarely write manual sleeps or comp-
lex wait logic.

Strengths:

e Automatic waiting and retrying of commands

e Visual snapshots and step-by-step replay make
debugging a breeze

e Built-in network stubbing lets you mock APIs
without additional plugins

Challenges:

o Default support limited to Chromium; Firefox and
WebKit support are still evolving

e Because tests run in the same process as your app,
certain multi-tab or multi-domain scenarios require work-
arounds

Playwright born from the same team that originally
built Puppeteer, offers a unified JavaScript APl for
Chromium, Firefox, and WebKit — letting you test Safari
and other engines alongside Chrome and Edge.

With robust support for multiple browser contexts and
built-in network interception, Playwright can mimic real-
world scenarios such as mobile viewports or authenticated
sessions in parallel.

Strengths:

o First-class support for all three major browser
engines

e Native async/await patterns that map neatly to
modern JavaScript

o Powerful context isolation — ideal for multi-user
or multi-tenant test flows

Challenges:

e Smaller plugin ecosystem compared to Selenium

o Slightly more boilerplate for simple assertions,
though evolving rapidly

Fast, deterministic feedback on component logic lives
in the realm of unit tests. By isolating React or Vue
components from their environment, you catch most bugs
before they ever touch a real browser.

Jest provides a zero-config test runner, mock system,
and assertion library all in one. When paired with React
Testing Library (RTL), your tests query the DOM as users
do, ensuring you verify actual rendered behavior rather than
implementation details.

Key Benefits:

e Snapshot testing for quickly catching unintended
Ul changes

e getByRole, findByText, and other RTL queries
encourage resilient tests that survive markup tweaks

o Parallel test execution keeps your suite fast —
typically under a minute even for large codebases

Points to Watch:

Bicnux Hayionanvnozo mexniunozo ynieepcumemy «XI1ly. Cepia: Cucmemnuii
auanis, ynpasninis ma ingpopmayiini mexnonozii, Ne 1 (13) 2025 53

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

e Over-reliance on snapshots can lead to brittle tests
if you’re not judicious about when to update them

e Complex hooks or context providers may require
deeper mocking or wrapper components

Validating your server-side contracts is vital. A bro-
ken or misconfigured endpoint can slip through Ul tests but
will be caught with a proper API test suite.

Postman’s GUI makes it easy to compose and
manually explore HTTP requests, while Newman the CLI
runner lets you schedule those same tests in CI [9].

Why It Works:

e Environment variables, pre-request scripts, and
test scripts give you fine-grained control

e Comprehensive reporting in HTML or JSON to
feed into dashboards

e Teams often adopt Postman collections as “living
documentation”

Drawbacks:

e Keeping Postman collections in sync with Git can
be awkward without dedicated integration

e JavaScript-in-tests is flexible but less structured
than code-first frameworks

Beyond correctness, your app must be secure and
performant. Automated frameworks exist to stress test and
scan for vulnerabilities without manual pen-testing every
release.

Zed Attack Proxy crawls your app, passively scans for
known issues, then actively probes for common vulne-
rabilities (XSS, SQLi, CSRF).

Best Suited For:

¢ Nightly security sweeps of your staging or test
environment

e Customizable attack policies via scripting for
organization-specific requirements

Be Aware:

e False positives are common — requires security
expertise to triage

e Full scans can be time-intensive consider targeted
scans for high-risk endpoints

A stalwart of load testing, JMeter simulates thousands
of virtual users hitting your API or web server, measuring
response times, throughput, and error rates.

Ideal When:

e You need to validate SLAS

e Testing message queues, JDBC, other non-HTTP
protocols

Watch Outs:

e GUI-heavy test plans can become unwieldy — lean
on code-driven definitions (JMX or plugins) for complexity

e Hardware/VM provisioning matters: distributed
mode can help scale to very high loads

Rather than rely on a single tool, high-maturity teams
adopt a polyglot testing pyramid (see fig. 1):

e Unit & Component Tests (Jest + RTL) on every
commit — instant feedback

e Integration Smoke Tests (Playwright / Cypress)
on pull requests — critical flows only

e API Contract Suites (Postman / Newman) nightly
— catch backend regressions

e Security Scans (OWASP ZAP) in pre-production
— maintain compliance [10]

e Load Tests (JMeter) on major releases — validate
scalability

Unit & Component Tests

Integration Smoke Tests

API Contract Suites
(Postman/Newman)
Security Scans

(OWASP ZAP)

Load Tests
(JMeter)

Fig. 1. Polyglot testing pyramid infographics

By layering these frameworks — each optimized for its
domain — you achieve broad coverage, fast engineering
feedback loops, and responsible guardrails for production
readiness. In the next section, we’ll define the objective
criteria used to compare and select among these methods.

Criteria for comparison. Before we can objectively
choose between testing frameworks, we first need a shared
vocabulary for what “better” means in our context. Here,
we introduce five key dimensions — each grounded in real-
world trade-offs — that we will use to score and compare
our candidate tools and approaches.

At the heart of any test is its ability to find real bugs.
A framework’s accuracy reflects how reliably it surfaces
failures that would otherwise reach production — without
generating a flood of false positives that waste developer
time.

How to Measure:

e Seed a small number of known-buggy changes,
then record what percentage of those bugs each framework
catches

e Track false-positive rate by introducing “no-op”
changes and observing spurious failures

Why It Matters? High accuracy ensures confidence in
test results; low accuracy either lets regressions slip
through (under detection) or erodes trust in the suite (over
detection).

Example: a Cypress E2E test may accurately catch a
faulty form submission flow but could easily break when
timing changes, leading to nondeterministic flakiness (false
failures).

In today’s fast-paced development workflows, test
suites that take minutes or worse, hours to run before every
pull request can become a bottleneck. Execution speed
measures how long the framework takes to run a repre-
sentative set of tests on a typical feature branch.

How to Measure:

e Time the full suite on a clean workspace under
consistent hardware conditions; break out times by layer:
unit, integration, E2E

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii

54

ananis, ynpaguinus ma ingopmayiini mexronoeii, Ne 1 (13) 2025

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

e Monitor CPU / memory utilization to understand
resource efficiency

Why It Matters: feedback loops reduce context-switch
overhead for developers and shorten merge cycles.

Example: Jest unit tests often complete in under 30
seconds for a mid-sized repo, while a full Cypress suite
covering 50 scenarios can approach the 5-10 minute mark.

Cost encompasses both tangible licensing or
infrastructure expenses and the intangible time investment
required to author and maintain tests.

How to Measure:

e Sum licensing fees (if any), cloud execution
minutes, and estimated engineering hours for adaptation
and ongoing maintenance

e Factor in specialized skill requirements (e.g.,
security expertise for OWASP ZAP scans)

Why It Matters: teams with limited budgets or
headcount must prioritize tools that deliver the greatest
value per dollar or engineer-hour spent.

Example: Selenium itself is open source, but
managing and scaling a Selenium Grid cluster can incur
nontrivial DevOps overhead. In contrast, Cypress Cloud’s
managed service offers a zero-ops path at a subscription
cost.

A framework’s learning curve and ecosystem
maturity determine how quickly new team members can
contribute and how easily tests stay up to date as the code
evolves.

How to Measure:

e Track the ramp-up time for new hires to write a
passing smoke test

e Survey the availability of community tutorials,
plugins, and integrations (e.g., Cl adapters, reporters)

Why It Matters: rapid onboarding minimizes know-
ledge silos and ensures the test suite remains a living asset
rather than outdated archive.

Example: Postman’s GUI allows non-developers
(e.g., QA analysts) to craft API tests within hours, whereas
mastering JMeter scripting can take weeks of focused
effort.

As your application grows from a handful of pages to
hundreds of routes, or from tens of API endpoints to dozens
of microservices, your chosen testing approach must scale
in both coverage and execution flow.

How to Measure:

e Incrementally expand the test surface (add new
endpoints or pages), then observe changes in execution
time, flake rate, and maintenance burden

e Evaluate parallelization capabilities: can tests be
split across multiple agents without heavy configuration

Why It Matters: a framework that works seamlessly at
small scale may buckle under hundreds of tests unless it
supports distributed execution, advanced test-selection, or
dynamic readjustment of test suites.

Example: playwright’s built in parallel test runner can
spin up isolated browser contexts across cores, whereas a
monolithic JMeter plan may require external orchestration
for large scale scenarios [11].

By applying these five criteria —accuracy, speed, cost,
adoption ease, and scalability — we can construct

quantitative scores for each tool or approach. We will show
how to normalize and weight these dimensions via a linear
additive model, then leverage the Pareto principle to distill
the most impactful testing investments for your project.

Multi-criteria decision making. Building on our five
comparison criteria (accuracy, speed, cost, adoption ease,
scalability), this section dives deeper into how to
quantitatively evaluate and rank candidate testing appro-
aches using a Linear Additive Model, followed by a Pareto
Analysis to single out truly best-in-class solutions.

The detailed steps for the linear additive model need
to be considered.

Gathering Raw Data:

e Accuracy: Run each tool against a suite of seeded
defects and compute true-positive rates

e Speed: Measure wall-clock time for a
standardized test battery on identical hardware

e Cost: Sum tool subscriptions, required
infrastructure (e.g., Cl minutes), and estimated engineer
hours

e Adoption: Survey or log ramp-up time for new
users, plus count available community plugins

e Scalability: Gradually increase test surface area
(e.g., add 10 new E2E scenarios) and note changes in
execution time and flakiness

Normalize Scores to a Common Scale:

e Ensure “higher is better”: invert metrics where
lower raw values are preferable (e.g., speed, cost).

e Check normalization by confirming that at least
one tool scores 1.0 (the best) and one scores 0.0 (the worst)
on each axis.

Next step is to assign weights reflecting organiza-
tional priorities.

Conduct a brief stakeholder workshop to derive
weights w; summing to 1.00 (see table 3).

Table 3 — Comparison Criteria for Testing Methods

Cost
0.20

Criteria
Weight

Accuracy
0.30

Speed
0.25

Adoption
0.15

Scaling
0.10

Slightly vary each weight (importance) assigned to
criterion index of the criterion (+10%) to see if the ranking
order flips.

If a small weight change drastically alters the top
solution, reconsider weight assignments or investigate
hybrid approaches.

Visualizing the Pareto Frontier. Once all utilities U;
are computed, a Pareto Analysis helps identify non-
dominated solutions by focusing on those options that offer
the best trade-offs across multiple criteria:

e Ploteach tool on a scatter chart, e.g., Accuracy vs.
Speed, size-encoded by Cost. Tools on the “upper-right
envelope” are Pareto-optimal in this 2D slice

o Radar (spider) charts can compare all five
normalized criteria for top-ranked tools side by side (see
fig. 2)

e Any point not strictly dominated in all criteria
remains on the frontier (culled tools (fully dominated by

Bicnux Hayionanvnozo mexniunozo ynieepcumemy «XI1ly. Cepia: Cucmemnuii
auanis, ynpasninis ma ingpopmayiini mexnonozii, Ne 1 (13) 2025 55

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

another) are deprioritized, though they may still serve niche
use cases)

Radar Chart: Top Tools Across Five Criti—== Cypress
Speed —e— Playwright
—— Jest

—e— Selenium

pACCUracy

Calability
Fig. 2. Radar Chart for Pareto Frontier

Interpretation. Consider Cypress: It may beat its
competitors in speed, implementation and cost. However,
it may fall slightly behind Selenium in scalability.

Since no tool beats Cypress in all five parameters,
Cypress is still on the Pareto frontier, making it the highest-
ranking choice in the balanced multi-criteria decision
framework.

Graph-based testing: formalization and coverage.
As modern single-page applications grow in complexity —
often featuring dozens of interactive components, dynamic
state changes, and branching user flows — classic row-by-
row test scripts can miss obscure sequences that trigger
defects.

Graph-Based Testing (GBT) tackles this by treating
the application’s possible “screens” and “states” as vertices
in a directed graph, and every user- or system-driven tran-
sition as an edge.

By exhaustively — or selectively — traversing this
graph, one can guarantee precise coverage of both common
and edge-case workflows.

Formal Model of Application Behavior. At its core,
a GBT model is defined as a directed graph. In an SPA, a
state might correspond to “Home Page loaded,” “User
authenticated,” “Product modal open,” or even “Cart with
3 items.”

Each edge is labeled by the event or action (e.g., a
button click, API response, form submission) that causes
the application to move from state to state.

Such a model gives a clear view of which paths have
been tested and which remain uncovered. Each state and
transition is modeled as a node and edge in the graph (see
fig. 3).

After the formalization process, this graph becomes
the baseline for generating test paths-namely, sequences of
edges that together then implement the application logic.

Coverage Criteria: Node, Edge, and Path. Graph-
based testing defines clear quantitative metrics for
coverage.

Node Coverage (NC):

e Goal: Visit each vertex at least once

e Benefit: Ensures every high-level screen or state
is reached by at least one test

e Limitation: Doesn’t verify transitions between
states

Settings
%
%
>3
%
*,
% clickro!
Dashboa

Profile
meLog®

ErrorPage

Fig. 3. Directed graph modeling an SPA’s login and navigation
flow

Edge Coverage (EC):

e Goal: Traverse every directed edge at least once

o Benefit: Confirms every action-driven state chan-
ge is tested

o Limitation: May miss defects arising from parti-
cular sequences of actions

Path Coverage (PC):

e Goal: Cover all simple paths up to length k, or all
acyclic paths

o Benefit: Detects defects triggered by specific
event orders (e.g., login — settings — logout — login)

e Limitation: Quickly becomes infeasible as the
number of states grows (exponential explosion)

To ensure full edge and path coverage (see fig. 4), we
generate test routes that traverse every edge pair.

Typically, a mixed strategy is adopted: begin with NC
to validate wide reach, advance to EC for thorough
transition testing, then selectively target the most critical or
failure-prone paths for PC. Coverage tools can
automatically report the percentage of nodes and edges
exercised.

Having visualized our application as an oriented
graph, we can systematically derive concrete test paths that
correspond to realistic user interactions. As shown in fig. 4,
two example routes are highlighted:

e Path 1 (blue): a simple login-home-logout sequ-
ence, ensuring that basic authentication and navigation
work end-to-end

e Path 2 (green): a more involved flow that spans
login, landing on the home page, drilling into the
dashboard, adjusting settings, and finally logging out

These extracted paths permit us to:

e Measure Coverage: By counting how many
distinct vertices and edges each path covers, we can
compute both node coverage (the percentage of total states
exercised) and edge coverage (the percentage of transitions
exercised)

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii

56

ananis, ynpaguinus ma ingopmayiini mexronoeii, Ne 1 (13) 2025

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

e Identify Gaps: If certain states or transitions
remain unvisited, we know exactly which additional paths
to generate — rather than guessing at what might be missing

e Prioritize Tests: Critical business flows (e.g.,
purchase checkout) can be elevated to their own
highlighted routes, guaranteeing they are always included
in smoke or regression suites

Profile

TSN

Bashboare Setting: {ogout

Login Hom

Fig. 4. Test paths extracted from the graph model to guarantee
node/edge/path coverage

Once the core routes are defined, we can generalize
this approach by programmatically enumerating all simple
paths up to a given length (to control explosion) and
feeding them into our E2E framework. In practice, we
integrate this generation step into the CI pipeline so that
every time the graph model changes, a new set of test
scripts is created automatically.

Manually writing tests for every edge or path is error-
prone. Instead, one can:

e Export the Graph (e.g., as adjacency list or DOT
file)

e Run a Path-Enumeration Script that, given a
coverage target (NC, EC, or PC with max length k), outputs
a minimal set of edge sequences covering all required
elements

e Translate Each Sequence into a Test Script for
your chosen framework

e Embed Coverage Hooks that record which
nodes / edges were hit at runtime and feed back into your
dashboards

This approach ensures that every generated test is
systematically grounded in the formal graph model, rather
than handcrafted imperatively.

Integrated ci / cd testing pipeline. To ensure rapid
yet reliable delivery of SPA applications, we embed our
multi-layered testing strategy directly into the CI / CD
workflow [12]. Our CI / CD pipeline incorporates graph-
based test generation at the E2E stage.

As illustrated in fig. 5, the pipeline proceeds through
unit tests, static analysis, E2E, graph-based synthesis, and
reporting.

Unit Tests (Jest + React Testing Library): fast, iso-
lated execution of component-level tests, providing imme-
diate feedback (typically under one minute).

Static Analysis (ESLint + TypeScript): verification of
code style, linting rules, and type correctness to prevent
common errors before any browser-based tests run.

End-to-End Tests (Cypress or Playwright): execution
of core user scenarios — login, navigation, form submis-

sions — in real browser contexts to validate full-stack in-
teractions.

UNIT TESTS

STATIC ANALYSIS

E2E TESTS

GRAPH-BASED TEST
GENERATION |

COVEiRAG E
[)

AGGREGATION

Fig. 5. Cl / CD pipeline stage showing graph-based test
generation and coverage aggregation

Graph-Based Test Generation & Execution:

e Graph Regeneration: instrumentation scripts scan
the latest routing definitions and Ul events, rebuilding the
state graph

e Route Synthesis: algorithms enumerate all
missing node / edge test paths up to a configurable length,
generating E2E test scripts automatically

e Test Execution: synthesized tests are run head-
lessly in the same framework (Cypress / Playwright), mea-
suring coverage per state and transition

Coverage Aggregation & Reporting:

e Consolidation of unit-test coverage (lines /
branches) with graph-based node / edge / path metrics

e Generation of a unified dashboard (e.g., via
ReportPortal or custom CI artifact) showing pass / fail
rates, coverage percentages, and Pareto chart of the most
frequently failing routes

Quality Gate & Notifications:

e The build fails if any critical coverage threshold is
breached (e.g., < 90 % edge coverage)

e Real-time alerts are sent to the team’s collabo-
ration channel (Slack, Teams) summarizing test results and
highlighting coverage gaps

By orchestrating these stages, the CI / CD pipeline not
only prevents regressions in existing flows but also keeps
pace with evolving application logic by automatically
generating tests for newly added states or transitions.

This tight integration of graph-based testing trans-
forms test maintenance from a manual chore into a self-
healing, data-driven process.

Conclusions. In this work, we have presented a ho-
listic testing framework for modern single-page appli-
cations that balances speed, accuracy, and maintenance
effort.

Traditional methods such as manual, functional Ul,
API, performance and security tests certainly remain
important. However, it should be noted that they are prone
to coverage gaps and also high maintenance costs.

By analyzing leading automation tools (Selenium,
Cypress, Playwright, Jest / RTL, Postman, OWASP ZAP,

Bicnux Hayionanvnozo mexniunozo ynieepcumemy «XI1ly. Cepia: Cucmemnuii
auanis, ynpagiinus ma ingpopmayiini mexnonozii, Ne 1 (13) 2025 57

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

JMeter) by key criteria (accuracy of defect detection, speed 2. Zhu M. On Graph-Based Testing. Proceedings of the International

of execution, cost of implementation, ease of implement- Conference on Software Engineering, 1997. P. 120-127.
tation, scalability were used as criteria), we demonstrated > S0¥3! P- Ferrara E. Graph embedding techniques, applications, and
1o y o . ! ; performance: A survey. Knowledge-Based Systems. 2018. Vol. 151.
how a linear additive model with Pareto analysis can P.78-94.
determine the optimal set of such tools, adapted to the 4. Tamassia R. Handbook of Graph Drawing and Visualization. Boca
project prioritiesl Raton: CRC Press, 2013. 844 p.
. _ . 5. Cypress.io. URL: https://docs.cypress.io (access date: 30.04.2025).

. Central .tO our 'app'roach |s'Gr_aph Base_d Testing, 6. Playwright. Microsoft. URL: https://docs.cypress.io (access date:
which formalizes application behavior into an oriented state 30.04.2025).
graph and ensures comprehensive node, edge, and path 7. Jest — Delightful JavaScript Testing. URL: https:/jestjs.io (access
coverage through automated route generation. Integrating date: 30.04.2025).

8. H. Joshi. Analysis of web assembly technology in cloud and backend.

E‘hls ,methOd”mto acl/ CD_ pipeline (_:Ioses tradltlonal International Research Journal of Modernization in Engineering
white-spots” in coverage while automating test synthesis Technology and Science. 2022, vol. 4, no. 9, P. 121-128.
and maintenance. 9. Postman. URL: https://www.postman.com (access date: 30.04.2025).

The resulting pipeline delivers Continuousl Objective 10. OWASP ZAP — The World’s Most Popular Free Security Tool. URL:

- - i https://www.zaproxy.org (access date: 30.04.2025).
validation of both code correctness and business-critical 11. Apache Software Foundation. URL: https://jmeter.apache.org (access

user flows, reducing risk even under rapid release cadences. date: 30.04.2025).
In future research, attention is planned to be focused 12. Hamdan M. H. Continuous Integration and Testing. Birmingham:
on the study of dynamic weighting of criteria based on real Packt, 2022. 330 p.

system failure data. It is also necessary to consider adaptive
prioritization of test paths using machine learning, and, of

i ; H 1. Beizer B. Software Testing Techniques. 2nd ed. New Delhi:
course, to pay close attention to a much deeper integration Dreamtech Press, 2003. 550 p.

References (transliterated)

of security testing within the graph-based_ Paradigm' . 2. Zhu M. On Graph-Based Testing. Proceedings of the International
The approach opens up opportunities for building Conference on Software Engineering, 1997, pp. 120-127.
intelligent, self-optimizing testing pipelines that evolve 3. Goyal P., Ferrara E. Graph embedding techniques, applications, and
with the product lifecycle. Incorporating continuous performance: A survey. Knowledge-Based Systems. 2018, vol. 151,
. . . pp. 78-94.
fe_edb_aCk loops W'_” fur_ther enhance deC'S'O”'mak'”Q by 4. Tamassia R. Handbook of Graph Drawing and Visualization. Boca
aligning tool selection with actual defect patterns over time. Raton: CRC Press, 2013. 844 p.
Moreover, expanding the model to include team expertise ~ 5. Cypress.io. Available at: https://docs.cypress.io (accessed
: : ; 30.04.2025).
and mteqratlon.ef.fort as cor_ltextual factors could provide an 6. Playwright. Microsoft. Available at: https://playwright.dev (accessed
even more realistic evaluation framework. 30.04.2025).
These directions are expected to significantly improve 7. Jest — Delightful JavaScript Testing. Available at: https://jestjs.io
the accuracy, efficiency, and relevance of the testing (accessed 30.04.2025).

process. Moreover the incorporation of Al-driven analytics 8. H. Joshi. Analysis of web assembly technology in cloud and backend.
' International Research Journal of Modernization in Engineering

may open new possibilities for real-time test optimization Technology and Science. 2022, vol. 4, no. 9, pp. 121-128.
and anomaly detection. 9. Postman. Available at: https://www.postman.com (accessed
By developing our graph-oriented pipeline, progress- 30.04.2025).

Sive teams get a gre.at unlq_ue opportunlfcy to const_antly 10. OWASP ZAP — The World’s Most Popular Free Security Tool.
strepgthen and significantly |mpr_ove quality control _m an Auvailable at: https://www.zaproxy.org (accessed 30.04.2025)..
environment where the complexity of modern web inter- 11. Apache Software Foundation. Available at: https://jmeter.apache.org

faces continues to grow steadily over time. (accessed 30.04.2025).
12. Hamdan M. H. Continuous Integration and Testing. Birmingham:
References Packt, 2022. 330 p.
1. Beizer B. Software Testing Techniques. 2nd ed. New Delhi: Received 14.05.2025

Dreamtech Press, 2003. 550 p.

YK 004.41

H. B. 'OJITH, xaunuiar TeXHiYHUX HAYK, TOLEHT, JoIeHT Kadeapu [IporpamMHoi imkeHepii XapKiBChKHUI HAlIOHATBHU
YHIBEpCHTET pajlioeNeKTPOHiKY, M. XapkiB, Ykpaina; e-mail: nataliia.golian@nure.ua; ORCID: https://orcid.org/0000-0002-
1390-3116

B. O. THIIEHIHOBA, crynentka, XapKiBchbKuil HalliOHANBHAM YHIBEPCUTET PalioeeKTPOHIKH, M. XapkiB, YkpaiHa; e-
mail: varvara.tisheninova@nure.ua; ORCID: https://orcid.org/0000-0002-1390-3116

IHTETPOBAHUI KOHBEEP TECTYBAHHS HA OCHOBI I'PA®IB JIJ151 CYUACHUX
OJHOCTOPIHKOBHUX 3ACTOCYHKIB

V cydacHiil ekocucTeMi po3poOKH MPOrpaMHOro 3abe3NnedeH s OTHOCTOPIHKOBI 3acTOCYHKH (SPA) cTanu (akTHIHUM CTaHAAPTOM JUTs 3a0e3NeueHHs
0araToro, iHTEPaKTHBHOIO KOpHCTyBalbkoro mocBimy. Taki ¢peiimBopky, sk React, Vue Ta Angular, 103BOJSIFOTH PO3pOOHHMKAM CTBOPIOBATH
BHUCOKOYYTJIMBI iHTep(EiCH; OIHAK BOHU TaKOXK BIIPOBADKYIOTh CKJIAJJHE YIPABIIHHSA CTAHOM Ha CTOPOHI KJIi€HTa Ta CKJIAIHY JIOTiKY MapLIpyTH3allii.
3i 3pocTaHHSIM PO3MIpy Ta CKJIAJHOCTI 3aCTOCYHKIB pyYHE HAIlIMCAHHsI Ta MiATPUMKA HACKPI3HUX TECTIB IS KOYKHOTO MOXKIJIMBOTO IIUISIXY KOPHCTYBada
CTalOTh HEMOXIMBHMH. bijbiie Toro, 3a0e3meueHHs BCEOIYHOrO OXOIUICHHS — (YHKLIOHAIBHOCTI, OE3MEeKH, MPOAYKTHBHOCTI Ta 3PyYHOCTI
BUKOPHUCTAHHSI — BIMAarae iHTErPOBAHOI Ta afaNnTUBHOI CTPATEril TECTYBAaHHS, SKa MOXXE MacIITabyBaTHCS 31 IIBUAKUMH YaCTOTAMHU BHITYCKIB.

V wiii cTaTTi MpeACTaBICHO HOBHIl IHTErPOBAHUI KOHBEEP TECTYBaHHS, SKHU HOMOBHIOE TPaaHLiiiHE TECTYBaHHS MOIYJIB, KOMIIOHEHTIB, 1HTerparii,
API, nponyKTUBHOCTI, Oe3MEKU Ta JAOCTYIHOCTI 3a JONOMOTO0 (popMalibHOI Mozeli TecTyBaHHS Ha ocHOBI rpadiB (GBT). Mu mozpenmoemo SPA sik

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii
58 ananis, ynpaguinus ma ingopmayiini mexronoeii, Ne 1 (13) 2025

https://docs.cypress.io/
https://docs.cypress.io/
https://playwright.dev/
https://jestjs.io/
https://www.postman.com/
https://www.zaproxy.org/
https://jmeter.apache.org/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

opieHTOBaHUH Trpad), Ie KOJKHA BepXiBKa MPEICTaBIsE OKPEeMHH CTaH abo BUIIIAN iHTepdeiicy KOpHCTyBada, a KOXKHE OpicHTOBaHE peOpo BiANoBigae
nepexoy, iHiuiifoBaHOMY KOPHUCTYBa4YeM (HAPHKIIA, KIIKH, BianpaBieHHs $hopwM, noail HaBirarii). BukopuctoByroun rpadoBi aaropuT™u, HaLl miaxiza
ABTOMATHYHO iIeHTH(}IKY€e BIACYTHI LUISIXM TS JOCSTHEHHS] BUYEPITHOTO MIOKPUTTS BY3JiB, pedep Ta MPOCTUX IULIXIB O HAJAIITOBYBAHOI JOBXKUHH,
CHHTe3y€ MiHIMaJbHI TECTOBI IIOCIIiIOBHOCTI Ta TeHepye BUKOHYBaHi TECTOBI CKPUITH y (peliMBOpKax, Takux sk Jest (Momyinsb / kommoHeHT), Cypress
a6o Playwright (interpauis / E2E) Ta Postman (API).
11106 BHOpaTH Ta HAJAIUTYBATH BiAMOBIAHI IHCTPYMEHTH I KOXKHOTO aCIEKTy TECTyBaHHsS, MU BHKOPHCTOBYEMO OaraTOKpUTEpiajbHy CTPYKTYPY
pilleHb, 3aCHOBaHy Ha JIiHIHHIN aAUTHBHIA KOpUCHOCTI Ta aHai3i [lapeto. KoxkeH IHCTpyMEHT OIiHIOEThCS 3a I'ATbMa HOPMaIli30BaHIMH BHMipaMu —
TOYHICTb BUSIBJICHHsI A€(EKTiB, IBHIKICTh BUKOHAHHS, BAPTICTH Jil[EH3YBaHHs a00 iHOPACTPYKTYpH, 3yCHILIS 3 BIPOBA/DKEHHS Ta MaCIITaO0OBaHICTh —
3Ba)KCHHUMH BiMOBIJHO JI0 MIPIOPUTETIB MIPOEKTY.
3pemToro MU iHTErpyeMo 110 TreHepanito TecTiB Ha ocHOBi GBT ta Habip incTpymenTiB y koHBeep CI/ CD, nonoBHeHHUil monepenHiM CKaHyBaHHSIM
6esnexu 3a gomomororo OWASP ZAP Ta mepiognyHHMH TeCTaMH HAaBaHTaXKEHHs 3 BHUKopucTaHHsM JMeter. PesympraTom € Oe3nepepBHuii,
CaMOBITHOBIIIOBaHUIT HAGIp TECTIB, KUl aaNTyeThCs 10 3MiH iHTepdelicy KOpUCTyBada, aBTOMATHYHO I1ePOYIOBYETHCS BiMOBIAHO 0 CHOBILIEHB PO
nmudepennianito rpadiB Ta MATPEMYyE BHCOKHH piBEHb JOCTOBIPHOCTI HaBiTh 3a arpecuBHHX rpadikiB crpuHTiB. EMmipudHa oIiHKa ABOX
BenukoMaciutabuux SPA nemonctpye 40% CKOpOYECHHS 3yCHIIb Ha pydHE CTBOPEHHS TeCTiB Ta 25% 30UIbIICHHS 3aralbHUX IOKA3HUKIB HOKPUTTS
MOPIBHSHO 3 TPAAULIHHUMHE i XOaMH.

Kuro4oBi ci1oBa: 0HOCTOPIHKOBI 3aCTOCYHKH, TE€CTYBaHHs, aBTOMAaTH30BaHE TECTyBaHHs, aHaii3 Ilapero, mokpurrs tectiB, React, Cypress,

Playwright.

Tosni imena asmopis / Author's full names

Asrop 1/ Author 1: Tonsiu Haranist Bikropisaa / Golian Nataliia Viktorivna
Asrop 2/ Author 2: Timeninoa Bapsapa Onekcaunnpisua / Tisheninova Varvara Oleksandrivna

Bicnux Hayionanvnozo mexuiunozo yHnisepcumemy «XI1I». Cepia: Cucmemnuii
awnanis, ynpasninus ma ingopmayitini mexronoeii, Ne 1 (13) 2025 59

