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ALGORITHMS FOR CONSTRUCTING A REGRESSION LINEAR WITH RESPECT TO UNKNOWN 

COEFFICIENTS ON A LIMITED AMOUNT OF EXPERIMENTAL DATA 

This publication continues the series of scientific works of the authors on the creation of algorithms for constructing multivariate regressions which are 

linear with respect to unknown coefficients by using linear programming models. To simplify the simulation modeling of their efficiency, we present 
the algorithms for the multivariate linear regression problem. The use of linear programming models requires minimizing the sum of the absolute 

differences used in the general procedure of the least squares method. The estimates of the unknown coefficients obtained as a result of solving the linear 

programming problem are linear with respect to the vector of the values of the regression model in the statistical experiment. It is known that, by virtue 

of the Markov theorem, the estimates of the unknown coefficients obtained by the general procedure of the least squares method are efficient in the class 

of linear unbiased estimates. Thus, it would seem that the transition from the least squares method to the least absolute deviations used in the least squares 

method is a priori unproductive. But this is not so. From the proof of the Markov theorem, it follows that the linear estimation matrix must be constant 
and independent of the values of the regression model in the statistical experiment. The estimates obtained by the least absolute deviations method do 

not meet this condition. Indeed, the estimation matrix is the optimal basis for solving the linear programming problem by the simplex method and 

depends on the values of the regression model in the statistical experiment. Such a formulation of the problem allows introducing, into the optimization 
model, linear constraints that use the results of statistical tests and implement additional properties of the searched multivariate regression. The first 

studies of these algorithms have shown their efficiency, this allowed the authors to set the task of creating such algorithms that can not only compete 
with the general algorithmic procedure of the least squares method, but also be efficient for the case of a limited volume of experimental data, when the 

ratio of the average absolute value of the realizations of a random factor in the experiment to the average absolute value of the true regression on it is a 

sufficiently large value. In this case, it is incorrect to raise the problem of finding estimates of unknown coefficients that practically do not differ from 
the true ones, but, as experiments and, in particular, the examples given in this paper have shown, it is possible to find sufficiently good estimates of the 

average values of the true regression in the experiments conducted, which can be used, for example, in diagnosing the early stages of the onset of an 

epidemic of various diseases or in other recognition tasks. 
Keywords: multivariate regression, least squares method, least absolute deviations method, linear programming model, simplex method, optimal 

basis. 

1. Introduction. The problem of constructing multi-

variate regressions on a small volume of experimental data 

with a significant value of the variance of a random factor 

is still of interest to researchers both in theoretical and prac-

tical aspects [1–10]. In most cases, practical results for such 

problems are obtained using heuristic methods, in particu-

lar, the classical method of group consideration of argu-

ments and its numerical modifications. This publication 

continues the series of papers by the authors [11, 12] on the 

creation of efficient algorithms for constructing multivari-

ate regressions linear with respect to unknown coefficients, 

which formally have the form 

  (1) 

where  is a vector of unknown coeffi-

cients;  are known basis functions; random 

variable (RV)  is a random factor, the distribution of this 

RV in this work is considered normal with known parame-

ters  

Remark 1. The distribution of the RV is not essential 

for the algorithms proposed in this paper. The fundamental 

feature of these algorithms is that they use as the main for-

mal model a linear programming model, the functionality 

of which minimizes the sum of the absolute differences 

used in the least squares method (LSM). As in publications 

[11, 12], the algorithm for constructing a multivariate re-

gression is presented for a partial case of the model (1), 

namely, for a multivariate linear regression. This allows 

one to conduct simulated statistical modeling of the effi-

ciency of algorithms for a sufficiently wide class of linear 

multivariate regressions, which is impossible for models 

presented in the form of (1).  

2. Formal statement of the problem. A multivariate 

linear regression has the following matrix form: 

  (1) 

where  is a RV that has a normal distribution with zero 

mathematical expectation and known variance   is a 

vector of unknown coefficients  The 

vector   are deterministic 

input variables of the regression model. Let’s write the re-

sults of statistical tests on model (2) in the form 

 that is, 

  

where  is the realization of the RV  With a suffi-

ciently large amount of experimental data, the algorithms 
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presented below can successfully compete with the general 

procedure of the LSM for finding efficient estimates of the 

values of the coefficients of a multivariate regression linear 

with respect to the unknown coefficients. However, this pa-

per shows that the proposed algorithms can be successfully 

used in the case of a limited amount of experimental data 

to estimate scalar characteristics from the values of the true 

regression on the values of the input variables of the exper-

iment conducted, when the average absolute value of the 

random factor realizations and the average absolute value 

of the true regression on the values of the input variables in 

the experiment are of the same order. 

3. An algorithm that uses a single linear program-

ming model. The first algorithm finds the optimal solution 

to the following linear programming problem (LPP): 

  (3) 

  (4) 

  (5) 

   (6) 

The variables of the LPP (3)–(6) are  

 
Constants  are chosen ex-

perimentally. 

   

where  are artificially generated realizations of the RV 

and do not coincide with the realizations of the RV in a sta-

tistical experiment. 

Remark 2. The heuristic for choosing the regions of 

constraints on the LPP (3)–(6) variables is a modification 

of the heuristic presented in [12] and consists in the fact that 

with an appropriate choice of constants  the 

unknown values of 

   

belong to constraints (5), (6), respectively. The components 

of the vector   are the unknown values of the multivariate 

linear regression. The union of regions (5), (6) is signifi-

cantly smaller than the region given by constraints (4). 

Remark 3. At a qualitative level, it is clear that as the 

number of tests  increases, the number of errors  

should decrease. 

Remark 4. If  then the general procedure of 

the LSM or the least absolute deviations method gives a 

degenerate solution, that is, if  is the estimate of the val-

ues of then these equalities hold: 

   

In other words, the estimates  of the 

realizations of the RV that it took in the tests are identically 

equal to zero. For the case  the vector of estimates 

 as a solution to the LLP (3)–(6) is not a degenerate vector 

of estimates, but the answer to how useful this estimate is in 

this case can only be given by careful statistical studies. 

4. An iterative algorithm for constructing a multi-

variate linear regression. To find the efficient domain of 

the algorithm, we introduce the following definition. 

Definition 1. A vector  of estimates of the coeffi-

cients of a vector  is called a consistent estimate if the 

realization of the criterion which is built on the esti-

mates of the realizations of   

does not contradict the hypothesis of a normal distribution 

with parameters  (parameters of the normal distribu-

tion of the RV  

Remark 5. The definition of a consistent estimate does 

not depend on the distribution of the RV  since the crite-

rion efficiently tests the hypothesis for any known distribu-

tion of the RV  

From the definition of a consistent estimate it follows 

that the value of the number of tests in a statistical experi-

ment and the value of  must be such that the fol-

lowing condition is fulfilled: the realization of the criterion 

 statistically significantly belongs to the feasible region 

only in the case when the numbers  do not differ signif-

icantly from the realizations  of the RV  This 

is the condition that guarantees that the iterative algorithm 

presented below, the construction heuristic of which is 

aimed at finding consistent estimates  of the 

components of the vector  is the most efficient algo-

rithm. But, as the second example given in section 5 shows, 

it can be used in the case when the number of tests  does 

not satisfy the above restrictions. 

The iterative algorithm consists of sequentially solv-

ing the following LPPs: 

  (7) 

  (8) 

 (9) 

     

 
 
 (10) 

The variables of the LPPs (7)–(10) are  

  are given natural numbers,  is the 
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given accuracy of the regions (10), one of which must con-

tain the unknown number 

  

Thus, the natural numbers  and  must statistically 

significantly guarantee that the unknown number 

 belongs to one of the regions (10), and 

the value of  is chosen as a compromise between the 

number of LPPs and the absolute deviation from the num-

ber  

The macro-algorithm for obtaining the vector of esti-

mates  is as follows. The LPPs are solved sequentially in 

an arbitrary order. For each problem, starting from the first 

one, for the found vector of estimates  we find estimates 

 of the realizations  of the RV  where 

  (11) 

For them, the criterion  tests the hypothesis that 

the numbers  do not contradict the simple hy-

pothesis of a normal distribution with parameters  

All  LPPs are solved. In general case, several con-

sistent estimates  of the vector  can be obtained. In this 

case, the vector of estimates  corresponding to the small-

est value of the criterion  realization is selected. The 

logic of finding this vector of estimates is that on average, 

the realization of the criterion  is greater, the more the 

law of the distribution of numbers  differs from 

the simple hypothesis tested by the criterion  If no valid 

solution is found, then by the same reasoning, the vector of 

estimates  corresponding to the smallest value of the cri-

terion  realization is selected. 

Remark 6. The presented iterative algorithm is easily 

modified for the case when the region (9) is represented as 

a union of subregions of the form (10). However, since the 

real value of a number  can be both positive and nega-

tive, not one but two LPPs are solved for fixed values of 

. In the first one, instead of (9), 

the following constraint is used: 

  
 

 
 
 (12) 

 can take values from 0 to and  are 

natural numbers,  For  the condition 

 is fulfilled. 

In the second LPP, instead of the region (9), the fol-

lowing constraint is used: 

  
 

  (13) 

 the condition  is impo-

sed on  

Thus,  LPPs are 

solved in the modified iterative algorithm, since the inter-

section of the regions (12), (13) is an empty set. 

5. Illustrative examples. 5.1. The first example.  

Remark 7. The following measure was chosen as an 

integral measure of comparisons of the components of two 

vectors and : 

 

 

 (14) 

where  

The formula for the average deviation of experimental 

values from model values on input experimental data has 

the form 

 
 
 (15) 

where   

 

The formula for the average deviation of the average 

values of the estimated and ideal regression on the input 

experimental data has the form 

  (16) 

where  is the optimal solution to the LPP. 

Below we give an illustrative example of using the 

first algorithm to estimate unknown coefficients of multi-

variate linear regression with finding the values of (14)–

(16) by ideal multivariate linear regression, the true values 

of the 16 coefficients of which   are 1.59, 

4.90, 3.58, –2.57, –2.25, 4.13, 1.45, 5.00, –1.47, 1.26, 4.49, 

–2.18, 4.78, –2.46, 4.98, –1.38. The modeling parameters 

used are as follows:  the number of 

tests is 48, the ratio of the average absolute value of the 

ideal regression on the input experimental data to the aver-

age absolute value of the realizations of RV  is 

69.42/26.19. 

Table 1 shows the values of  

The values of   

where  are artificially generated realizations of the RV 

 are equal to, 28.69 and –1.42, respectively. 
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Table 1 – The values of for the first example. 

  

71.20 1.00 1.65 4.48 4.80 1.53 1.22 2.47 3.71 2.35 1.15 3.08 1.68 4.58 2.43 2.87 3.45 

46.44 1.00 4.37 1.81 2.22 4.65 3.98 2.76 2.27 2.88 2.66 1.60 3.17 2.04 1.27 1.71 2.67 

36.19 1.00 2.59 4.35 4.35 4.18 4.38 3.73 4.81 3.95 4.87 3.65 4.57 3.12 4.58 1.14 4.97 

53.45 1.00 1.93 3.05 4.65 2.03 3.71 2.57 1.14 3.99 1.98 2.25 1.09 4.13 1.52 3.40 3.99 

51.00 1.00 4.85 1.65 2.80 1.65 2.61 4.51 4.68 3.66 1.68 2.62 1.92 2.56 3.92 4.53 2.18 

81.15 1.00 3.63 1.02 2.11 3.18 2.26 1.94 1.10 3.77 2.62 3.10 3.02 4.35 2.37 2.68 2.77 

18.35 1.00 4.21 1.03 1.31 4.44 3.12 2.19 2.27 3.91 3.97 4.25 2.53 4.62 4.09 2.25 4.12 

21.17 1.00 2.59 3.43 2.67 4.73 4.07 1.40 1.52 3.76 3.93 1.82 3.76 1.97 3.33 2.06 1.04 

39.63 1.00 4.92 3.96 2.82 3.05 2.37 1.97 3.70 1.64 2.30 3.02 1.27 3.33 1.37 1.14 2.94 

60.66 1.00 2.93 1.60 1.50 1.84 2.94 4.13 1.53 1.78 1.70 3.42 4.98 1.28 3.87 1.93 3.53 

7.23 1.00 2.00 1.97 4.80 1.92 2.17 3.91 4.12 3.20 4.35 1.71 2.33 2.70 3.36 1.93 3.71 

98.11 1.00 2.99 4.72 4.89 3.46 3.13 1.14 4.94 1.78 1.76 1.40 1.45 4.26 1.66 4.92 1.36 

53.66 1.00 4.07 4.79 3.39 3.06 3.99 1.69 4.93 3.54 3.94 4.30 3.74 2.78 3.10 2.07 2.81 

50.27 1.00 1.85 4.84 3.48 3.62 2.50 3.09 4.72 1.67 1.83 3.41 4.48 1.44 1.43 4.84 4.92 

92.97 1.00 1.76 2.61 4.59 3.66 1.26 1.75 4.41 3.86 1.17 3.08 3.51 2.97 2.24 4.99 4.22 

104.99 1.00 3.23 2.34 2.48 3.91 3.59 4.56 4.95 1.72 2.96 3.41 4.14 2.36 4.18 3.96 1.25 

40.65 1.00 1.34 2.39 3.27 2.53 2.60 2.04 3.67 2.44 3.24 1.03 3.76 2.85 4.78 1.91 3.91 

32.24 1.00 3.73 1.19 4.23 4.64 2.33 3.86 1.39 4.08 2.43 4.95 1.29 1.13 1.06 1.68 2.64 

110.91 1.00 4.30 3.92 4.36 1.40 4.99 1.12 2.83 3.59 4.92 1.45 3.24 3.03 2.86 2.39 3.82 

107.73 1.00 1.80 1.60 2.62 1.74 1.41 4.93 1.74 2.50 3.76 1.98 1.49 4.86 3.42 3.40 4.04 

89.53 1.00 3.81 1.96 3.01 3.18 2.69 4.21 2.23 4.41 2.54 3.26 1.18 3.39 2.06 3.27 3.68 

110.72 1.00 3.44 1.71 1.42 2.36 4.49 4.63 4.84 1.18 1.39 3.34 3.23 4.60 1.12 3.22 3.95 

69.43 1.00 1.06 4.36 4.01 2.58 4.43 3.95 3.85 4.70 2.46 2.04 4.37 4.71 2.83 4.22 4.19 

24.80 1.00 2.78 4.27 3.62 1.57 2.37 1.67 2.57 1.33 3.08 4.47 2.20 3.33 1.37 2.05 1.46 

93.57 1.00 2.48 1.89 4.57 1.07 2.57 1.35 1.53 2.74 4.61 4.47 3.99 1.60 2.74 1.67 3.00 

106.43 1.00 3.68 4.10 2.50 3.70 4.73 1.72 2.66 4.44 4.78 3.22 3.28 3.12 4.41 3.15 3.48 

31.05 1.00 3.92 4.43 4.13 1.73 3.10 3.83 1.14 4.51 4.24 2.08 3.55 3.13 4.04 3.22 2.61 

59.66 1.00 4.78 1.39 1.86 4.37 1.23 2.50 1.42 1.54 2.65 1.66 4.81 4.33 3.86 4.13 3.59 

72.63 1.00 3.93 3.34 4.88 1.12 4.43 2.68 2.26 1.97 1.72 1.51 3.37 1.05 4.72 3.79 2.30 

120.61 1.00 3.26 3.62 3.44 4.68 3.72 3.82 3.33 4.61 3.83 2.09 4.27 4.79 3.87 2.31 1.33 

57.61 1.00 3.10 1.81 4.48 4.00 2.89 2.18 3.02 1.33 4.11 3.82 3.64 2.87 1.32 1.58 3.80 

70.50 1.00 2.90 4.28 2.93 3.30 3.41 3.58 3.38 1.44 1.89 2.85 4.93 4.27 2.87 1.76 3.93 

70.05 1.00 2.11 3.76 3.36 4.82 3.55 4.95 3.80 4.64 2.84 1.09 1.44 1.35 2.82 1.32 3.81 

58.06 1.00 2.95 3.37 1.92 2.77 1.32 2.80 3.04 1.12 4.27 1.31 2.66 1.12 1.28 4.21 3.92 

72.03 1.00 2.96 3.95 4.79 3.05 3.79 4.74 2.14 4.35 3.58 4.76 4.79 2.03 1.20 4.33 2.65 

64.63 1.00 1.65 4.94 1.16 1.19 4.10 2.15 2.49 2.72 3.35 1.33 4.87 1.88 1.85 2.26 4.44 

30.52 1.00 1.01 1.26 2.72 1.66 4.81 2.86 1.02 4.75 3.87 2.81 1.47 2.43 4.52 4.47 1.32 

151.75 1.00 3.79 2.12 2.23 2.68 3.43 1.84 4.68 2.91 1.12 3.92 3.59 2.32 1.15 1.88 2.45 

136.47 1.00 4.34 4.52 1.41 2.34 4.29 4.68 1.37 2.16 3.62 4.99 4.88 2.26 3.40 4.15 4.07 

77.82 1.00 2.43 3.20 1.02 4.08 1.76 1.19 4.28 4.05 1.50 4.87 1.90 3.39 2.88 4.38 3.53 

98.32 1.00 3.56 2.45 3.53 4.44 4.41 4.62 1.99 4.95 3.69 1.99 2.30 2.53 3.57 1.56 2.12 

105.21 1.00 4.78 4.64 3.99 2.64 3.17 4.61 2.73 3.34 4.35 4.05 1.71 3.96 3.07 3.58 3.72 

8.03 1.00 1.58 1.13 1.29 4.43 1.75 3.25 2.05 1.90 2.26 2.82 3.11 4.63 1.05 4.26 1.59 

61.37 1.00 3.34 3.03 1.15 4.37 3.84 1.81 2.42 3.01 4.84 1.24 4.98 3.41 4.62 4.55 2.98 

30.32 1.00 2.95 1.44 1.79 2.24 1.22 4.33 4.79 3.76 4.03 2.33 1.00 4.63 4.36 4.14 2.62 

104.27 1.00 2.18 2.95 2.71 3.09 3.79 1.69 3.00 4.27 3.84 2.67 1.02 4.97 4.39 3.41 2.28 

74.71 1.00 3.05 3.24 3.24 4.07 4.24 4.51 1.80 4.66 2.37 4.64 1.01 3.31 2.30 4.82 2.71 

175.05 1.00 4.20 3.78 2.86 3.18 1.96 3.02 4.71 1.57 3.47 4.28 3.48 4.76 2.73 3.79 3.69 

,48,1,, =iyi ix

iy
ix
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The LPP has the form: 

 , (17) 

 , (18) 

 ,
 
 (19) 

 
 
 (20) 

As a result of solving the LLP (17)–(20), the follo-

wing estimates of the unknown coefficients were obtained: 

–23.06, 10.40, 1.56, –1.89, –9.22, 4.50, –0.21, 6.28, –0.38, 

1.59, 5.69, –0.96, 5.24, –0.63, 4.58, 3.63. The value of (14) 

is equal to 1.07. The value of (15) is 26.19. The value of 

(16) is equal to 8.73. Thus, the scalar measure of deviation 

of the components of vectors  and  is 1.07, with ideal 

values of this measure being 0.02, but the filtering effect of 

the average value of the ideal regression line on the input 

experimental data decreased from 26.19 to 8.73, i.e. by 

66.65 %, which allows the value (16) to be used in recogni-

tion systems for various purposes (for example, recogniz-

ing the beginning of a disease epidemic in a region from the 

list of diseases contained in the recognition system). 

5.2. The second example. Below we give an illustra-

tive example of using the second algorithm to estimate un-

known coefficients of a multivariate linear regression with 

finding the values of (14)–(168) by ideal multivariate linear 

regression, the true values of 13 coefficients of which 

 are 1.05, –2.08,  2.02,  –1.10,  –1.55,  3.20,  

–3.70, –4.97, –2.61, 4.95, 3.49, 2.87, –3.54. The modeling 

parameters used are as follows:  the 

number of tests is 48, the ratio of the average absolute value 

of the ideal regression on the input experimental data to the 

average absolute value of the realizations of RV  is 

14.15/42.03. It should be emphasized that the average ab-

solute value of the realizations of RV  is 2.97 times 

greater than the average absolute value of the ideal regres-

sion on the input experimental data. 

Since the size of the article does not allow us to pre-

sent all the stages of the iterative algorithm, we will present 

only the LPP that corresponds to the consistent estimate  

of the vector  (the  criterion has five degrees of free-

dom, the realization of the  criterion is 4.00, and the 

critical region for  is given by the number 11.07). 

For this purpose, we give in Table 2 the values of 

 

The value of where  are the artifi-

cially generated realizations of the RV  is –14.29. 

The LPP has the form: 

 , (21) 

 , (22) 

 , (23) 

 
 
 (24) 

As a result of solving the LLP (21)–(24), we obtained 

the following estimates of the unknown coefficients:  

–20.36, –4.84, 1.41, 0.50, 0.46,  4.25,  4.87,  –3.01,  0.03,  

–3.86, 6.53, 6.22, –8.32. The value of (14) is 1.28. The 

value of (15) is 42.03. The value of (16) is 9.94. Thus, 

compared to the first example, the scalar measure of 

deviation of the components of vectors  and  became 

worse, but the effect of filtering the average value of the 

ideal regression line on the input experimental data 

decreased from 42.03 to 9.94, i.e. by 76.35 %, which is 

better than in the first example. 

6. Methodology of using the proposed algorithms. 

As shown by the two illustrative examples given in section 

5, the proposed algorithms for estimating multivariate re-

gression linear with respect to unknown coefficients are po-

tentially efficient. Indeed, even with a fairly limited number 

of tests (48), a random factor variance of 1200 (the first ex-

ample), 3000 (the second example), and a significant ratio 

of the average absolute value of the real regression on the 

values of the input variables in the statistical experiment 

tests to the average absolute value of the random factor re-

alizations in these tests (69.42/26.19 for the first example, 

14.15/42.03 for the second example), both algorithms 

demonstrated high filtering properties (66.65 % for the first 

example, 76.35 % for the second example).  

For the correct use of the proposed algorithms in the 

general case, the following methodology of statistical sim-

ulation modeling is proposed. 

1) set the parameters of the regression problem: the 

analytical expression of a multivariate regression linear 

with respect to unknown coefficients, the distribution of a 

random factor, the range of values of input arguments and 

unknown coefficients of the multivariate regression, the 

number of tests of the statistical experiment (and there may 

be several such values); 

2) select two out of three or one out of three proposed 

algorithms and the algorithm with which its efficiency is 

compared (for example, LSM); 

3) using a uniform distribution to generate the coeffi-

cients of the ideal regression (their absolute values and their 

signs), the values of the input variables, model a sufficient 

number of individual ideal regressions, for each of which 

simulate a statistical experiment  As the 

result of each statistical experiment, the estimates of un-

known coefficients are found by the selected algorithms. 

Using the scalar measure (14), average comparative char-

acteristics of their efficiency are found by them. According 

to the results of average comparative characteristics for a 

given class of multivariate regressions (item 1 of the meth-

odology), the best algorithm is selected. 
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Table 2 – The values of for the second example.
 

  

–33.81 1.00 4.76 3.92 1.67 3.07 1.93 2.13 3.31 4.09 3.62 2.71 2.94 1.96 

–78.63 1.00 2.61 2.28 2.94 2.20 1.25 2.00 3.55 1.71 4.76 4.50 3.61 3.11 

10.00 1.00 3.49 4.74 3.18 4.08 1.20 3.48 1.76 4.74 2.83 2.96 4.82 2.18 

–73.60 1.00 1.04 1.12 4.65 3.57 4.01 1.59 2.20 2.87 1.33 3.74 3.53 4.97 

–1.08 1.00 1.49 2.01 2.28 1.40 1.62 3.48 1.87 1.94 4.86 2.74 2.40 1.26 

39.96 1.00 2.39 2.61 4.14 2.75 1.47 2.75 2.45 1.72 1.24 1.29 3.98 3.91 

–54.97 1.00 3.17 1.55 4.56 3.67 1.94 2.11 1.84 1.92 1.33 3.01 3.72 2.54 

3.05 1.00 3.19 1.94 3.31 4.41 4.46 4.49 3.15 3.55 4.57 3.45 2.04 3.96 

–25.91 1.00 2.38 2.90 3.41 1.25 4.22 1.40 1.95 4.18 2.12 1.57 3.91 2.04 

–27.47 1.00 1.44 3.79 1.23 3.15 1.42 3.16 4.20 3.26 3.85 1.76 1.04 2.34 

12.03 1.00 1.46 1.75 2.83 4.38 3.40 1.29 2.38 3.83 2.29 2.21 4.16 1.39 

–0.54 1.00 3.86 3.25 1.60 1.39 2.70 1.11 4.21 3.15 1.89 3.21 3.88 1.16 

10.28 1.00 3.74 3.19 1.22 3.13 3.63 4.52 1.67 4.08 3.43 4.91 1.20 1.99 

–26.98 1.00 2.39 4.29 2.77 2.81 3.32 2.89 1.37 4.27 4.35 4.71 4.55 3.31 

–24.92 1.00 3.31 1.27 4.26 3.41 3.10 4.70 2.62 1.68 2.49 3.31 4.45 3.67 

102.55 1.00 1.94 1.91 1.20 1.54 1.70 1.88 4.20 3.67 1.52 1.40 2.50 4.44 

–72.91 1.00 1.17 3.15 3.97 3.52 4.92 1.71 3.24 3.10 3.07 3.13 4.36 3.75 

–39.34 1.00 1.04 3.65 1.70 4.67 4.12 3.59 2.84 1.72 4.75 3.42 3.30 1.76 

–27.53 1.00 4.98 3.67 3.57 2.63 2.36 3.79 2.66 1.21 2.57 1.04 4.51 4.41 

75.31 1.00 1.74 4.40 1.51 4.62 4.57 2.84 1.48 4.68 4.77 4.09 2.81 1.22 

–129.01 1.00 2.35 1.54 3.97 4.18 1.62 1.31 1.41 4.60 1.17 4.73 2.67 3.88 

–86.66 1.00 1.50 2.02 1.75 1.53 1.11 3.14 2.00 3.40 1.20 4.06 3.07 4.66 

43.84 1.00 2.38 2.14 2.01 3.91 2.61 2.94 1.91 1.77 2.77 1.35 1.02 1.08 

74.30 1.00 1.36 1.84 3.97 5.00 4.98 2.81 3.90 2.30 1.46 2.26 2.10 1.84 

11.83 1.00 4.87 4.13 4.38 1.64 3.53 2.90 3.33 1.42 3.59 3.60 4.76 1.38 

–72.21 1.00 3.79 2.64 2.69 1.46 2.10 3.91 3.40 1.74 1.54 1.83 4.64 1.99 

–78.39 1.00 3.14 2.42 2.93 1.18 3.95 4.62 2.14 2.50 4.14 4.03 2.13 3.59 

–15.96 1.00 3.10 2.38 4.46 4.66 3.75 4.39 4.80 4.05 1.31 3.75 1.48 4.80 

–32.83 1.00 1.25 3.80 4.51 3.41 1.78 1.84 4.31 3.34 1.77 1.76 3.19 4.65 

–52.88 1.00 1.31 1.19 4.49 1.72 4.04 3.25 1.55 2.94 2.88 1.66 1.85 2.41 

11.88 1.00 1.62 1.61 2.53 4.80 1.45 1.15 2.83 1.52 1.30 2.30 4.30 3.59 

92.08 1.00 3.04 4.56 1.46 3.92 3.56 1.14 1.10 1.19 3.22 1.71 4.86 2.24 

–8.43 1.00 1.62 1.33 4.15 3.31 4.95 4.66 3.06 1.99 4.08 1.53 2.66 3.24 

–37.11 1.00 4.55 1.59 1.40 4.77 3.02 4.87 3.92 2.45 2.45 1.02 1.19 3.53 

–45.35 1.00 3.61 1.73 3.62 3.55 4.30 4.65 1.04 1.19 3.38 3.92 2.19 3.19 

43.38 1.00 2.88 3.70 1.37 3.57 1.26 4.01 2.53 1.38 1.80 1.98 4.53 3.99 

19.76 1.00 4.16 3.47 2.80 3.98 3.31 3.06 4.05 3.05 1.99 4.55 2.12 1.49 

67.07 1.00 3.22 3.71 1.28 1.95 1.57 2.49 1.49 1.77 2.87 4.79 3.71 1.06 

–8.05 1.00 4.60 1.98 1.93 4.26 3.95 1.64 4.49 1.64 2.87 4.05 1.67 1.31 

–85.96 1.00 1.17 1.89 2.18 2.84 1.34 4.64 4.62 3.68 1.68 2.30 4.46 1.39 

43.70 1.00 3.60 2.75 1.30 4.33 3.97 4.96 2.07 2.13 3.14 2.45 4.85 3.62 

–6.41 1.00 3.18 2.52 4.65 1.74 4.60 2.23 2.14 4.72 3.37 2.90 1.90 2.31 

25.51 1.00 3.47 4.14 4.11 1.86 3.04 4.44 3.53 4.15 1.30 1.52 1.19 2.12 

85.34 1.00 4.98 4.00 4.36 2.50 4.65 2.51 4.72 4.28 1.86 3.60 2.35 1.94 

10.16 1.00 2.14 1.82 3.32 2.02 3.39 3.17 2.64 4.48 3.48 3.50 1.59 3.99 

68.99 1.00 2.04 2.05 1.14 3.41 1.52 2.97 4.07 2.66 3.65 1.70 4.68 3.96 

–10.22 1.00 3.45 1.16 1.70 3.65 2.08 4.16 4.03 3.15 3.81 4.11 4.68 4.28 

–6.35 1.00 3.83 1.65 4.74 4.03 4.77 1.14 3.07 1.76 4.74 4.27 2.76 2.09 
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Remark 7. The choice of a uniform distribution guar-

antees the generation of the most “rigorous” for estimating 

unknown parameters of individual regression problems. If 

desired, the uniform distribution can be replaced by other 

distributions in the simulation modeling system by the user. 

Conclusions. 1. We substantiated the feasibility of 

using linear programming models to find estimates of a 

multivariate regression linear with respect to unknown 

coefficients. 

2. We proposed a new algorithm for constructing es-

timates of unknown coefficients of a multivariate regres-

sion using the example of a linear multivariate regression, 

which uses a single linear programming model. The pecu-

liarity of the algorithm is, in particular, that, unlike LSM, it 

does not give degenerate estimates for the case when the 

number of tests does not exceed the number of unknown 

coefficients.3. We proposed a new iterative algorithm for 

constructing estimates of a multivariate regression using 

the example of a multivariate linear regression, which finds 

consistent estimates of unknown coefficients implementing 

a special linear programming model at each iteration. 

4. We give two illustrative examples confirming the 

efficiency of using the proposed algorithms with a small 

number of tests and a significant value of the variance of 

the random factor in comparison with the average value of 

the ideal regression on the values of the input variables in 

tests of a statistical experiment on the regression model. 

5. We give the methodology for using the proposed 

algorithms in a statistical simulation modeling system.  
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АЛГОРИТМИ ПОБУДОВИ РЕГРЕСІЇ, ЛІНІЙНОЇ ВІДНОСНО НЕВІДОМИХ КОЕФІЦІЄНТІВ, НА 

ОБМЕЖЕНОМУ ОБ’ЄМІ ЕКСПЕРИМЕНТАЛЬНИХ ДАНИХ 

Дана публікація продовжує цикл наукових робіт авторів по створенню алгоритмів побудови багатовимірних регресій, лінійних відносно 

невідомих коефіцієнтів, з використанням моделей лінійного програмування. Для спрощення імітаційного моделювання їх ефективності, 
алгоритми наводяться для задачі багатовимірної лінійної регресії. Використання моделей лінійного програмування вимагає мінімізувати суму 

модулів різниць, що використовуються в загальній процедурі метода найменших квадратів. Оцінки невідомих коефіцієнтів, отриманих 

внаслідок розв’язання задачі лінійного програмування, є лінійними відносно вектору значень регресійної моделі в статистичному 
експерименту. Відомо, що в силу теореми Маркова оцінки невідомих коефіцієнтів, отриманих загальною процедурою метода найменших 

квадратів, є ефективними в класі лінійних незміщених оцінок. Таким чином, здавалось би, перехід від методу найменших квадратів до методу 

мінімізації суми модулів різниць, що використовується в методі найменших квадратів, є заздалегідь не продуктивним. Але це не так. З 
доведення теореми Маркова випливає, що матриця лінійної оцінки має бути сталою і не залежати від значень регресійної моделі в 

статистичному експерименту. Оцінки, отримані методом мінімізації суми модулів, цій умові не відповідають. Дійсно, матриця оцінок є 

оптимальним базисом для розв’язання задачі лінійного програмування симплекс-методом і залежить від значень регресійної моделі в 
статистичному експерименту. Така постановка задачі дозволяє в моделі оптимізації вводити лінійні обмеження, що використовують 

результати статистичних випробувань і реалізують додаткові властивості шуканої багатовимірної регресії. Перші дослідження цих алгоритмів 

показали їх ефективність, що дозволило авторам поставити задачу створення таких алгоритмів, які не тільки можуть конкурувати з загальною 
алгоритмічною процедурою метода найменших квадратів, але і для випадку обмеженого об’єму експериментальних даних, коли відношення 

середнього значення модуля реалізацій випадкового фактору в експерименті до середнього значення на ньому модуля істинної регресії є 
достатньо великою величиною. В цьому випадку ставити питання про знаходження оцінок невідомих коефіцієнтів, які практично не 

відрізняються від істинних, є не коректним, але, як показали експерименти і, зокрема, наведені в даній роботі приклади, можна знаходити 

достатньо хороші оцінки середніх значень істинної регресії на проведених експериментах, які можна використовувати, наприклад, при 
діагностуванні на ранній стадії початку епідемії різних захворювань чи в інших задачах розпізнавання. 
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