
ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (13) 2025 101

DOI: 10.20998/2079-0023.2025.01.15

UDC 004.72

P. Y. ZHERZHERUNOV, Student, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: Pavlo.Zherzherunov@cs.khpi.edu.ua; ORCID: https://orcid.org/0009-0005-7240-9395

O. V. SHMATKO, Doctor of Philosophy (PhD), Docent, National Technical University "Kharkiv Polytechnic Institute",

Ass. Prof of Software Engineering and Management Intelligent Technologies Department,

Kharkiv, Ukraine, e mail: oleksandr.shmatko@khpi.edu.ua, ORCID: https://orcid.org/0000-0002-2426-900X

DESIGNING THE ARCHITECTURE AND SOFTWARE COMPONENTS OF THE DOCKERISED

BLOCKCHAIN MEDIATOR

Small and medium enterprises are not adopting blockchain solutions in their supply chains and business processes due to the cost of implementing and
deploying the solutions. The architecture, which is described, is aimed at lowering the barrier for smaller-scale businesses to adopt distributed

technologies in their supply chains. Docker’s containerization capabilities are leveraged to achieve these goals due to improved horizontal scaling and

providing a unified environment for the application deployment. This architecture leverages tools provided by the Docker to design scalable and robust
system that is easily maintainable. Some of the key challenges are addressed by the proposed architecture, such as high development costs,

incompatibility with existing systems, and complicated setup processes, which are required for every participant in the supply chain. This research

describes how utilizing Docker system capabilities can help enable smaller-scale businesses to adapt distributed solutions in their supply chains and
cooperation with other companies by tackling the issues of traceability, transparency, and trust. The main components of the architecture are a mediator

server containerized within a Docker network, a blockchain node, and an NGINX proxy server container. They are implemented to process request data,

store relevant information, and secure it on the Ethereum blockchain ledger. The proposed architecture is also aimed at integrating smoothly with existing
company applications to reduce adoption costs. Security of the data in the Ethereum ledger is achieved via security measures such as cryptography

mechanisms and hashing already integrated into the Ethereum platform.

Keywords: dockerized blockchain architecture, supply chain management, containerized blockchain nodes, small-medium enterprises, supply

chain, cryptography, hashing, hashing algorithms, ethereum.

Introduction. Blockchain technology has entered the

space of supply chain management, allowing for increased

transparency, traceability, and security of the supply and

logistics operations that are performed in the chain. Large

companies are more likely to incorporate distributed

technology in their workflow due to the number of

resources available and robustness of their structure, which

allows for taking risks adopting new technology [1].

Smaller-scale businesses though usually don’t have the

resources needed to start using distributed solutions or

augmenting their existing applications with blockchain

tools because of not lack the resources to do so. Small to

medium enterprises, or SME in short, are hesitant to apply

blockchain solutions to their existing business models

because of its financial and time costs, but are interested in

trying this technology because of the benefits it could bring

them [1]. There are some solutions present that are targeted

at SMEs specifically. One of them is a dockerized

architecture approach to the blockchain solution, focusing

on containerized virtual nodes for the blockchain network

and tools that allow for storing necessary data in the ledger

[2]. It is described at a high-level in the work mentioned

above. The goal of the current research is to design the

architecture and software components for dockerized

blockchain system in more details, describing how

elements of this system could be implemented, so that

development and deployment costs for applying distributed

solutions would decrease for the small-medium enterprises,

allowing for more companies trying the technology in their

supply chains.

Designing system architecture. There are several

concerns regarding the implementation and deployment of

the blockchain solutions, which are mentioned in this work

[2]. Dockerized blockchain system is being designed based

on the problems that are tackled with that approach. Those

problems are mostly with the incorporating of the

blockchain solution for smaller businesses and they can be

named like this:

• Expensive development and deployment process

for blockchain tools

• Incompatibility of new blockchain tools with the

existing businesses process and existing applications

• Difficulties in setup process of the new tools for

each participant of the supply chain

• Lack of pre-developed blockchain solutions that

would allow for quick and easy integration of the solution

into existing applications and systems

Based on the problems discussed above, it was

decided to use Docker as a platform for packaging and

running applications [3], among which are going to be

server mediator for processing data before it goes to the

ledger, blockchain nodes and a proxy server for redirecting

requests to a necessary service in the docker network or

outside of it, to the existing applications.

Docker is selected for the solution due to it having

several cons that directly help with the issues mentioned

above. Docker packages applications and their

dependencies into isolated containers, ensuring consistent

execution across different environments. This eliminates

the "it works on my machine" problem [3]. That allows for

an easier process of development and deployment, which

reduces financial and time costs of the solution adoption.

Docker is scalable, as it simplifies horizontal scaling by

allowing you to easily run multiple instances of a

containerized application to handle increased load [4]. It

allows for scaling existing containers in the network and

Research Article: This article was published by the publishing house of NTU "KhPI" in the collection

"Bulletin of the National Technical University "KhPI" Series: System analysis, management and
information technologies." This article is distributed under a Creative Common Creative Common

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

© Zherzherunov P.Y., Shmatko O.V., 2025

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

102 аналіз, управління та інформаційні технології, № 1 (13) 2025

adding new ones, which is allowed by isolation and security

of the containers used. That enables easier integration of the

tools in the existing systems, as they do not have to be

implemented in the existing codebase, but communicated

to as a separate server, having its own interface.

System architecture using Docker has to account for

the existing systems of the supply chain participants,

allowing connecting them the blockchain network or not

isolating requests in the blockchain node. That is achieved

via mediator server, which is responsible for extracting data

from the request, saving it to the ledger and passing request

to the original server or application.

Solution’s architecture consists of several elements:

• User client. This part of the application is not

described in detail as it is usually a browser or OS

application, which sends requests to the server, where logic

is handled

• Docker Application Host. It is a server machine,

which is responsible for hosting the docker network, which

in basic configuration includes mediator server written in

Python and Django framework, and blockchain Ethereum

node. There is also a NGINX proxy that can redirect

requests to the mediator, existing server outside of Docker

network or additional modules, that can be manually added

to the docker network

• Existing server. This is a server machine or proxy

for existing server or network of servers, which are

responsible for handling original business logic for that

client in the supply chain processes

On the component diagram of the architecture main

elements are displayed, where User client is name Client

Applications, Docker Application Host is Dockerized

Blockchain Mediator and Existing Server is Company

Server. Each of these components is present for every

company-participant of the supply chain or business

cooperation. But all the dockerized blockchain mediators

connect via Ethereum nodes to a shared blockchain

network with a shared ledger.

Client Applications component includes Client App

instances, which are displayed as multiple elements in the

component. Their number is not limited to two, and these

can be different application, the main requirement to them

is that they communicate with the existing Company

Server. This logic is true for every company participant of

the supply chain.

Dockerized Blockchain Mediator includes NGINX

Proxy, Mediator Server and Blockchain Node containers.

Their purpose and process details are described further in

this research.

The architecture, including Docker implementation

details, is displayed in the fig. 2. Details of the docker

specific deployment of solution’s components are

described there.

The procedure of deploying a dockerized blockchain

instance can be described as follows: host is running a

virtual machine (VM) instance, which is responsible for

managing docker daemon, main process in the Docker

application, which manages images, containers and

provides interface to control them [5]; docker daemon on

docker-compose command is collecting image schemes

and necessary resources from the registry and creates

images based on them; containers are created based on the

images that docker pulled from the registry; pre-developed

mediator server and blockchain node are using python

(which includes Django by default) and ethereum/client-go

images respectively; NGINX proxy container is using a

nginx/nginx-ingress image to build a proxy server, which is

responsible for redirecting requests and returning modified

responses [6, 7]; After these operations are completed,

Fig. 1. Component diagram of the architecture

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (13) 2025 103

application is ready and operational and other clients are

communicating with it via docker-network, which is expo-

sed on the real machine server.

Default Architecture’s Process Sequence. Sequence

diagram in the fig. 3 displays a default process of the

application handling client requests to their existing server

application, where request is temporarily intercepted by the

blockchain mediator server. Diagram is composed taking

into account structure of the dockerized application and

specific of its deployment.

Objects of this diagram are Client App, Host Machine,

Networking Subsystem, NGINX Container, Mediator

Server, Blockchain Node and Original Server. Sequence

diagram shows full process of request processing including

different Docker layers [8].

Client App is a client already implemented and used

by business company to communicate with their Original

Server, where Client App is usually a web application or

website and original server is a webserver responsible for

handling logic.

 Client App sends a HTTP request to a Host Machine,

which is shown as a message arrow in the diagram. Host

Machine is a real server machine that hosts operating

system which itself hosts a Docker network. To redirect a

request to the NGINX Container, Mediator Server and

Blockchain Node which are parts responsible for handling

logic of the request, Host Machine sends received request

to the Networking Subsystem of the Docker, which then

maps this request to a NGINX Container, which acts as a

proxy in this architecture. These actions are also shown as

message arrows in the sequence diagram, as synchronous

calls, as they are waiting for response from the mentioned

objects.

After NGINX Container receives request, it is now

present in the virtual Docker network, where main objects

are NGINX Container, Mediator Server and Blockchain

Node. Multiple scenarios are possible within NGINX

Container logic, but sequence diagram covers the default

one, where request is processed, data is saved in the

blockchain ledger via smart contract. To do this, NGINX

container redirects request to a Mediator Server object,

which is responsible for processing all request data and

separating parts of it to be stored in the blockchain ledger.

This logic is intended to be customizable, so it is not a focus

Fig. 2. Detailed Architecture of Blockchain Mediator Instance

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

104 аналіз, управління та інформаційні технології, № 1 (13) 2025

of the current research. After Mediator Server formats

request metadata and sends it to a Blockchain Node, it waits

for the completion event from it. When completion event is

received, Mediator Server returns request to the NGINX

Proxy and issues its redirect to the original server. All these

operations are displayed as message arrows in the diagram.

NGINX Proxy sends an original request to the original

server, if completion event is received, and then waits for

response from it. From that point on, NGINX Container,

Networking Subsystem and Host Machine are acting as

sequential transmitters of original server response, which is

aimed to return to the Client App.

Processing Request Data for Blockchain. Archi-

tecture is aimed at processing and saving essential parts of

the request passing through the system to enabling tracking

of the actions in the supply chain but also not create too

large data storages which are hard to maintain.

Request structure consists of several parts, which are

request line, headers and body which is an optional part of

the requests that stores data sent in some of the HTTP

methods [9].
Request line is the first line of the HTTP request and

contains essential information about the request. It has three
parts, separated by spaces: HTTP method (e.g., GET,
POST, DELETE), request target (e.g., /api-endpoint) and
HTTP version, which can be one of the HTTP protocols.
We want to store the whole line in the ledger except HTTP
version [9, 10].

Headers contain a lot of key:value pairs, where key is
a name of a specific header and values is usually a string
value with specific information. For example: Host:
www.example.com, Accept-Language: en-US,en;q=0.5,
etc. We would like to store not all of the headers, but those
that are request essential, for example Host, User-Agent,
Accept, Content-Type, Content-Length, Referer. But we
must not store and security relevant information, like
Cookie or Authorization header, as blockchain network is
fully visible for the participants of the network, and
providing such information would be a direct violation of
security rules.

In the ledger we would also like to store body of the
request. The request body is the part of an HTTP request
that contains data being sent from the client to the server. It
follows the request line and the headers. The presence and
content of the request body depend on the HTTP method
used and the purpose of the request.

Format of the request body is dependent on the
Content-Type header, which is passed with the request.
Examples of the content types are text/plain, applica-
tion/json, application/xml. Body can also be a file, but that
is a rarer case of the request, so it is not going to be looked
at in the scope of this research.

Text/plain content type can be stored in the ledger
directly as a body: content pair, where content is String
type. Application/json, application/xml and application/x-
www-form-urlencoded are using different formatting, but
they can be converted to the dictionary data structure,
where each field is either a single String or Number or
another dictionary which contains other fields. This
transformation of JSON, text, XML or form data has to be
done in the Mediator Server prior to sending to the

Blockchain Node and a corresponding smart contract to
reduce load on the onchain operations.

Securing distributed request data. After resulting
data object representing the request is sent to smart contract
and from there stored to ledger, new Ethereum ledger
records are secured through a combination of cryptographic
techniques and a robust consensus mechanism. The default
Ethereum approach is used to securing newly obtained data.

Ethereum uses elliptic curve cryptography
(specifically secp256k1), the same as Bitcoin, to manage
accounts and transactions. Each Ethereum account has a
public key and a private key pair. The public key acts like
an account number, allowing others to connect new data to
other members of the blockchain network. It can be shared
publicly without risk. The private key is like a digital
signature. It’s a secret key that allows the account owner to
authorize transactions which change the latest state of the
ledger. [11].

For hashing Ethereum uses cryptographic hash
functions (like Keccak-256) extensively, to create unique
identifiers for operations in the ledger and to link blocks
together in the blockchain, forming a tamper-evident chain.
Each block’s header contains a hash of the previous block’s
header [12].

Conclusions. This research describes the design of
architecture and basic software components for a
dockerized blockchain mediator system aimed at lowering
the barrier for small to medium enterprises to adopt
blockchain technology in their supply chains.

To achieve these goals, Docker’s containerization
capabilities are leveraged, and as a result the proposed
architecture addresses key challenges such as high
development costs, incompatibility with existing systems,
and complex setup processes. This research describes how
using Docker system can help addressing these issues to
enable more smaller scale businesses to adapt distributed
solutions in their supply chains and cooperation with other
companies.

The architecture features a mediator server within a
Docker network, alongside blockchain nodes and a proxy
server, to process request data, store relevant information
securely on the Ethereum blockchain ledger, and integrate
smoothly with existing company applications. Security of
the data in Ethereum ledger is achieved via security
measures such as cryptography mechanisms and hashing
already integrated in the Ethereum platform.

This approach simplifies deployment, enhances scala-
bility, and maintains security through established crypto-
graphic methods, ultimately offering a more feasible path
for SMEs to explore the benefits of blockchain for impro-
ved supply chain transparency and traceability.

References

1. Shubham Joshi, Anil Audumbar Pise, Manish Shrivastava,

C. Revathy, Harish Kumar, Omar Alsetoohy, Reynah Akwafo.
Adoption of blockchain technology for privacy and security in the

context of industry 4.0. Wireless Communications and Mobile

Computing. 2022. iss. Explorations in Pattern Recognition and
Computer Vision for Industry 4.0. article 4079781. DOI:

https://doi.org/10.1155/2022/4079781.

2. Шматко О. В., Коломійцев О. В., Жержерунов П. Ю.,
Третяк В. Ф., Сінчук А. В. Survey and categorization of blockchain

solutions for supply chain management. Системи обробки

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Вісник Національного технічного університету «ХПІ». Серія: Системний

аналіз, управління та інформаційні технології, № 1 (13) 2025 105

інформації. 2024. №. 3 (178), P. 84–92. DOI:

https://doi.org/10.30748/soi.2024.178.10.
3. Jangla Kinnary. Accelerating Development Velocity Using Docker:

Docker Across Microservices. Berkeley: Apress, 2018. P. 27-53.

URL: https://link.springer.com/book/10.1007/978-1-4842-3936-0
(access date: 15.04.2025).

4. Miell I., Sayers A. Docker in practice. New York City: Simon and

Schuster, 2019. P. 384. URL:
https://www.simonandschuster.com/books/Docker-in-Practice-

Second-Edition/Ian-Miell/9781617294808 (access date: 15.04.2025).

5. dockerd. URL: docs.docker.com/reference/cli/dockerd/ (access date
10.04.2025).

6. NGINX Ingress Controller. URL:

https://hub.docker.com/r/nginx/nginx-ingress (access date:
15.04.2025).

7. ethereum/client-go. URL: https://hub.docker.com/r/ethereum/client-

go (access date: 15.04.2025).
8. What Is a Sequence Diagram. URL: www.visual-

paradigm.com/guide/uml-unified-modeling-language/what-is-

sequence-diagram/ (access date: 18.04.2025).
9. Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P.,

Berners-Lee T. RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1.

United States: RFC Editor, 1999. DOI:
https://doi.org/10.17487/RFC2616.

10. Pollard B. HTTP/2 in Action. New York City: Simon and Schuster,
2019. P. 416. URL:

https://www.simonandschuster.com/books/HTTP-2-in-

Action/Barry-Pollard/9781617295164 (access date: 18.04.2025)
11. Andreas M., Gavin W. Mastering Ethereum. Sebastopol: O’Reilly

Media, 2019. P. 415.

12. Danen C. Introducing Ethereum and solidity. Berkeley: Apress, 2017.
Vol. 1.. P. 185.

References (transliterated)

1. Shubham Joshi, Anil Audumbar Pise, Manish Shrivastava,
C. Revathy, Harish Kumar, Omar Alsetoohy, Reynah Akwafo.

Adoption of blockchain technology for privacy and security in the

context of industry 4.0. Wireless Communications and Mobile
Computing. 2022. issue Explorations in Pattern Recognition and

Computer Vision for Industry 4.0. article 4079781. DOI:

https://doi.org/10.1155/2022/4079781.
2. Shmatko O. V., Kolomiitsev O. V., Zherzherunov P. Y.,

Tretiak V. F., Sinchuk A. V. Survey and categorization of blockchain

solutions for supply chain management. Systemy obrobky informatsii
[Information processing systems] 2024 no. 3 (178), pp. 84-92. DOI:

https://doi.org/10.30748/soi.2024.178.10.

3. Jangla Kinnary. Accelerating Development Velocity Using Docker:
Docker Across Microservices. Berkeley: Apress, 2018. pp. 27-53.

Available at: https://link.springer.com/book/10.1007/978-1-4842-

3936-0 (accessed: 15.04.2025).
4. Miell I., Sayers A. Docker in practice. New York City: Simon and

Schuster, 2019. 384 p. Available at:

https://www.simonandschuster.com/books/Docker-in-Practice-
Second-Edition/Ian-Miell/9781617294808 (accessed: 15.04.2025).

5. dockerd. URL: docs.docker.com/reference/cli/dockerd/ (accessed

10.04.2025).
6. NGINX Ingress Controller. Available at:

https://hub.docker.com/r/nginx/nginx-ingress (accessed:

15.04.2025).
7. ethereum/client-go. URL: https://hub.docker.com/r/ethereum/client-

go (accessed: 15.04.2025).

8. What Is a Sequence Diagram. Available at: www.visual-
paradigm.com/guide/uml-unified-modeling-language/what-is-

sequence-diagram/ (accessed: 18.04.2025).
9. Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P.,

Berners-Lee T. RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1.

United States: RFC Editor, 1999. DOI:
https://doi.org/10.17487/RFC2616.

10. Pollard B. HTTP/2 in Action. New York City: Simon and Schuster,

2019. 416 p. Available at:
https://www.simonandschuster.com/books/HTTP-2-in-

Action/Barry-Pollard/9781617295164 (accessed: 18.04.2025)

11. Andreas M., Gavin W. Mastering Ethereum. Sebastopol: O’Reilly
Media, 2019. 415 p.

12. Danen C. Introducing Ethereum and solidity. Berkeley: Apress, 2017.

Vol. 1. 185 p.

Received 14.05.2025

УДК 004.72

П. Ю. ЖЕРЖЕРУНОВ, студент, Національний технічний університет «Харківський політехнічний інститут»,

м. Харків, Україна, e-mail: Pavlo.Zherzherunov@cs.khpi.edu.ua, ORCID: https://orcid.org/0009-0005-7240-9395

О. В. ШМАТКО, доктор філософії (PhD), доцент, Національний технічний університет

«Харківський політехнічний інститут», доцент кафедри програмної інженерії та інтелектуальних технологій

управління, м. Харків, Україна, e-mail: oleksandr.shmatko@khpi.edu.ua, ORCID: https://orcid.org/0000-0002-2426-900X

РОЗРОБКА АРХІТЕКТУРИ ТА ПРОГРАМНИХ КОМПОНЕНТІВ ДОКЕРИЗОВАНОГО БЛОКЧЕЙН-

МЕДІАТОРА

Малі та середні підприємства не впроваджують блокчейн-рішення у свої ланцюги постачання та бізнес-процеси через високу вартість їх

впровадження та розгортання. Описана архітектура спрямована на зниження бар'єрів для малих підприємств у впровадженні розподілених

технологій у свої ланцюги постачання. Для досягнення цих цілей використовуються можливості контейнеризації Docker завдяки

покращеному горизонтальному масштабуванню та забезпеченню єдиного середовища для розгортання додатків. Ця архітектура використовує
інструменти, надані Docker, для проектування масштабованої та надійної системи, яка легко підтримується. Пропонована архітектура вирішує

деякі ключові проблеми, такі як високі витрати на розробку, несумісність з існуючими системами та складні процеси налаштування, які

необхідні для кожного учасника ланцюга постачання. У цьому дослідженні описано, як використання можливостей системи Docker може
допомогти малим підприємствам адаптувати розподілені рішення у своїх ланцюгах постачання та співпраці з іншими компаніями шляхом

вирішення проблем простежуваності, прозорості та довіри. Основними компонентами архітектури є контейнерний сервер-посередник у

мережі Docker, вузол блокчейну та контейнерний проксі-сервер NGINX. Вони реалізовані для обробки даних запитів, зберігання відповідної
інформації та її захисту в реєстрі блокчейну Ethereum. Запропонована архітектура також спрямована на плавну інтеграцію з існуючими

додатками компанії для зменшення витрат на впровадження. Безпека даних у реєстрі Ethereum забезпечується за допомогою таких заходів

безпеки, як механізми криптографії та хешування, вже інтегровані в платформу Ethereum.
Ключові слова: докеризована архітектура блокчейну, управління ланцюгами поставок, контейнеризовані вузли блокчейну, малі та

середні підприємства, ланцюг поставок, криптографія, хешування, алгоритми хешування, Ethereum.

Повні імена авторів / Author's full names

Автор 1 / Author 1: Жержерунов Павло Юрійович / Zherzherunov Pavlo Yuriiovych

Автор 2 / Author 2: Шматко Олександр Віталійович / Shmatko Olexandr Vitaliiovych

