ISSN 2079-0023 (print), ISSN 2410-2857 (online)

DOI: 10.20998/2079-0023.2025.01.15
UDC 004.72

P.Y.ZHERZHERUNOV, Student, National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine;
e-mail: Pavlo.Zherzherunov@cs.khpi.edu.ua; ORCID: https://orcid.org/0009-0005-7240-9395

0. V. SHMATKO, Doctor of Philosophy (PhD), Docent, National Technical University "Kharkiv Polytechnic Institute",
Ass. Prof of Software Engineering and Management Intelligent Technologies Department,

Kharkiv, Ukraine, e mail: oleksandr.shmatko@khpi.edu.ua, ORCID: https://orcid.org/0000-0002-2426-900X

DESIGNING THE ARCHITECTURE AND SOFTWARE COMPONENTS OF THE DOCKERISED
BLOCKCHAIN MEDIATOR

Small and medium enterprises are not adopting blockchain solutions in their supply chains and business processes due to the cost of implementing and
deploying the solutions. The architecture, which is described, is aimed at lowering the barrier for smaller-scale businesses to adopt distributed
technologies in their supply chains. Docker’s containerization capabilities are leveraged to achieve these goals due to improved horizontal scaling and
providing a unified environment for the application deployment. This architecture leverages tools provided by the Docker to design scalable and robust
system that is easily maintainable. Some of the key challenges are addressed by the proposed architecture, such as high development costs,
incompatibility with existing systems, and complicated setup processes, which are required for every participant in the supply chain. This research
describes how utilizing Docker system capabilities can help enable smaller-scale businesses to adapt distributed solutions in their supply chains and
cooperation with other companies by tackling the issues of traceability, transparency, and trust. The main components of the architecture are a mediator
server containerized within a Docker network, a blockchain node, and an NGINX proxy server container. They are implemented to process request data,
store relevant information, and secure it on the Ethereum blockchain ledger. The proposed architecture is also aimed at integrating smoothly with existing
company applications to reduce adoption costs. Security of the data in the Ethereum ledger is achieved via security measures such as cryptography

mechanisms and hashing already integrated into the Ethereum platform.

Keywords: dockerized blockchain architecture, supply chain management, containerized blockchain nodes, small-medium enterprises, supply

chain, cryptography, hashing, hashing algorithms, ethereum.

Introduction. Blockchain technology has entered the
space of supply chain management, allowing for increased
transparency, traceability, and security of the supply and
logistics operations that are performed in the chain. Large
companies are more likely to incorporate distributed
technology in their workflow due to the number of
resources available and robustness of their structure, which
allows for taking risks adopting new technology [1].
Smaller-scale businesses though usually don’t have the
resources needed to start using distributed solutions or
augmenting their existing applications with blockchain
tools because of not lack the resources to do so. Small to
medium enterprises, or SME in short, are hesitant to apply
blockchain solutions to their existing business models
because of its financial and time costs, but are interested in
trying this technology because of the benefits it could bring
them [1]. There are some solutions present that are targeted
at SMEs specifically. One of them is a dockerized
architecture approach to the blockchain solution, focusing
on containerized virtual nodes for the blockchain network
and tools that allow for storing necessary data in the ledger
[2]. It is described at a high-level in the work mentioned
above. The goal of the current research is to design the
architecture and software components for dockerized
blockchain system in more details, describing how
elements of this system could be implemented, so that
development and deployment costs for applying distributed
solutions would decrease for the small-medium enterprises,
allowing for more companies trying the technology in their
supply chains.

Designing system architecture. There are several
concerns regarding the implementation and deployment of
the blockchain solutions, which are mentioned in this work

Research Article: This article was published by the publishing house of NTU ""KhPI"" in the collection
"Bulletin of the National Technical University "KhPI" Series: System analysis, management and
information technologies." This article is distributed under a Creative Common Creative Common
Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

[2]. Dockerized blockchain system is being designed based
on the problems that are tackled with that approach. Those
problems are mostly with the incorporating of the
blockchain solution for smaller businesses and they can be
named like this:

e Expensive development and deployment process
for blockchain tools

¢ Incompatibility of new blockchain tools with the
existing businesses process and existing applications

o Difficulties in setup process of the new tools for
each participant of the supply chain

e Lack of pre-developed blockchain solutions that
would allow for quick and easy integration of the solution
into existing applications and systems

Based on the problems discussed above, it was
decided to use Docker as a platform for packaging and
running applications [3], among which are going to be
server mediator for processing data before it goes to the
ledger, blockchain nodes and a proxy server for redirecting
requests to a necessary service in the docker network or
outside of it, to the existing applications.

Docker is selected for the solution due to it having
several cons that directly help with the issues mentioned
above. Docker packages applications and their
dependencies into isolated containers, ensuring consistent
execution across different environments. This eliminates
the "it works on my machine" problem [3]. That allows for
an easier process of development and deployment, which
reduces financial and time costs of the solution adoption.
Docker is scalable, as it simplifies horizontal scaling by
allowing you to easily run multiple instances of a
containerized application to handle increased load [4]. It
allows for scaling existing containers in the network and

© Zherzherunov P.Y., Shmatko O.V., 2025

OPEN 8 ACCESS

Bichux Hayionanvnoz2o mexniunozo ynigepcumemy «XI1l». Cepia: Cucmemnuii

auanis, ynpasninus ma ingpopmayiini mexnonoeaii, Ne 1 (13) 2025

101

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

adding new ones, which is allowed by isolation and security
of the containers used. That enables easier integration of the

Client Applications [Company_1]

% Client App 1 % Client App 2

A A

ker logkchain Mediator [1]

company-participant of the supply chain or business
cooperation. But all the dockerized blockchain mediators

Client Applications [Company_2]

$ Client App 1 $ Client App 2

A A

NGINX Proxy Mediator
Server »{ Blockchain Ledger‘

ker logkchain Mediator [2]
NGINX Proxy Mediator
Server |4

Blockchain <—l
Node

Company Jerver [Company_ 1]

z% Server

Blockchain <—I
Node

Company Server [Company 2]

z% Server

Fig. 1. Component diagram of the architecture

tools in the existing systems, as they do not have to be
implemented in the existing codebase, but communicated
to as a separate server, having its own interface.

System architecture using Docker has to account for
the existing systems of the supply chain participants,
allowing connecting them the blockchain network or not
isolating requests in the blockchain node. That is achieved
via mediator server, which is responsible for extracting data
from the request, saving it to the ledger and passing request
to the original server or application.

Solution’s architecture consists of several elements:

e User client. This part of the application is not
described in detail as it is usually a browser or OS
application, which sends requests to the server, where logic
is handled

e Docker Application Host. It is a server machine,
which is responsible for hosting the docker network, which
in basic configuration includes mediator server written in
Python and Django framework, and blockchain Ethereum
node. There is also a NGINX proxy that can redirect
requests to the mediator, existing server outside of Docker
network or additional modules, that can be manually added
to the docker network

e Existing server. This is a server machine or proxy
for existing server or network of servers, which are
responsible for handling original business logic for that
client in the supply chain processes

On the component diagram of the architecture main
elements are displayed, where User client is name Client
Applications, Docker Application Host is Dockerized
Blockchain Mediator and Existing Server is Company
Server. Each of these components is present for every

connect via Ethereum nodes to a shared blockchain
network with a shared ledger.

Client Applications component includes Client App
instances, which are displayed as multiple elements in the
component. Their number is not limited to two, and these
can be different application, the main requirement to them
is that they communicate with the existing Company
Server. This logic is true for every company participant of
the supply chain.

Dockerized Blockchain Mediator includes NGINX
Proxy, Mediator Server and Blockchain Node containers.
Their purpose and process details are described further in
this research.

The architecture, including Docker implementation
details, is displayed in the fig. 2. Details of the docker
specific deployment of solution’s components are
described there.

The procedure of deploying a dockerized blockchain
instance can be described as follows: host is running a
virtual machine (VM) instance, which is responsible for
managing docker daemon, main process in the Docker
application, which manages images, containers and
provides interface to control them [5]; docker daemon on
docker-compose command is collecting image schemes
and necessary resources from the registry and creates
images based on them; containers are created based on the
images that docker pulled from the registry; pre-developed
mediator server and blockchain node are using python
(which includes Django by default) and ethereum/client-go
images respectively; NGINX proxy container is using a
nginx/nginx-ingress image to build a proxy server, which is
responsible for redirecting requests and returning modified
responses [6, 7]; After these operations are completed,

Bicnux Hayionanvrnozo mexuiunozo ynisepcumemy «XI1I». Cepia: Cucmemnuii

102

ananis, ynpaguinus ma ingopmayiini mexronoeii, Ne 1 (13) 2025

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

application is ready and operational and other clients are
communicating with it via docker-network, which is expo-
sed on the real machine server.

Machine is a real server machine that hosts operating
system which itself hosts a Docker network. To redirect a
request to the NGINX Container, Mediator Server and

Client 1
= =
Dockerised Blockchain Instance dockar =]
Containers
e_' IWPS Response— <
@ v »| L NGINX Proxy Server I Y
User
Web Application lT HTTPS ReguesiResponss
' ' HTTPS Request))
ed E Django Mediator Server
Client 2 ¢ T HTTPS RequestResponse
.]
Formatied data 10 store
e R ! 2
@
w
@ Blockchain Node 5
User 2 g
Web Application 3 g l %
]] a
HTTH 4 = <L
Aot | E — g
. e P =T E S
Client 3 - = 2 2
[a] Creating w
coniainers jof
a —
Shared Blockchain Network
User 3
Web Application |
— & Images :
‘_: Python/Django Image
Clent... || || | | |
uing e | Registry i
schemes | . I
dJ python package e NGRAXNGINX package
» : o package ;
User ... L L I

Fig. 2. Detailed Architecture of Blockchain Mediator Instance

Default Architecture’s Process Sequence. Sequence
diagram in the fig. 3 displays a default process of the
application handling client requests to their existing server
application, where request is temporarily intercepted by the
blockchain mediator server. Diagram is composed taking
into account structure of the dockerized application and
specific of its deployment.

Objects of this diagram are Client App, Host Machine,
Networking Subsystem, NGINX Container, Mediator
Server, Blockchain Node and Original Server. Sequence
diagram shows full process of request processing including
different Docker layers [8].

Client App is a client already implemented and used
by business company to communicate with their Original
Server, where Client App is usually a web application or
website and original server is a webserver responsible for
handling logic.

Client App sends a HTTP request to a Host Machineg,
which is shown as a message arrow in the diagram. Host

Blockchain Node which are parts responsible for handling
logic of the request, Host Machine sends received request
to the Networking Subsystem of the Docker, which then
maps this request to a NGINX Container, which acts as a
proxy in this architecture. These actions are also shown as
message arrows in the sequence diagram, as synchronous
calls, as they are waiting for response from the mentioned
objects.

After NGINX Container receives request, it is now
present in the virtual Docker network, where main objects
are NGINX Container, Mediator Server and Blockchain
Node. Multiple scenarios are possible within NGINX
Container logic, but sequence diagram covers the default
one, where request is processed, data is saved in the
blockchain ledger via smart contract. To do this, NGINX
container redirects request to a Mediator Server object,
which is responsible for processing all request data and
separating parts of it to be stored in the blockchain ledger.
This logic is intended to be customizable, so it is not a focus

Bicnux Hayionanvnozo mexuiunozo ynisepcumemy «XI1Iy. Cepis: Cucmemnuii

auanis, ynpasiinns ma ingpopmayiiuni mexnonozii, Ne 1 (13) 2025

103

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

of the current research. After Mediator Server formats
request metadata and sends it to a Blockchain Node, it waits
for the completion event from it. When completion event is
received, Mediator Server returns request to the NGINX
Proxy and issues its redirect to the original server. All these
operations are displayed as message arrows in the diagram.

NGINX Proxy sends an original request to the original
server, if completion event is received, and then waits for
response from it. From that point on, NGINX Container,
Networking Subsystem and Host Machine are acting as
sequential transmitters of original server response, which is
aimed to return to the Client App.

Processing Request Data for Blockchain. Archi-
tecture is aimed at processing and saving essential parts of
the request passing through the system to enabling tracking
of the actions in the supply chain but also not create too
large data storages which are hard to maintain.

Request structure consists of several parts, which are
request line, headers and body which is an optional part of
the requests that stores data sent in some of the HTTP
methods [9].

Request line is the first line of the HTTP request and
contains essential information about the request. It has three
parts, separated by spaces: HTTP method (e.g., GET,
POST, DELETE), request target (e.g., /api-endpoint) and
HTTP version, which can be one of the HTTP protocols.
We want to store the whole line in the ledger except HTTP
version [9, 10].

Headers contain a lot of key:value pairs, where key is
a name of a specific header and values is usually a string
value with specific information. For example: Host:
www.example.com, Accept-Language: en-US,en;q=0.5,
etc. We would like to store not all of the headers, but those
that are request essential, for example Host, User-Agent,
Accept, Content-Type, Content-Length, Referer. But we
must not store and security relevant information, like
Cookie or Authorization header, as blockchain network is
fully visible for the participants of the network, and
providing such information would be a direct violation of
security rules.

In the ledger we would also like to store body of the
request. The request body is the part of an HTTP request
that contains data being sent from the client to the server. It
follows the request line and the headers. The presence and
content of the request body depend on the HTTP method
used and the purpose of the request.

Format of the request body is dependent on the
Content-Type header, which is passed with the request.
Examples of the content types are text/plain, applica-
tion/json, application/xml. Body can also be a file, but that
is a rarer case of the request, so it is not going to be looked
at in the scope of this research.

Text/plain content type can be stored in the ledger
directly as a body: content pair, where content is String
type. Application/json, application/xml and application/x-
www-form-urlencoded are using different formatting, but
they can be converted to the dictionary data structure,
where each field is either a single String or Number or
another dictionary which contains other fields. This
transformation of JSON, text, XML or form data has to be
done in the Mediator Server prior to sending to the

Blockchain Node and a corresponding smart contract to
reduce load on the onchain operations.

Securing distributed request data. After resulting
data object representing the request is sent to smart contract
and from there stored to ledger, new Ethereum ledger
records are secured through a combination of cryptographic
techniques and a robust consensus mechanism. The default
Ethereum approach is used to securing newly obtained data.

Ethereum uses elliptic curve cryptography
(specifically secp256k1), the same as Bitcoin, to manage
accounts and transactions. Each Ethereum account has a
public key and a private key pair. The public key acts like
an account number, allowing others to connect new data to
other members of the blockchain network. It can be shared
publicly without risk. The private key is like a digital
signature. It’s a secret key that allows the account owner to
authorize transactions which change the latest state of the
ledger. [11].

For hashing Ethereum uses cryptographic hash
functions (like Keccak-256) extensively, to create unique
identifiers for operations in the ledger and to link blocks
together in the blockchain, forming a tamper-evident chain.
Each block’s header contains a hash of the previous block’s
header [12].

Conclusions. This research describes the design of
architecture and basic software components for a
dockerized blockchain mediator system aimed at lowering
the barrier for small to medium enterprises to adopt
blockchain technology in their supply chains.

To achieve these goals, Docker’s containerization
capabilities are leveraged, and as a result the proposed
architecture addresses key challenges such as high
development costs, incompatibility with existing systems,
and complex setup processes. This research describes how
using Docker system can help addressing these issues to
enable more smaller scale businesses to adapt distributed
solutions in their supply chains and cooperation with other
companies.

The architecture features a mediator server within a
Docker network, alongside blockchain nodes and a proxy
server, to process request data, store relevant information
securely on the Ethereum blockchain ledger, and integrate
smoothly with existing company applications. Security of
the data in Ethereum ledger is achieved via security
measures such as cryptography mechanisms and hashing
already integrated in the Ethereum platform.

This approach simplifies deployment, enhances scala-
bility, and maintains security through established crypto-
graphic methods, ultimately offering a more feasible path
for SMEs to explore the benefits of blockchain for impro-
ved supply chain transparency and traceability.

References

1. Shubham Joshi, Anil Audumbar Pise, Manish Shrivastava,
C. Revathy, Harish Kumar, Omar Alsetoohy, Reynah Akwafo.
Adoption of blockchain technology for privacy and security in the
context of industry 4.0. Wireless Communications and Mobile
Computing. 2022. iss. Explorations in Pattern Recognition and
Computer Vision for Industry 4.0. article 4079781. DOI:
https://doi.org/10.1155/2022/4079781.

2. Ilwmatko O. B,, Konowmiitues O. B., XKepxepynos I1. 1O.,
Tpersik B. ®., Cinuyk A. B. Survey and categorization of blockchain
solutions for supply chain management. Cucmemu o06pobku

Bicnux Hayionanvrnozo mexuiunozo ynisepcumemy «XI1I». Cepia: Cucmemnuii

104

ananis, ynpaguinus ma ingopmayiini mexronoeii, Ne 1 (13) 2025

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

ingopmayii. 2024. Ne. 3 (178),
https://doi.org/10.30748/50i.2024.178.10.

P. 84-92. DOl:

Computer Vision for Industry 4.0. article 4079781. DOI:

https://doi.org/10.1155/2022/4079781.

Jangla Kinnary. Accelerating Development Velocity Using Docker: 2. Shmatko O. V., Kolomiitsev O. V., Zherzherunov P. Y.,
Docker Across Microservices. Berkeley: Apress, 2018. P.27-53. Tretiak V. F., Sinchuk A. V. Survey and categorization of blockchain
URL: https://link.springer.com/book/10.1007/978-1-4842-3936-0 solutions for supply chain management. Systemy obrobky informatsii
(access date: 15.04.2025). [Information processing systems] 2024 no. 3 (178), pp. 84-92. DOI:
Miell 1., Sayers A. Docker in practice. New York City: Simon and https://doi.org/10.30748/50i.2024.178.10.
Schuster, 2019. P. 384. URL: 3. Jangla Kinnary. Accelerating Development Velocity Using Docker:
https://www.simonandschuster.com/books/Docker-in-Practice- Docker Across Microservices. Berkeley: Apress, 2018. pp. 27-53.
Second-Edition/lan-Miell/9781617294808 (access date: 15.04.2025). Available at: https:/link.springer.com/book/10.1007/978-1-4842-
dockerd. URL: docs.docker.com/reference/cli/dockerd/ (access date 3936-0 (accessed: 15.04.2025).
10.04.2025). 4. Miell 1., Sayers A. Docker in practice. New York City: Simon and
NGINX Ingress Controller. URL: Schuster, 2019. 384 p. Available at:
https://hub.docker.com/r/nginx/nginx-ingress (access date: https://www.simonandschuster.com/books/Docker-in-Practice-
15.04.2025). Second-Edition/lan-Miell/9781617294808 (accessed: 15.04.2025).
ethereum/client-go. URL: https://hub.docker.com/r/ethereum/client- 5. dockerd. URL: docs.docker.com/reference/cli/dockerd/ (accessed
go (access date: 15.04.2025). 10.04.2025).
What Is a Sequence Diagram. URL: www.visual- 6. NGINX Ingress Controller. Available at:
paradigm.com/guide/uml-unified-modeling-language/what-is- https://hub.docker.com/r/nginx/nginx-ingress (accessed:
sequence-diagram/ (access date: 18.04.2025). 15.04.2025).
Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P., 7. ethereum/client-go. URL: https://hub.docker.com/r/ethereum/client-
Berners-Lee T. RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1. go (accessed: 15.04.2025).
United States: RFC Editor, 1999. DOI: 8. What Is a Sequence Diagram. Available at: www.visual-
https://doi.org/10.17487/RFC2616. paradigm.com/guide/uml-unified-modeling-language/what-is-
10. Pollard B. HTTP/2 in Action. New York City: Simon and Schuster, sequence-diagram/ (accessed: 18.04.2025).
2019. P. 416. URL: 9. Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P.,
https://www.simonandschuster.com/books/HTTP-2-in- Berners-Lee T. RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1.
Action/Barry-Pollard/9781617295164 (access date: 18.04.2025) United States: RFC Editor, 1999. DOl:
11. Andreas M., Gavin W. Mastering Ethereum. Sebastopol: O’Reilly https://doi.org/10.17487/RFC2616.
Media, 2019. P. 415. 10. Pollard B. HTTP/2 in Action. New York City: Simon and Schuster,
12. Danen C. Introducing Ethereum and solidity. Berkeley: Apress, 2017. 2019. 416 p. Available at:
Vol. 1.. P. 185. https://www.simonandschuster.com/books/HTTP-2-in-
Action/Barry-Pollard/9781617295164 (accessed: 18.04.2025)
References (transliterated) 11. Andreas M., Gavin W. Mastering Ethereum. Sebastopol: O’Reilly

Media, 2019. 415 p.
. Danen C. Introducing Ethereum and solidity. Berkeley: Apress, 2017.
Vol. 1. 185 p.

1. Shubham Joshi, Anil Audumbar Pise, Manish Shrivastava, 1,
C. Revathy, Harish Kumar, Omar Alsetoohy, Reynah Akwafo.
Adoption of blockchain technology for privacy and security in the
context of industry 4.0. Wireless Communications and Mobile

. . : - . Received 14.05.2025
Computing. 2022. issue Explorations in Pattern Recognition and

VJIK 004.72

I1. 10. JKEPKEPYHOB, crynent, HanjioHansHuiA TeXHIYHUA yHIBEpCHTET «XapKiBCHKHIA MOMITEXHIYHMI iHCTUTYTY,

M. XapkiB, Ykpaina, e-mail: Pavlo.Zherzherunov@cs.khpi.edu.ua, ORCID: https://orcid.org/0009-0005-7240-9395

0. B. IIMATKO, noxrop dinocodii (PhD), nouent, HaioHansH1i TeXHIYHUN yHIBEPCHTET

«XapKiBCHKUH MOMITEXHIYHUN IHCTUTYT», OIECHT Kadeapy MporpaMHOi iHKeHepii Ta IHTeNeKTyaTbHUX TEXHOIOTil
ympasiiHHs, M. XapkiB, Ykpaina, e-mail: oleksandr.shmatko@khpi.edu.ua, ORCID: https://orcid.org/0000-0002-2426-900X

PO3POBKA APXITEKTYPH TA ITIPOT'PAMHHUX KOMITIOHEHTIB JJOKEPU30BAHOTI'O BJIOKYEWH-
MEJIIATOPA

Mauri Ta cepeHi MigpHEMCTBA HE BIPOBAKYIOTh OJIOKUYEHH-PIIIEHHS y CBOI JIAHIFOTY TOCTA4aHHs Ta Oi3HEC-TIPOIECH Yepe3 BHCOKY BapTIiCTh iX
BIPOBA/UKEHHS Ta po3ropraHHs. OnmncaHa apXiTeKTypa CIpsAMOBaHA Ha 3HIDKEHHs 0ap'epiB I MallMX MiJNPHEMCTB y BIPOBAJUKECHHI PO3MOITEHUX
TEXHOJIOTIM y CBOI JIaHIIOTM MocTadaHHs. IS JOCATHEHHS LMX IiJIed BHKOPHCTOBYIOThCS MOMJIMBOCTI KOHTeifHepu3auii Docker 3aBmsku
TIOKPAIIEHOMY TOPH30HTaJIbHOMY MacIITaOyBaHHIO Ta 3a0€3MEUCHHIO €MHOTO CEPEIOBHUIIA T PO3TOPTaHHA JoAaTKiB. LI apXiTekTypa BHKOPHCTOBYE
iHCTpyMeHTH, Hagani Docker, 11s mpoekTyBaHHS MacITaboBaHOI Ta HaIiHOT CHCTEMH, SIKa JIETKO i ATpIMYeThes. [IpornoHoBaHa apXiTeKkTypa BHpilTye
JIesIKl KJIIOYOBI MPOOJIEeMH, TaKi K BUCOKI BHTPAaTH Ha PO3pOOKY, HECYMICHICTh 3 iCHYIOUMMHM CHCTEMaMH{ Ta CKJIAJHI NPOLECH HaJallTyBaHHS, SIKi
HeoOXi/IHI /Ul KO)KHOTO YYacHHKA JIAHI[OTa MOCTa4aHHs. Y IbOMY JIOCHIJKEHHI OIHCAaHO, K BUKOPHUCTAHHS MOXIIMBOCTeH cuctemu Docker Moxe
JIOTIOMOTTH MaJIUM ITiIIPHEMCTBAM a/IaNTyBaTH PO3IOJIICH]I PIillIeHHs y CBOIX JIAHI[FOraX MOCTAYaHHS Ta CIBIPAIi 3 iHIIMMU KOMIaHISIMH ILISIXOM
BUpIIICHHS TPOOJEM MPOCTEKYBAHOCTI, MPO30pOCTi Ta NOBipH. OCHOBHHMH KOMIIOHEHTaMH apXiTEKTYpH € KOHTEHHEPHHI CepBep-TIOCEPEAHUK y
Mmepexi Docker, By3ox 610kueliny Ta koHTelHepHuH npokci-cepBep NGINX. Bonu peanizoBani i 06poOKU JaHUX 3aIUTIB, 30epiraHHs BiAIOBiIHOL
iHopmanii Ta ii 3axmcty B peectpi Gnokueitny Ethereum. 3amponoHoBaHa apXiTeKTypa TakoX CIPSAMOBAaHA Ha IUIABHY iHTETPAIii0 3 iCHYIOUHMH
JIoJaTKaMK KOMIIaHii JiIs 3MEHILCHHS BUTPAT Ha BIpOBa/UKeHHs. besneka nanux y peectpi Ethereum 3a0e3medyeTbesi 3a JOMOMOTOI0 TaKHX 3aXOJIIB
Oe3rexn, sIK MeXaHi3M1 KpUnTorpadii Ta XelryBaHHs, Bxe iHTerpoBati B mardopmy Ethereum.

KuarouoBi cioBa: nokepu3oBaHa apXiTeKTypa OJIOKUYelHy, YIPaBIIiHHS JIAHIIOraMU MOCTABOK, KOHTEHHEPHU30BaHi By3IH OJOKUYelHy, Maii Ta
cepeHi MiANPUEMCTBA, JAHIIOT MOCTABOK, KpUNTorpadis, XenyBaHHs, alropuTMu xeuryBans, Ethereum.

Toeni imena asmopis / Author's full names

Astop 1/ Author 1: XKepxepynos [1aeno IOpiiiosuy / Zherzherunov Pavlo Yuriiovych
Astop 2 / Author 2: IImatko Onekcanap Biraniiiosuu / Shmatko Olexandr Vitaliiovych

Bichux Hayionanvnoz2o mexniunozo ynigepcumemy «XI1l». Cepia: Cucmemnuii

auanis, ynpasiinns ma ingpopmayiiuni mexnonozii, Ne 1 (13) 2025 105

