
ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (13) 2025 51

DOI: 10.20998/2079-0023.2025.01.08

UDC 004.41

N. V. GOLIAN, Candidate of Technical Sciences, Associate Professor, Kharkiv National University of Radio Electronics,

Department of Software Engineering, Kharkiv, Ukraine; e mail: nataliia.golian@nure.ua; ORCID: https://orcid.org/0000-0002-

1390-3116

V. O. TISHENINOVA, Student, Kharkiv National University of Radio Electronics, Department of Software Engineering,

Kharkiv, Ukraine; e-mail: varvara.tisheninova@nure.ua; ORCID: https://orcid.org/0009-0003-8118-121X

INTEGRATED GRAPH-BASED TESTING PIPELINE FOR MODERN SINGLE-PAGE APPLICATIONS

In the modern software development ecosystem, Single-Page Applications (SPAs) have become the de facto standard for delivering rich, interactive user

experiences. Frameworks such as React, Vue, and Angular enable developers to build highly responsive interfaces; however, they also introduce intricate
client-side state management and complex routing logic. As applications grow in size and complexity, manually writing and maintaining end-to-end

tests for every possible user journey becomes infeasible. Moreover, ensuring comprehensive coverage − across functionality, security, performance, and
usability − requires an integrated and adaptive testing strategy that can scale with rapid release cadences.

This paper introduces a novel, integrated testing pipeline that augments conventional unit, component, integration, API, performance, security, and

accessibility testing with a formal Graph-Based Testing (GBT) model. We model the SPA as a directed graph, where each vertex represents a distinct

UI state or view, and each directed edge corresponds to a user-triggered transition (e.g., clicks, form submissions, navigation events). Leveraging graph

algorithms, our approach automatically identifies missing paths to achieve exhaustive node, edge, and simple path coverage up to a configurable length,

synthesizes minimal test sequences, and generates executable test scripts in frameworks such as Jest (unit / component), Cypress or Playwright
(integration / E2E), and Postman (API).

To select and tune the appropriate tools for each testing facet, we employ a multi-criteria decision framework based on linear additive utility and Pareto

analysis. Each tool is evaluated across five normalized dimensions − defect detection accuracy, execution speed, licensing or infrastructure cost, adoption
effort, and scalability − weighted according to project priorities.

Finally, we integrate this GBT-driven test generation and tool orchestration into a CI / CD pipeline, enriched with pre-production security scans via

OWASP ZAP and periodic load tests with JMeter. The result is a continuous, self-healing suite of tests that adapts to UI changes, automatically refactors
itself against graph-differencing alerts, and maintains high confidence levels even under aggressive sprint schedules. Empirical evaluation on two large-

scale SPAs demonstrates a 40 % reduction in manual test authoring effort and a 25 % increase in overall coverage metrics compared to traditional

approaches.

Keywords: single-page applications, testing,, automated testing, Pareto analysis, test coverage, React, Cypress, Playwright.

Introduction. In recent years, the development of

web applications has undergone a transformative shift

driven by the widespread adoption of single-page

architecture.

 Frameworks such as React, Vue, and Angular enable

developers to deliver highly responsive user interfaces by

dynamically updating the Document Object Model (DOM)

without requiring full page reloads. This approach provides

end users with a seamless, desktop-like experience, yet it

also introduces significant complexity under the hood.

Modern SPAs often consist of dozens of interconnected

components, manage hundreds of internal states, and

expose thousands of potential interaction paths driven by

user events and asynchronous API calls. Ensuring that

every conceivable scenario − from data rendering and form

validation to secure backend communication − functions

correctly has become a formidable challenge [1].

Historically, manual testing stood as the “gold

standard” for quality assurance: QA engineers meticulously

walked through each feature, validated key workflows, and

recorded defects in detailed checklists. However, in Agile

teams that deploy multiple times per week, this laborious

approach quickly becomes a bottleneck. Even minor

adjustments to component selectors or business logic can

invalidate hundreds of hand-written test cases, forcing

teams to squander precious time on maintenance rather than

innovation. Moreover, human error and oversight remain

ever-present risks, particularly when dealing with large and

evolving codebases.

To address these shortcomings, organizations have

increasingly turned to automated testing. Unit tests −

implemented with frameworks like Jest and React Testing

Library − provide rapid, component-level feedback by

verifying business logic and view rendering in isolation.

Integration tests ensure that modules interact correctly,

while end-to-end (E2E) tools such as Cypress and

Playwright simulate real user journeys in an actual browser

environment. Additionally, API testing platforms

(Postman, REST Assured) validate backend endpoints,

whereas security scanners (OWASP ZAP, Burp Suite)

uncover vulnerabilities before they reach production.

Performance testing tools like Apache JMeter further assess

system behavior under heavy load, revealing potential

bottlenecks and scalability issues.

Despite the obvious benefits of this multi-layered

approach, gaps often remain. Standard coverage metrics

may overlook edge cases or complex event sequences,

allowing defects to slip through the net. To overcome these

limitations, many teams now adopt graph-based testing:

they model the application’s UI states as nodes in a directed

graph and represent user actions and API calls as edges [2]

. By systematically generating and executing paths through

this graph, they achieve complete coverage of nodes, edges,

and paths [3]. This ensures that even the most obscure

scenarios will be realized [4].

The objective of this paper is threefold. First, we

provide a holistic analysis of both traditional and modern

testing techniques applicable to SPA development,

Research Article: This article was published by the publishing house of NTU "KhPI" in the collection
"Bulletin of the National Technical University "KhPI" Series: System analysis, management and

information technologies." This article is distributed under a Creative Common Creative Common

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

© Golian N. V., Tisheninova V. O. 2025

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

52 аналіз, управління та інформаційні технології, № 1 (13) 2025

highlighting their strengths and weaknesses. Second, we

conduct a multi-criteria comparison of leading automation

frameworks − Selenium, Cypress, Playwright, Jest / RTL,

Postman, OWASP ZAP, and JMeter [5]. Five key

dimensions are used: defect detection accuracy, execution

speed, cost of implementation, ease of implementation, and

scalability [6].

Employing a linear additive utility model and the Pa-

reto principle, we identify an optimal toolset that maximi-

zes quality gains while minimizing overhead.

Finally, we outline an integrated CI / CD pipeline that

unites unit and integration tests, E2E scripts, graph-based

routes, and automated reporting into a single, automated

workflow.

The recommendations presented here aim to help

development teams deliver robust, high-quality SPAs at the

velocity demanded by today’s competitive marketplace.

Below is a more detailed expansion, including sug-

gested visuals to enrich the content and boost length. Feel

free to adapt the diagrams or add screenshots of your own

pipeline or tool UIs.

Traditional and modern testing methods. Ensuring

quality in today’s complex Single-Page Applications

requires a multi-faceted testing strategy. In this section

we’ll explore in depth each major category of testing − its

purpose, workflows, common pitfalls, and real-world

examples − before showing how they complement one

another in a unified approach.

Manual testing remains invaluable for detecting issues

that automated scripts might miss, such as visual glitches,

localization errors, or unexpected user behavior. QA

engineers typically follow two approaches:

• Exploratory testing: testers navigate the applica-

tion freely, guided by their expertise, to uncover edge-case

defects. Sessions are often time-boxed and accompanied by

session notes or mind-maps

• Scripted testing: predefined checklists or test case

repositories (e.g., in TestRail or Zephyr) detail step-by-step

instructions and expected outcomes. These become the

basis for regression suites

Common challenges include maintaining up-to-date

test artifacts when the UI evolves and scaling coverage

across many device/browser combinations.

Functional testing focuses on validating business

requirements. Acceptance criteria − often defined in user

stories (e.g., “As a shopper, I can apply discount codes at

checkout”) are turned into test scenarios. In an automated

context, teams codify these scenarios with tools such as:

• Selenium WebDriver: Drives real browsers via

language bindings. Useful for cross-browser validation but

prone to brittleness when locators or timing change

• TestComplete: a commercial alternative with

record-and-playback, object recognition, and keyword-

driven tests

At the foundation of the “testing pyramid” lie unit

tests, which execute in-memory, without launching a

browser or real backend:

• Jest: a zero-config runner optimized for React

apps. Features snapshot testing to catch unintended UI

changes [7]

• React Testing Library (RTL): encourages tests

that interact with the rendered DOM in ways a user would

− querying by role, label, or text − thus improving main-

tainability

Key considerations:

• Mock external dependencies (API calls, local

Storage) to isolate component logic

• Favor black-box assertions (visible behavior) over

white-box assertions (internal state), to reduce refactoring

overhead

Integration tests bridge the gap between units and full

end-to-end flows by exercising how multiple modules

interact in isolation from external services. For example,

you might spin up a lightweight in-memory Redux store,

render a container component, dispatch actions, and assert

DOM updates. You can also mock network layers (e.g.,

with MSW) to simulate API responses without hitting real

endpoints. Integration tests catch issues like mis-wired

props, selector bugs, incorrect reducer logic, and unexpec-

ted state mutations before they escalate into UI failures.

They’re fast, reliable, and ideal for inclusion in every CI

build.

E2E tests validate the entire stack − from UI through

backend − by simulating real user flows in a real browser

environment. Typical scenarios include form submissions,

authentication workflows, navigation across protected

routes, and CRUD operations that exercise both client- and

server-side logic. These tests uncover regressions in

routing, network error handling, and end-to-end data

consistency that unit and integration tests can’t detect.

While E2E suites deliver the highest confidence, they tend

to run more slowly and require dedicated test

environments; techniques such as parallel execution, video

recording, and built-in retry mechanisms help mitigate

flakiness. Two tool-leaders in this space are presented in

table 1.

 Table 1 – Characteristics of Leading Automation Frameworks

and Tools

Testing

Type
Tool Examples Purpose & Focus

Cypress Automatic waits, time

travel, network stubbing

Login, checkout, form

validation flows

Playwright Multi-browser engine

support, parallelism,

native async/await

Cross-browser

regression, mobile

emulation

E2E best practices:

• Test only critical paths (login, purchase, search).

Keep suites short (< 30 tests) to limit flakiness

• Use network stubbing for predictable test data and

faster execution

• Run in CI with headless browsers, but also perio-

dically in headed mode for debugging
•

API, Performance, Security, and Usability Testing.

It is worth considering the Criteria for Comparing Testing

Methods and their combination [8]. Comparison Criteria

for Testing Methods are presented in in table 2.

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (13) 2025 53

Table 2 – Comparison Criteria for Testing Methods

API
Postman, REST

Assured

Validate REST

endpoints, schema

checks

Performance JMeter, Locust Load, stress, spike,

endurance tests

Security OWASP ZAP, Burp Detect XSS, SQLi,

CSRF vulnerabilities

Usability UserZoom, Hotjar Heatmaps, session

recordings, surveys

Details of comparison criteria:

• API testing: Automate collections in Postman or

code them in JS. Integrate contract tests (e.g., Pact) to

ensure frontend and backend agree on payloads

• Performance testing: Define realistic user scena-

rios (e.g., 1000 concurrent logins) and track response times,

error rates, and resource utilization. Visualize results in

graphs of throughput vs latency

• Security testing: Incorporate daily DAST scans

and remediations into sprints

• Usability testing: Conduct moderated sessions,

record user paths, and analyze drop-off points
•

Taken together, these methods form a layered

defense: unit/integration tests catch developer errors early;

E2E tests guard critical user journeys; API, performance,

and security tests validate non-functional qualities; and

usability testing ensures a delightful user experience. In the

next section, we’ll analyze the leading frameworks in each

category and establish criteria for choosing the right tool

for the job.

Below is an enriched version with additional connec-

tive prose so each tool subsection doesn’t feel like just a

list.

Analysis of automation frameworks and tools. In

recent years, the development of web applications has

undergone a transformative shift driven by the widespread

adoption of single-page architecture.

UI-Level Automation

Modern SPAs demand reliable end-to-end (E2E)

testing that interacts with a real browser. Below, we com-

pare three leading browser-driving frameworks. Each has

its own philosophy on how tests should run “inside” or

“outside” the browser, and how much of the application’s

internals they expose.

Selenium WebDriver has long been the workhorse for

cross-browser UI testing. It drives real browser instances

via language-agnostic protocol bindings, giving you confi-

dence that your tests see exactly what users see.

Strengths:

• Supports virtually every major browser and

platform

• Mature grid infrastructure for distributed, parallel

execution

• Wide language support lets Java, C#, Python,

JavaScript teams share tests

Challenges:

• Flakiness from timing issues − requires careful

explicit waits or retry patterns

• Upgrading browser drivers in lockstep with

browser versions can be brittle

• Asynchronous SPAs sometimes expose subtle

race conditions that are hard to debug

Cypress takes a radically different approach by

running test code inside the browser’s JavaScript runtime.

This grants it native access to application internals and a

powerful “time-travel” debugger.

Before Cypress executes any command, it automa-

tically waits for the DOM to settle. This “zero-flakiness”

aspiration means you rarely write manual sleeps or comp-

lex wait logic.

Strengths:

• Automatic waiting and retrying of commands

• Visual snapshots and step-by-step replay make

debugging a breeze

• Built-in network stubbing lets you mock APIs

without additional plugins

Challenges:

• Default support limited to Chromium; Firefox and

WebKit support are still evolving

• Because tests run in the same process as your app,

certain multi-tab or multi-domain scenarios require work-

arounds

Playwright born from the same team that originally

built Puppeteer, offers a unified JavaScript API for

Chromium, Firefox, and WebKit − letting you test Safari

and other engines alongside Chrome and Edge.

With robust support for multiple browser contexts and

built-in network interception, Playwright can mimic real-

world scenarios such as mobile viewports or authenticated

sessions in parallel.

Strengths:

• First-class support for all three major browser

engines

• Native async/await patterns that map neatly to

modern JavaScript

• Powerful context isolation − ideal for multi-user

or multi-tenant test flows

Challenges:

• Smaller plugin ecosystem compared to Selenium

• Slightly more boilerplate for simple assertions,

though evolving rapidly

Fast, deterministic feedback on component logic lives

in the realm of unit tests. By isolating React or Vue

components from their environment, you catch most bugs

before they ever touch a real browser.

Jest provides a zero-config test runner, mock system,

and assertion library all in one. When paired with React

Testing Library (RTL), your tests query the DOM as users

do, ensuring you verify actual rendered behavior rather than

implementation details.

Key Benefits:

• Snapshot testing for quickly catching unintended

UI changes

• getByRole, findByText, and other RTL queries

encourage resilient tests that survive markup tweaks

• Parallel test execution keeps your suite fast −

typically under a minute even for large codebases

Points to Watch:

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

54 аналіз, управління та інформаційні технології, № 1 (13) 2025

• Over-reliance on snapshots can lead to brittle tests

if you’re not judicious about when to update them

• Complex hooks or context providers may require

deeper mocking or wrapper components

Validating your server-side contracts is vital. A bro-

ken or misconfigured endpoint can slip through UI tests but

will be caught with a proper API test suite.

Postman’s GUI makes it easy to compose and

manually explore HTTP requests, while Newman the CLI

runner lets you schedule those same tests in CI [9].

Why It Works:

• Environment variables, pre-request scripts, and

test scripts give you fine-grained control

• Comprehensive reporting in HTML or JSON to

feed into dashboards

• Teams often adopt Postman collections as “living

documentation”

Drawbacks:

• Keeping Postman collections in sync with Git can

be awkward without dedicated integration

• JavaScript-in-tests is flexible but less structured

than code-first frameworks

Beyond correctness, your app must be secure and

performant. Automated frameworks exist to stress test and

scan for vulnerabilities without manual pen-testing every

release.

Zed Attack Proxy crawls your app, passively scans for

known issues, then actively probes for common vulne-

rabilities (XSS, SQLi, CSRF).

Best Suited For:

• Nightly security sweeps of your staging or test

environment

• Customizable attack policies via scripting for

organization-specific requirements

Be Aware:

• False positives are common − requires security

expertise to triage

• Full scans can be time-intensive consider targeted

scans for high-risk endpoints

A stalwart of load testing, JMeter simulates thousands

of virtual users hitting your API or web server, measuring

response times, throughput, and error rates.

Ideal When:

• You need to validate SLAs

• Testing message queues, JDBC, other non-HTTP

protocols

Watch Outs:

• GUI-heavy test plans can become unwieldy − lean

on code-driven definitions (JMX or plugins) for complexity

• Hardware/VM provisioning matters: distributed

mode can help scale to very high loads

Rather than rely on a single tool, high-maturity teams

adopt a polyglot testing pyramid (see fig. 1):

• Unit & Component Tests (Jest + RTL) on every

commit – instant feedback

• Integration Smoke Tests (Playwright / Cypress)

on pull requests – critical flows only

• API Contract Suites (Postman / Newman) nightly

− catch backend regressions

• Security Scans (OWASP ZAP) in pre-production

– maintain compliance [10]

• Load Tests (JMeter) on major releases – validate

scalability

Fig. 1. Polyglot testing pyramid infographics

By layering these frameworks − each optimized for its

domain − you achieve broad coverage, fast engineering

feedback loops, and responsible guardrails for production

readiness. In the next section, we’ll define the objective

criteria used to compare and select among these methods.

Criteria for comparison. Before we can objectively

choose between testing frameworks, we first need a shared

vocabulary for what “better” means in our context. Here,

we introduce five key dimensions − each grounded in real-

world trade-offs − that we will use to score and compare

our candidate tools and approaches.

At the heart of any test is its ability to find real bugs.

A framework’s accuracy reflects how reliably it surfaces

failures that would otherwise reach production − without

generating a flood of false positives that waste developer

time.

How to Measure:

• Seed a small number of known-buggy changes,

then record what percentage of those bugs each framework

catches

• Track false-positive rate by introducing “no-op”

changes and observing spurious failures

Why It Matters? High accuracy ensures confidence in

test results; low accuracy either lets regressions slip

through (under detection) or erodes trust in the suite (over

detection).

Example: a Cypress E2E test may accurately catch a

faulty form submission flow but could easily break when

timing changes, leading to nondeterministic flakiness (false

failures).

In today’s fast-paced development workflows, test

suites that take minutes or worse, hours to run before every

pull request can become a bottleneck. Execution speed

measures how long the framework takes to run a repre-

sentative set of tests on a typical feature branch.

How to Measure:

• Time the full suite on a clean workspace under

consistent hardware conditions; break out times by layer:

unit, integration, E2E

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (13) 2025 55

• Monitor CPU / memory utilization to understand

resource efficiency

Why It Matters: feedback loops reduce context-switch

overhead for developers and shorten merge cycles.

Example: Jest unit tests often complete in under 30

seconds for a mid-sized repo, while a full Cypress suite

covering 50 scenarios can approach the 5–10 minute mark.

Cost encompasses both tangible licensing or

infrastructure expenses and the intangible time investment

required to author and maintain tests.

How to Measure:

• Sum licensing fees (if any), cloud execution

minutes, and estimated engineering hours for adaptation

and ongoing maintenance

• Factor in specialized skill requirements (e.g.,

security expertise for OWASP ZAP scans)

Why It Matters: teams with limited budgets or

headcount must prioritize tools that deliver the greatest

value per dollar or engineer-hour spent.

Example: Selenium itself is open source, but

managing and scaling a Selenium Grid cluster can incur

nontrivial DevOps overhead. In contrast, Cypress Cloud’s

managed service offers a zero-ops path at a subscription

cost.

A framework’s learning curve and ecosystem

maturity determine how quickly new team members can

contribute and how easily tests stay up to date as the code

evolves.

How to Measure:

• Track the ramp-up time for new hires to write a

passing smoke test

• Survey the availability of community tutorials,

plugins, and integrations (e.g., CI adapters, reporters)

Why It Matters: rapid onboarding minimizes know-

ledge silos and ensures the test suite remains a living asset

rather than outdated archive.

Example: Postman’s GUI allows non-developers

(e.g., QA analysts) to craft API tests within hours, whereas

mastering JMeter scripting can take weeks of focused

effort.

As your application grows from a handful of pages to

hundreds of routes, or from tens of API endpoints to dozens

of microservices, your chosen testing approach must scale

in both coverage and execution flow.

How to Measure:

• Incrementally expand the test surface (add new

endpoints or pages), then observe changes in execution

time, flake rate, and maintenance burden

• Evaluate parallelization capabilities: can tests be

split across multiple agents without heavy configuration

Why It Matters: a framework that works seamlessly at

small scale may buckle under hundreds of tests unless it

supports distributed execution, advanced test-selection, or

dynamic readjustment of test suites.

Example: playwright’s built in parallel test runner can

spin up isolated browser contexts across cores, whereas a

monolithic JMeter plan may require external orchestration

for large scale scenarios [11].

By applying these five criteria − accuracy, speed, cost,

adoption ease, and scalability − we can construct

quantitative scores for each tool or approach. We will show

how to normalize and weight these dimensions via a linear

additive model, then leverage the Pareto principle to distill

the most impactful testing investments for your project.

Multi-criteria decision making. Building on our five

comparison criteria (accuracy, speed, cost, adoption ease,

scalability), this section dives deeper into how to

quantitatively evaluate and rank candidate testing appro-

aches using a Linear Additive Model, followed by a Pareto

Analysis to single out truly best-in-class solutions.

The detailed steps for the linear additive model need

to be considered.

Gathering Raw Data:

• Accuracy: Run each tool against a suite of seeded

defects and compute true-positive rates

• Speed: Measure wall-clock time for a

standardized test battery on identical hardware

• Cost: Sum tool subscriptions, required

infrastructure (e.g., CI minutes), and estimated engineer

hours

• Adoption: Survey or log ramp-up time for new

users, plus count available community plugins

• Scalability: Gradually increase test surface area

(e.g., add 10 new E2E scenarios) and note changes in

execution time and flakiness

Normalize Scores to a Common Scale:

• Ensure “higher is better”: invert metrics where

lower raw values are preferable (e.g., speed, cost).

• Check normalization by confirming that at least

one tool scores 1.0 (the best) and one scores 0.0 (the worst)

on each axis.

Next step is to assign weights reflecting organiza-

tional priorities.

Conduct a brief stakeholder workshop to derive

weights wj summing to 1.00 (see table 3).

Table 3 – Comparison Criteria for Testing Methods

Criteria Accuracy Speed Cost Adoption Scaling

Weight 0.30 0.25 0.20 0.15 0.10

Slightly vary each weight (importance) assigned to

criterion index of the criterion (±10%) to see if the ranking

order flips.

If a small weight change drastically alters the top

solution, reconsider weight assignments or investigate

hybrid approaches.

Visualizing the Pareto Frontier. Once all utilities Ui

are computed, a Pareto Analysis helps identify non-

dominated solutions by focusing on those options that offer

the best trade-offs across multiple criteria:

• Plot each tool on a scatter chart, e.g., Accuracy vs.

Speed, size-encoded by Cost. Tools on the “upper-right

envelope” are Pareto-optimal in this 2D slice

• Radar (spider) charts can compare all five

normalized criteria for top-ranked tools side by side (see

fig. 2)

• Any point not strictly dominated in all criteria

remains on the frontier (culled tools (fully dominated by

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

56 аналіз, управління та інформаційні технології, № 1 (13) 2025

another) are deprioritized, though they may still serve niche

use cases)
•

•

•

Fig. 2. Radar Chart for Pareto Frontier

Interpretation. Consider Cypress: It may beat its

competitors in speed, implementation and cost. However,

it may fall slightly behind Selenium in scalability.

Since no tool beats Cypress in all five parameters,

Cypress is still on the Pareto frontier, making it the highest-

ranking choice in the balanced multi-criteria decision

framework.

Graph-based testing: formalization and coverage.

As modern single-page applications grow in complexity −

often featuring dozens of interactive components, dynamic

state changes, and branching user flows − classic row-by-

row test scripts can miss obscure sequences that trigger

defects.

Graph-Based Testing (GBT) tackles this by treating

the application’s possible “screens” and “states” as vertices

in a directed graph, and every user- or system-driven tran-

sition as an edge.

By exhaustively − or selectively − traversing this

graph, one can guarantee precise coverage of both common

and edge-case workflows.

Formal Model of Application Behavior. At its core,

a GBT model is defined as a directed graph. In an SPA, a

state might correspond to “Home Page loaded,” “User

authenticated,” “Product modal open,” or even “Cart with

3 items.”

Each edge is labeled by the event or action (e.g., a

button click, API response, form submission) that causes

the application to move from state to state.

Such a model gives a clear view of which paths have

been tested and which remain uncovered. Each state and

transition is modeled as a node and edge in the graph (see

fig. 3).

After the formalization process, this graph becomes

the baseline for generating test paths-namely, sequences of

edges that together then implement the application logic.

Coverage Criteria: Node, Edge, and Path. Graph-

based testing defines clear quantitative metrics for

coverage.

Node Coverage (NC):

• Goal: Visit each vertex at least once

• Benefit: Ensures every high-level screen or state

is reached by at least one test

• Limitation: Doesn’t verify transitions between

states

Fig. 3. Directed graph modeling an SPA’s login and navigation

flow

Edge Coverage (EC):

• Goal: Traverse every directed edge at least once

• Benefit: Confirms every action-driven state chan-

ge is tested

• Limitation: May miss defects arising from parti-

cular sequences of actions

Path Coverage (PC):

• Goal: Cover all simple paths up to length k, or all

acyclic paths

• Benefit: Detects defects triggered by specific

event orders (e.g., login → settings → logout → login)

• Limitation: Quickly becomes infeasible as the

number of states grows (exponential explosion)

To ensure full edge and path coverage (see fig. 4), we

generate test routes that traverse every edge pair.

Typically, a mixed strategy is adopted: begin with NC

to validate wide reach, advance to EC for thorough

transition testing, then selectively target the most critical or

failure-prone paths for PC. Coverage tools can

automatically report the percentage of nodes and edges

exercised.

Having visualized our application as an oriented

graph, we can systematically derive concrete test paths that

correspond to realistic user interactions. As shown in fig. 4,

two example routes are highlighted:

• Path 1 (blue): a simple login-home-logout sequ-

ence, ensuring that basic authentication and navigation

work end-to-end

• Path 2 (green): a more involved flow that spans

login, landing on the home page, drilling into the

dashboard, adjusting settings, and finally logging out

These extracted paths permit us to:

• Measure Coverage: By counting how many

distinct vertices and edges each path covers, we can

compute both node coverage (the percentage of total states

exercised) and edge coverage (the percentage of transitions

exercised)

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (13) 2025 57

• Identify Gaps: If certain states or transitions

remain unvisited, we know exactly which additional paths

to generate − rather than guessing at what might be missing

• Prioritize Tests: Critical business flows (e.g.,

purchase checkout) can be elevated to their own

highlighted routes, guaranteeing they are always included

in smoke or regression suites

Fig. 4. Test paths extracted from the graph model to guarantee

node/edge/path coverage

Once the core routes are defined, we can generalize

this approach by programmatically enumerating all simple

paths up to a given length (to control explosion) and

feeding them into our E2E framework. In practice, we

integrate this generation step into the CI pipeline so that

every time the graph model changes, a new set of test

scripts is created automatically.

Manually writing tests for every edge or path is error-

prone. Instead, one can:

• Export the Graph (e.g., as adjacency list or DOT

file)

• Run a Path-Enumeration Script that, given a

coverage target (NC, EC, or PC with max length k), outputs

a minimal set of edge sequences covering all required

elements

• Translate Each Sequence into a Test Script for

your chosen framework

• Embed Coverage Hooks that record which

nodes / edges were hit at runtime and feed back into your

dashboards

This approach ensures that every generated test is

systematically grounded in the formal graph model, rather

than handcrafted imperatively.

Integrated ci / cd testing pipeline. To ensure rapid

yet reliable delivery of SPA applications, we embed our

multi-layered testing strategy directly into the CI / CD

workflow [12]. Our CI / CD pipeline incorporates graph-

based test generation at the E2E stage.

As illustrated in fig. 5, the pipeline proceeds through

unit tests, static analysis, E2E, graph-based synthesis, and

reporting.

Unit Tests (Jest + React Testing Library): fast, iso-

lated execution of component-level tests, providing imme-

diate feedback (typically under one minute).

Static Analysis (ESLint + TypeScript): verification of

code style, linting rules, and type correctness to prevent

common errors before any browser-based tests run.

End-to-End Tests (Cypress or Playwright): execution

of core user scenarios − login, navigation, form submis-

sions − in real browser contexts to validate full-stack in-

teractions.

Fig. 5. CI / CD pipeline stage showing graph-based test

generation and coverage aggregation

Graph-Based Test Generation & Execution:

• Graph Regeneration: instrumentation scripts scan

the latest routing definitions and UI events, rebuilding the

state graph

• Route Synthesis: algorithms enumerate all

missing node / edge test paths up to a configurable length,

generating E2E test scripts automatically

• Test Execution: synthesized tests are run head-

lessly in the same framework (Cypress / Playwright), mea-

suring coverage per state and transition

Coverage Aggregation & Reporting:

• Consolidation of unit-test coverage (lines /

branches) with graph-based node / edge / path metrics

• Generation of a unified dashboard (e.g., via

ReportPortal or custom CI artifact) showing pass / fail

rates, coverage percentages, and Pareto chart of the most

frequently failing routes
Quality Gate & Notifications:

• The build fails if any critical coverage threshold is

breached (e.g., < 90 % edge coverage)

• Real-time alerts are sent to the team’s collabo-

ration channel (Slack, Teams) summarizing test results and

highlighting coverage gaps
By orchestrating these stages, the CI / CD pipeline not

only prevents regressions in existing flows but also keeps
pace with evolving application logic by automatically
generating tests for newly added states or transitions.

This tight integration of graph-based testing trans-
forms test maintenance from a manual chore into a self-
healing, data-driven process.

Conclusions. In this work, we have presented a ho-
listic testing framework for modern single-page appli-
cations that balances speed, accuracy, and maintenance
effort.

Traditional methods such as manual, functional UI,
API, performance and security tests certainly remain
important. However, it should be noted that they are prone
to coverage gaps and also high maintenance costs.

By analyzing leading automation tools (Selenium,
Cypress, Playwright, Jest / RTL, Postman, OWASP ZAP,

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

58 аналіз, управління та інформаційні технології, № 1 (13) 2025

JMeter) by key criteria (accuracy of defect detection, speed
of execution, cost of implementation, ease of implement-
tation, scalability were used as criteria), we demonstrated
how a linear additive model with Pareto analysis can
determine the optimal set of such tools, adapted to the
project priorities.

Central to our approach is Graph-Based Testing,

which formalizes application behavior into an oriented state

graph and ensures comprehensive node, edge, and path

coverage through automated route generation. Integrating

this method into a CI / CD pipeline closes traditional

“white-spots” in coverage while automating test synthesis

and maintenance.

The resulting pipeline delivers continuous, objective

validation of both code correctness and business-critical

user flows, reducing risk even under rapid release cadences.

In future research, attention is planned to be focused

on the study of dynamic weighting of criteria based on real

system failure data. It is also necessary to consider adaptive

prioritization of test paths using machine learning, and, of

course, to pay close attention to a much deeper integration

of security testing within the graph-based paradigm.

The approach opens up opportunities for building

intelligent, self-optimizing testing pipelines that evolve

with the product lifecycle. Incorporating continuous

feedback loops will further enhance decision-making by

aligning tool selection with actual defect patterns over time.

Moreover, expanding the model to include team expertise

and integration effort as contextual factors could provide an

even more realistic evaluation framework.

These directions are expected to significantly improve

the accuracy, efficiency, and relevance of the testing

process. Moreover, the incorporation of AI-driven analytics

may open new possibilities for real-time test optimization

and anomaly detection.

By developing our graph-oriented pipeline, progress-

sive teams get a great unique opportunity to constantly

strengthen and significantly improve quality control in an

environment where the complexity of modern web inter-

faces continues to grow steadily over time.

References

1. Beizer B. Software Testing Techniques. 2nd ed. New Delhi:
Dreamtech Press, 2003. 550 p.

2. Zhu M. On Graph-Based Testing. Proceedings of the International

Conference on Software Engineering, 1997. P. 120–127.
3. Goyal P., Ferrara E. Graph embedding techniques, applications, and

performance: A survey. Knowledge-Based Systems. 2018. Vol. 151.

P. 78–94.
4. Tamassia R. Handbook of Graph Drawing and Visualization. Boca

Raton: CRC Press, 2013. 844 p.

5. Cypress.io. URL: https://docs.cypress.io (access date: 30.04.2025).
6. Playwright. Microsoft. URL: https://docs.cypress.io (access date:

30.04.2025).

7. Jest – Delightful JavaScript Testing. URL: https://jestjs.io (access
date: 30.04.2025).

8. H. Joshi. Analysis of web assembly technology in cloud and backend.

International Research Journal of Modernization in Engineering
Technology and Science. 2022, vol. 4, no. 9, P. 121–128.

9. Postman. URL: https://www.postman.com (access date: 30.04.2025).

10. OWASP ZAP – The World’s Most Popular Free Security Tool. URL:
https://www.zaproxy.org (access date: 30.04.2025).

11. Apache Software Foundation. URL: https://jmeter.apache.org (access

date: 30.04.2025).
12. Hamdan M. H. Continuous Integration and Testing. Birmingham:

Packt, 2022. 330 p.

References (transliterated)

1. Beizer B. Software Testing Techniques. 2nd ed. New Delhi:

Dreamtech Press, 2003. 550 p.
2. Zhu M. On Graph-Based Testing. Proceedings of the International

Conference on Software Engineering, 1997, pp. 120–127.

3. Goyal P., Ferrara E. Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems. 2018, vol. 151,

pp. 78–94.

4. Tamassia R. Handbook of Graph Drawing and Visualization. Boca
Raton: CRC Press, 2013. 844 p.

5. Cypress.io. Available at: https://docs.cypress.io (accessed

30.04.2025).
6. Playwright. Microsoft. Available at: https://playwright.dev (accessed

30.04.2025).

7. Jest – Delightful JavaScript Testing. Available at: https://jestjs.io
(accessed 30.04.2025).

8. H. Joshi. Analysis of web assembly technology in cloud and backend.

International Research Journal of Modernization in Engineering
Technology and Science. 2022, vol. 4, no. 9, pp. 121–128.

9. Postman. Available at: https://www.postman.com (accessed

30.04.2025).

10. OWASP ZAP – The World’s Most Popular Free Security Tool.

Available at: https://www.zaproxy.org (accessed 30.04.2025)..
11. Apache Software Foundation. Available at: https://jmeter.apache.org

(accessed 30.04.2025).

12. Hamdan M. H. Continuous Integration and Testing. Birmingham:
Packt, 2022. 330 p.

Received 14.05.2025

УДК 004.41

Н. В. ГОЛЯН, кандидат технічних наук, доцент, доцент кафедри Програмної інженерії Харківський національний

університет радіоелектроніки, м. Харків, Україна; e-mail: nataliia.golian@nure.ua; ORCID: https://orcid.org/0000-0002-

1390-3116

В. О. ТІШЕНІНОВА, студентка, Харківський національний університет радіоелектроніки, м. Харків, Україна; e-

mail: varvara.tisheninova@nure.ua; ORCID: https://orcid.org/0000-0002-1390-3116

ІНТЕГРОВАНИЙ КОНВЕЄР ТЕСТУВАННЯ НА ОСНОВІ ГРАФІВ ДЛЯ СУЧАСНИХ

ОДНОСТОРІНКОВИХ ЗАСТОСУНКІВ

У сучасній екосистемі розробки програмного забезпечення односторінкові застосунки (SPA) стали фактичним стандартом для забезпечення
багатого, інтерактивного користувацького досвіду. Такі фреймворки, як React, Vue та Angular, дозволяють розробникам створювати

високочутливі інтерфейси; однак вони також впроваджують складне управління станом на стороні клієнта та складну логіку маршрутизації.

Зі зростанням розміру та складності застосунків ручне написання та підтримка наскрізних тестів для кожного можливого шляху користувача

стають неможливими. Більше того, забезпечення всебічного охоплення – функціональності, безпеки, продуктивності та зручності

використання – вимагає інтегрованої та адаптивної стратегії тестування, яка може масштабуватися зі швидкими частотами випусків.

У цій статті представлено новий інтегрований конвеєр тестування, який доповнює традиційне тестування модулів, компонентів, інтеграції,
API, продуктивності, безпеки та доступності за допомогою формальної моделі тестування на основі графів (GBT). Ми моделюємо SPA як

https://docs.cypress.io/
https://docs.cypress.io/
https://playwright.dev/
https://jestjs.io/
https://www.postman.com/
https://www.zaproxy.org/
https://jmeter.apache.org/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (13) 2025 59

орієнтований граф, де кожна верхівка представляє окремий стан або вигляд інтерфейсу користувача, а кожне орієнтоване ребро відповідає

переходу, ініційованому користувачем (наприклад, кліки, відправлення форм, події навігації). Використовуючи графові алгоритми, наш підхід
автоматично ідентифікує відсутні шляхи для досягнення вичерпного покриття вузлів, ребер та простих шляхів до налаштовуваної довжини,

синтезує мінімальні тестові послідовності та генерує виконувані тестові скрипти у фреймворках, таких як Jest (модуль / компонент), Cypress

або Playwright (інтеграція / E2E) та Postman (API).
Щоб вибрати та налаштувати відповідні інструменти для кожного аспекту тестування, ми використовуємо багатокритеріальну структуру

рішень, засновану на лінійній адитивній корисності та аналізі Парето. Кожен інструмент оцінюється за п'ятьма нормалізованими вимірами –

точність виявлення дефектів, швидкість виконання, вартість ліцензування або інфраструктури, зусилля з впровадження та масштабованість –
зваженими відповідно до пріоритетів проєкту.

Зрештою ми інтегруємо цю генерацію тестів на основі GBT та набір інструментів у конвеєр CI / CD, доповнений попереднім скануванням

безпеки за допомогою OWASP ZAP та періодичними тестами навантаження з використанням JMeter. Результатом є безперервний,
самовідновлюваний набір тестів, який адаптується до змін інтерфейсу користувача, автоматично пербудовується відповідно до сповіщень про

диференціацію графів та підтримує високий рівень достовірності навіть за агресивних графіків спринтів. Емпірична оцінка двох

великомасштабних SPA демонструє 40% скорочення зусиль на ручне створення тестів та 25% збільшення загальних показників покриття
порівняно з традиційними підходами.

Ключові слова: односторінкові застосунки, тестування, автоматизоване тестування, аналіз Парето, покриття тестів, React, Cypress,

Playwright.

Повні імена авторів / Author's full names

Автор 1 / Author 1: Голян Наталія Вікторівна / Golian Nataliia Viktorivna

Автор 2 / Author 2: Тішенінова Варвара Олександрівна / Tisheninova Varvara Oleksandrivna

