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ALGORITHMS FOR CONSTRUCTING A REGRESSION LINEAR WITH RESPECT TO UNKNOWN
COEFFICIENTS ON A LIMITED AMOUNT OF EXPERIMENTAL DATA

This publication continues the series of scientific works of the authors on the creation of algorithms for constructing multivariate regressions which are
linear with respect to unknown coefficients by using linear programming models. To simplify the simulation modeling of their efficiency, we present
the algorithms for the multivariate linear regression problem. The use of linear programming models requires minimizing the sum of the absolute
differences used in the general procedure of the least squares method. The estimates of the unknown coefficients obtained as a result of solving the linear
programming problem are linear with respect to the vector of the values of the regression model in the statistical experiment. It is known that, by virtue
of the Markov theorem, the estimates of the unknown coefficients obtained by the general procedure of the least squares method are efficient in the class
of linear unbiased estimates. Thus, it would seem that the transition from the least squares method to the least absolute deviations used in the least squares
method is a priori unproductive. But this is not so. From the proof of the Markov theorem, it follows that the linear estimation matrix must be constant
and independent of the values of the regression model in the statistical experiment. The estimates obtained by the least absolute deviations method do
not meet this condition. Indeed, the estimation matrix is the optimal basis for solving the linear programming problem by the simplex method and
depends on the values of the regression model in the statistical experiment. Such a formulation of the problem allows introducing, into the optimization
model, linear constraints that use the results of statistical tests and implement additional properties of the searched multivariate regression. The first
studies of these algorithms have shown their efficiency, this allowed the authors to set the task of creating such algorithms that can not only compete
with the general algorithmic procedure of the least squares method, but also be efficient for the case of a limited volume of experimental data, when the
ratio of the average absolute value of the realizations of a random factor in the experiment to the average absolute value of the true regression on it is a
sufficiently large value. In this case, it is incorrect to raise the problem of finding estimates of unknown coefficients that practically do not differ from
the true ones, but, as experiments and, in particular, the examples given in this paper have shown, it is possible to find sufficiently good estimates of the
average values of the true regression in the experiments conducted, which can be used, for example, in diagnosing the early stages of the onset of an
epidemic of various diseases or in other recognition tasks.

Keywords: multivariate regression, least squares method, least absolute deviations method, linear programming model, simplex method, optimal
basis.

1. Introduction. The problem of constructing multi-
variate regressions on a small volume of experimental data
with a significant value of the variance of a random factor
is still of interest to researchers both in theoretical and prac-
tical aspects [1-10]. In most cases, practical results for such
problems are obtained using heuristic methods, in particu-
lar, the classical method of group consideration of argu-
ments and its numerical modifications. This publication
continues the series of papers by the authors [11, 12] on the
creation of efficient algorithms for constructing multivari-
ate regressions linear with respect to unknown coefficients,
which formally have the form

Y(®) =2 0w, (X)+E, (1)

where @ = (00, é,...,0. )T is a vector of unknown coeffi-

cients; v, (Y), j= m, are known basis functions; random

variable (RV) E isarandom factor, the distribution of this
RV in this work is considered normal with known parame-
ters ME =0, DE = 6% < .

Remark 1. The distribution of the RV is not essential
for the algorithms proposed in this paper. The fundamental
feature of these algorithms is that they use as the main for-
mal model a linear programming model, the functionality
of which minimizes the sum of the absolute differences

used in the least squares method (LSM). As in publications
[11, 12], the algorithm for constructing a multivariate re-
gression is presented for a partial case of the model (1),
namely, for a multivariate linear regression. This allows
one to conduct simulated statistical modeling of the effi-
ciency of algorithms for a sufficiently wide class of linear
multivariate regressions, which is impossible for models
presented in the form of (1).

2. Formal statement of the problem. A multivariate
linear regression has the following matrix form:

Y(X)=0"X+E, (1)

where E is a RV that has a normal distribution with zero
mathematical expectation and known variance o, @ isa

vector of unknown coefficients 8" = (6’0,91,...,49r ) The

vector X' = (I, Xypenn )_(r) X, :]7, are deterministic

input variables of the regression model. Let’s write the re-
sults of statistical tests on model (2) in the form

(% = y,i=1n) thatis,
Y, =0, +6,X; +...+6,X,; +&,i =1n,

where ¢ is the realization of the RV E. With a suffi-
ciently large amount of experimental data, the algorithms
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presented below can successfully compete with the general
procedure of the LSM for finding efficient estimates of the
values of the coefficients of a multivariate regression linear
with respect to the unknown coefficients. However, this pa-
per shows that the proposed algorithms can be successfully
used in the case of a limited amount of experimental data
to estimate scalar characteristics from the values of the true
regression on the values of the input variables of the exper-
iment conducted, when the average absolute value of the
random factor realizations and the average absolute value
of the true regression on the values of the input variables in
the experiment are of the same order.

3. An algorithm that uses a single linear program-
ming model. The first algorithm finds the optimal solution
to the following linear programming problem (LPP):

min > " z, €)
-2,<y,-0"X,<z,2,>0,i=1n (4)
0<@-t,(n)k <> 7, <@+t(n)-k, ()

0> —(L+t,()-k,| <37y, ~07%, )< @+t,(n))-|k,|. (6)
The variables of the LPP (3)-(6) are z,...,7,,

6y,6,....,6,. Constants t(n)>0,i=1,4, are chosen ex-
perimentally.

k=327 lel ko =520, 6> 0,

where ¢, are artificially generated realizations of the RV
and do not coincide with the realizations of the RV in a sta-
tistical experiment.

Remark 2. The heuristic for choosing the regions of
constraints on the LPP (3)—(6) variables is a modification
of the heuristic presented in [12] and consists in the fact that
with an appropriate choice of constants t,(n),i=1,4, the

unknown values of

%Zinﬂ ’%Zinﬂ(yi _0T)_(i)

belong to constraints (5), (6), respectively. The components
of the vector @ are the unknown values of the multivariate
linear regression. The union of regions (5), (6) is signifi-
cantly smaller than the region given by constraints (4).
Remark 3. At a qualitative level, it is clear that as the
number of tests n increases, the number of errors t, (n)

Yi _aTii

should decrease.
Remark 4. If n<r+1, then the general procedure of

the LSM or the least absolute deviations method gives a
degenerate solution, that is, if 0 is the estimate of the val-
uesof g, i= ﬂ then these equalities hold:

y,—0'X, =0,i=1n.

In other words, the estimates &, i ::L,_n, of the

realizations of the RV that it took in the tests are identically
equal to zero. For the case n<r +1, the vector of estimates

0 asasolution to the LLP (3)—(6) is not a degenerate vector
of estimates, but the answer to how useful this estimate is in
this case can only be given by careful statistical studies.

4. An iterative algorithm for constructing a multi-
variate linear regression. To find the efficient domain of
the algorithm, we introduce the following definition.

Definition 1. A vector @ of estimates of the coeffi-
cients of a vector @ is called a consistent estimate if the

realization of the criterion 2, which is built on the esti-

mates of the realizations of E, éi =Y, —6Txi, i :1,_n,
does not contradict the hypothesis of a hormal distribution
with parameters 0,2 (parameters of the normal distribu-
tion of the RV E).

Remark 5. The definition of a consistent estimate does
not depend on the distribution of the RV E since the crite-
rion efficiently tests the hypothesis for any known distribu-
tion of the RV E.

From the definition of a consistent estimate it follows
that the value of the number of tests in a statistical experi-

ment and the value of o® = DE must be such that the fol-
lowing condition is fulfilled: the realization of the criterion
z? statistically significantly belongs to the feasible region

only in the case when the numbers &; do not differ signif-

icantly from the realizations &, i =1,n, ofthe RV E. This

is the condition that guarantees that the iterative algorithm
presented below, the construction heuristic of which is

aimed at finding consistent estimates éj, j :m, of the

components of the vector @, is the most efficient algo-

rithm. But, as the second example given in section 5 shows,
it can be used in the case when the number of tests n does

not satisfy the above restrictions.
The iterative algorithm consists of sequentially solv-
ing the following LPPs:

min "' 7, @
~7,<y,-0"%,<2,2,20,i=1n (8)

02> —(1+t,(n)-Jk,| <7y, —07%, )< @+t,(n))- |k, ©

K, +(p-1)Ak, - jak, <> 7, <k, + pAk, — jAk,,

J=0,p+I, Ak, > 0. (10)

The variables of the LPPs (7)—(10) are &, i :m,

z,1i =1n. p, | are given natural numbers, Ak, >0 is the

Pavlov A. A. Kushch A. V. Algorithms for constructing a regression linear with respect

to unknown coefficients on a limited amount of experimental data



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

given accuracy of the regions (10), one of which must con-
tain the unknown number

3 [y —0Tx], 1+ D)k, <k,

Thus, the natural numbers p and | must statistically
significantly guarantee that the number
%Zi":l‘y. —0T>_<i‘ belongs to one of the regions (10), and

unknown

1
the value of Ak, is chosen as a compromise between the
number of LPPs and the absolute deviation from the num-
n T—=
ber %zi:l‘yi -0 xi‘.
The macro-algorithm for obtaining the vector of esti-

mates @ is as follows. The LPPs are solved sequentially in
an arbitrary order. For each problem, starting from the first

one, for the found vector of estimates 0 we find estimates
&, of the realizations &; ofthe RV E,i =1,n, where

(11)

For them, the criterion y? tests the hypothesis that
the numbers ¢, i =1,_n, do not contradict the simple hy-

pothesis of a normal distribution with parameters 0,c°.
All p+1+1 LPPsare solved. In general case, several con-

sistent estimates @ of the vector @ can be obtained. In this

case, the vector of estimates corresponding to the small-
est value of the criterion y? realization is selected. The

logic of finding this vector of estimates is that on average,
the realization of the criterion y? is greater, the more the

law of the distribution of numbers &;, i = l_n differs from
the simple hypothesis tested by the criterion 2. If no valid
solution is found, then by the same reasoning, the vector of
estimates corresponding to the smallest value of the cri-
terion y? realization is selected.

Remark 6. The presented iterative algorithm is easily
modified for the case when the region (9) is represented as
a union of subregions of the form (10). However, since the

real value of a number K, can be both positive and nega-
tive, not one but two LPPs are solved for fixed values of
P, Py, P,y L1 Ly J, Jyy Jo . I the first one, instead of (9),
the following constraint is used:

K|+ (p, ~DAK, — Ak, <37 (y, ~07%, )<

<[k, |+ py2k, — j,AK,. (12)

J; can take values from 0 to p, +1, and p,,l, are

1
natural numbers, Ak, >0. For | , the condition | Ak, <

<|k,|+1 is fulfilled.

In the second LPP, instead of the region (9), the fol-
lowing constraint is used:

~Jky|+ (p, ~DAK, — j,ak, < 37" (v, -07%, )<

<k, |+ p,Ak, — j,AK,. (13)

j, =0, p, +1,, the condition —|k2|+ p,Ak, <0 is impo-
sed on p,.

Thus, (p+1+1)p, +I,+1)p, +1,+1) LPPs are

solved in the modified iterative algorithm, since the inter-
section of the regions (12), (13) is an empty set.
5. Hlustrative examples. 5.1. The first example.
Remark 7. The following measure was chosen as an
integral measure of comparisons of the components of two

vectors @and 0 :

, (14)

where 0] = +JZLO 6.

The formula for the average deviation of experimental
values from model values on input experimental data has

the form

%Zin:l‘)’i _0T)_(i" (15)
where X, =(L X, Xps ) X, = Vi =1n, 07 =(8,,
6,....6,)

The formula for the average deviation of the average
values of the estimated and ideal regression on the input
experimental data has the form

2
n i=1

where 97 = (éo,él, .. .,ém) is the optimal solution to the LPP.

Below we give an illustrative example of using the
first algorithm to estimate unknown coefficients of multi-
variate linear regression with finding the values of (14)—
(16) by ideal multivariate linear regression, the true values

of the 16 coefficients of which (9]., j =E) are 1.59,

4.90, 3.58, -2.57,-2.25, 4.13, 1.45, 5.00, -1.47, 1.26, 4.49,
—2.18, 4.78, -2.46, 4.98, —1.38. The modeling parameters
used are as follows: ME =0, DE =1200, the number of

tests is 48, the ratio of the average absolute value of the
ideal regression on the input experimental data to the aver-
age absolute value of the realizations of RV E s
69.42/26.19.

Table 1 shows the values of Y;,X;,i =1,48.

The values of k1=%2?i|8i|v k22%2488

[ER

(16)

07X, —0Tii‘,

where ¢, are artificially generated realizations of the RV
E, are equal to, 28.69 and —1.42, respectively.
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Table 1 — The values of y,, X;,i =1, 48, for the first example.

Yi X
7120 | 1.00 | 1.65 | 448 | 480 | 153 | 1.22 | 247 | 3.71 | 235 | 1.15 | 3.08 | 1.68 | 458 | 2.43 | 2.87 | 3.45
46.44 | 1.00 | 437 | 1.81 | 2.22 | 465 | 3.98 | 2.76 | 2.27 | 2.88 | 2.66 | 1.60 | 3.17 | 2.04 | 1.27 | 1.71 | 2.67
36.19 | 1.00 | 259 | 435 | 435 | 418 | 438 | 3.73 | 481 | 3.95 | 487 | 3.65 | 457 | 3.12 | 458 | 1.14 | 4.97
5345 | 1.00 | 1.93 | 3.05 | 465 | 203 | 3.71 | 257 | 1.14 | 3.99 | 198 | 2.25 | 1.09 | 4.13 | 1.52 | 3.40 | 3.99
51.00 | 1.00 | 485 | 1.65 | 2.80 | 1.65 | 261 | 451 | 468 | 3.66 | 1.68 | 2.62 | 1.92 | 256 | 3.92 | 453 | 2.18
81.15 | 1.00 | 3.63 | 1.02 | 211 | 3.18 | 226 | 1.94 | 1.10 | 3.77 | 2.62 | 3.10 | 3.02 | 435 | 2.37 | 2.68 | 2.77
1835 | 1.00 | 421 | 1.03 | 1.31 | 444 | 312 | 219 | 2.27 | 391 | 3.97 | 425 | 253 | 4.62 | 4.09 | 2.25 | 4.12
2117 | 1.00 | 259 | 343 | 2.67 | 473 | 407 | 1.40 | 152 | 3.76 | 393 | 1.82 | 3.76 | 1.97 | 3.33 | 2.06 | 1.04
39.63 | 1.00 | 492 | 3.96 | 2.82 | 3.05 | 237 | 1.97 | 3.70 | 1.64 | 230 | 3.02 | 1.27 | 3.33 | 1.37 | 1.14 | 294
60.66 | 1.00 | 293 | 1.60 | 1.50 | 1.84 | 294 | 413 | 153 | 1.78 | 1.70 | 3.42 | 498 | 1.28 | 3.87 | 1.93 | 3.53
723 | 100 | 200 | 1.97 | 480 | 192 | 217 | 391 | 412 | 320 | 435 | 1.71 | 233 | 270 | 3.36 | 1.93 | 3.71
98.11 | 1.00 | 2.99 | 472 | 489 | 3.46 | 3.13 | 1.14 | 494 | 1.78 | 1.76 | 1.40 | 145 | 426 | 1.66 | 492 | 1.36
53.66 | 1.00 | 4.07 | 479 | 3.39 | 3.06 | 3.99 | 1.69 | 493 | 354 | 394 | 430 | 3.74 | 278 | 3.10 | 2.07 | 2.81
50.27 | 1.00 | 1.85 | 484 | 348 | 3.62 | 250 | 3.09 | 472 | 1.67 | 1.83 | 3.41 | 448 | 144 | 143 | 484 | 492
9297 | 1.00 | 1.76 | 2.61 | 459 | 3.66 | 1.26 | 1.75 | 441 | 3.86 | 1.17 | 3.08 | 3.51 | 2.97 | 2.24 | 499 | 4.22
10499 | 1.00 | 3.23 | 2.34 | 248 | 391 | 359 | 456 | 495 | 1.72 | 296 | 341 | 414 | 2.36 | 418 | 3.96 | 1.25
40.65 | 1.00 | 1.34 | 2.39 | 3.27 | 253 | 2.60 | 2.04 | 3.67 | 244 | 324 | 1.03 | 3.76 | 2.85 | 478 | 191 | 3.91
3224|100 | 3.73 | 1.19 | 423 | 464 | 233 | 3.86 | 1.39 | 408 | 243 | 495 | 1.29 | 1.13 | 1.06 | 1.68 | 2.64
11091 | 1.00 | 430 | 3.92 | 436 | 1.40 | 499 | 1.12 | 2.83 | 359 | 492 | 1.45 | 3.24 | 3.03 | 2.86 | 2.39 | 3.82
107.73 | 1.00 | 1.80 | 1.60 | 262 | 1.74 | 1.41 | 493 | 1.74 | 250 | 3.76 | 1.98 | 1.49 | 4.86 | 3.42 | 3.40 | 4.04
89.53 | 1.00 | 3.81 | 1.96 | 3.01 | 3.18 | 269 | 421 | 223 | 441 | 254 | 3.26 | 1.18 | 3.39 | 2.06 | 3.27 | 3.68
110.72 | 1.00 | 344 | 1.71 | 142 | 236 | 449 | 463 | 484 | 1.18 | 1.39 | 3.34 | 3.23 | 460 | 1.12 | 3.22 | 3.95
69.43 | 1.00 | 1.06 | 436 | 4.01 | 258 | 443 | 3.95 | 3.85 | 470 | 246 | 2.04 | 437 | 471 | 2.83 | 422 | 4.19
2480 | 1.00 | 2.78 | 427 | 3.62 | 1.57 | 237 | 1.67 | 257 | 1.33 | 3.08 | 447 | 220 | 3.33 | 1.37 | 2.05 | 1.46
9357 | 1.00 | 248 | 1.89 | 457 | 1.07 | 257 | 1.35 | 1.53 | 2.74 | 461 | 447 | 3.99 | 1.60 | 2.74 | 1.67 | 3.00
106.43 | 1.00 | 3.68 | 410 | 250 | 3.70 | 473 | 1.72 | 2.66 | 444 | 478 | 3.22 | 3.28 | 3.12 | 441 | 3.15 | 3.48
31.05 | 1.00 | 3.92 | 443 | 413 | 1.73 | 3.10 | 3.83 | 1.14 | 451 | 424 | 2.08 | 355 | 3.13 | 404 | 3.22 | 2.61
59.66 | 1.00 | 4.78 | 1.39 | 1.86 | 437 | 1.23 | 250 | 142 | 1.54 | 265 | 1.66 | 481 | 433 | 3.86 | 4.13 | 3.59
7263 | 1.00 | 3.93 | 3.34 | 488 | 1.12 | 443 | 268 | 226 | 1.97 | 1.72 | 1.51 | 3.37 | 1.05 | 472 | 3.79 | 2.30
120.61 | 1.00 | 3.26 | 3.62 | 3.44 | 468 | 3.72 | 382 | 3.33 | 461 | 3.83 | 2.09 | 427 | 479 | 3.87 | 2.31 | 1.33
5761 | 1.00 | 3.10 | 1.81 | 448 | 4.00 | 289 | 218 | 3.02 | 1.33 | 411 | 3.82 | 3.64 | 2.87 | 1.32 | 1.58 | 3.80
70.50 | 1.00 | 290 | 428 | 293 | 3.30 | 3.41 | 358 | 3.38 | 1.44 | 1.89 | 2.85 | 493 | 4.27 | 2.87 | 1.76 | 3.93
70.05 | 1.00 | 211 | 3.76 | 3.36 | 482 | 355 | 495 | 3.80 | 464 | 284 | 1.09 | 144 | 1.35 | 2.82 | 1.32 | 3.81
58.06 | 1.00 | 2.95 | 3.37 | 1.92 | 277 | 1.32 | 2.80 | 3.04 | 1.12 | 427 | 1.31 | 2.66 | 1.12 | 1.28 | 4.21 | 3.92
72.03 | 1.00 | 2.96 | 3.95 | 479 | 3.05 | 3.79 | 474 | 214 | 435 | 358 | 476 | 479 | 2.03 | 1.20 | 4.33 | 2.65
64.63 | 1.00 | 1.65 | 494 | 1.16 | 1.19 | 410 | 215 | 249 | 2.72 | 335 | 1.33 | 487 | 1.88 | 1.85 | 2.26 | 4.44
3052 | 1.00 | 1.01 | 1.26 | 2.72 | 1.66 | 481 | 2.86 | 1.02 | 4.75 | 3.87 | 2.81 | 1.47 | 243 | 452 | 447 | 1.32
15175 | 1.00 | 3.79 | 212 | 223 | 2.68 | 3.43 | 1.84 | 468 | 291 | 1.12 | 392 | 359 | 2.32 | 1.15 | 1.88 | 2.45
136.47 | 1.00 | 434 | 452 | 141 | 234 | 429 | 468 | 1.37 | 216 | 3.62 | 499 | 488 | 2.26 | 3.40 | 4.15 | 4.07
7782 | 1.00 | 243 | 320 | 1.02 | 408 | 1.76 | 1.19 | 428 | 4.05 | 1.50 | 4.87 | 1.90 | 3.39 | 2.88 | 4.38 | 3.53
98.32 | 1.00 | 356 | 245 | 353 | 444 | 441 | 462 | 1.99 | 495 | 3.69 | 1.99 | 230 | 253 | 357 | 1.56 | 2.12
10521 | 1.00 | 478 | 464 | 399 | 264 | 3.17 | 461 | 273 | 3.34 | 435 | 405 | 1.71 | 3.96 | 3.07 | 3.58 | 3.72
803 | 100 | 158 | 1.13 | 1.29 | 443 | 1.75 | 3.25 | 205 | 190 | 2.26 | 2.82 | 3.11 | 463 | 1.05 | 4.26 | 1.59
61.37 | 1.00 | 3.34 | 3.03 | 1.15 | 437 | 3.84 | 1.81 | 242 | 3.01 | 484 | 1.24 | 498 | 3.41 | 462 | 455 | 2.98
30.32 | 1.00 | 2.95 | 144 | 1.79 | 224 | 1.22 | 433 | 479 | 3.76 | 4.03 | 233 | 1.00 | 4.63 | 4.36 | 4.14 | 2.62
104.27 | 1.00 | 2.18 | 2.95 | 2.71 | 3.09 | 3.79 | 1.69 | 3.00 | 4.27 | 3.84 | 2.67 | 1.02 | 4.97 | 439 | 3.41 | 2.28
7471 | 1.00 | 3.05 | 3.24 | 3.24 | 407 | 424 | 451 | 1.80 | 466 | 237 | 464 | 1.01 | 3.31 | 2.30 | 482 | 2.71
175.05 | 1.00 | 420 | 3.78 | 2.86 | 3.18 | 1.96 | 3.02 | 4.71 | 1.57 | 3.47 | 428 | 348 | 4.76 | 2.73 | 3.79 | 3.69
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The LPP has the form:
min Z?izi ,

0.X <z,,2,>0,i=148, (18)

j=0 1%

17)

12
_Z_Syi_

-tk <53y, -

13k, <530y -3 0,% J<13k,| (20)

=8 j=0" i

* 0%, )<k +1k,, (19)

As a result of solving the LLP (17)—(20), the follo-
wing estimates of the unknown coefficients were obtained:
-23.06, 10.40, 1.56, -1.89, -9.22, 4.50, -0.21, 6.28, —0.38,
1.59, 5.69, —0.96, 5.24, —0.63, 4.58, 3.63. The value of (14)
is equal to 1.07. The value of (15) is 26.19. The value of
(16) is equal to 8.73. Thus, the scalar measure of deviation

of the components of vectors @ and @ is 1.07, with ideal
values of this measure being 0.02, but the filtering effect of
the average value of the ideal regression line on the input
experimental data decreased from 26.19 to 8.73, i.e. by
66.65 %, which allows the value (16) to be used in recogni-
tion systems for various purposes (for example, recogniz-
ing the beginning of a disease epidemic in a region from the
list of diseases contained in the recognition system).

5.2. The second example. Below we give an illustra-
tive example of using the second algorithm to estimate un-
known coefficients of a multivariate linear regression with
finding the values of (14)—(168) by ideal multivariate linear
regression, the true values of 13 coefficients of which
(Hj, j=0, 12) are 1.05,-2.08, 2.02, -1.10, -1.55, 3.20,

-3.70, —4.97, -2.61, 4.95, 3.49, 2.87, —3.54. The modeling
parameters used are as follows: ME = 0, DE = 3000, the

number of tests is 48, the ratio of the average absolute value
of the ideal regression on the input experimental data to the
average absolute value of the realizations of RV E s
14.15/42.03. It should be emphasized that the average ab-
solute value of the realizations of RV E is 2.97 times
greater than the average absolute value of the ideal regres-
sion on the input experimental data.

Since the size of the article does not allow us to pre-
sent all the stages of the iterative algorithm, we will present

only the LPP that corresponds to the consistent estimate 0
of the vector @ (the y? criterion has five degrees of free-
dom, the realization of the y? criterion is 4.00, and the

critical region for ¢ =0.05 is given by the number 11.07).
For this purpose, we give in Table 2 the values of

Yy, X;,1=148.
The value of k, = %Zigi , where ¢, are the artifi-

cially generated realizations of the RV E, is-14.29.
The LPP has the form:

. 48
min >~ 7,

(21)

—7, <y, -3 6% <17,,2,20,i=1,48, (22)

1 j:0 ]

48

41.61< X 2 <4245,

— 48 i

(23)
13| <530y - 37 0% )<Lk, (29)

As a result of solving the LLP (21)—(24), we obtained
the following estimates of the unknown coefficients:
-20.36, —4.84, 1.41, 0.50, 0.46, 4.25, 4.87, -3.01, 0.03,
-3.86, 6.53, 6.22, -8.32. The value of (14) is 1.28. The
value of (15) is 42.03. The value of (16) is 9.94. Thus,
compared to the first example, the scalar measure of

deviation of the components of vectors 6 and @ became

worse, but the effect of filtering the average value of the
ideal regression line on the input experimental data
decreased from 42.03 to 9.94, i.e. by 76.35 %, which is
better than in the first example.

6. Methodology of using the proposed algorithms.
As shown by the two illustrative examples given in section
5, the proposed algorithms for estimating multivariate re-
gression linear with respect to unknown coefficients are po-
tentially efficient. Indeed, even with a fairly limited number
of tests (48), a random factor variance of 1200 (the first ex-
ample), 3000 (the second example), and a significant ratio
of the average absolute value of the real regression on the
values of the input variables in the statistical experiment
tests to the average absolute value of the random factor re-
alizations in these tests (69.42/26.19 for the first example,
14.15/42.03 for the second example), both algorithms
demonstrated high filtering properties (66.65 % for the first
example, 76.35 % for the second example).

For the correct use of the proposed algorithms in the
general case, the following methodology of statistical sim-
ulation modeling is proposed.

1) set the parameters of the regression problem: the
analytical expression of a multivariate regression linear
with respect to unknown coefficients, the distribution of a
random factor, the range of values of input arguments and
unknown coefficients of the multivariate regression, the
number of tests of the statistical experiment (and there may
be several such values);

2) select two out of three or one out of three proposed
algorithms and the algorithm with which its efficiency is
compared (for example, LSM);

3) using a uniform distribution to generate the coeffi-
cients of the ideal regression (their absolute values and their
signs), the values of the input variables, model a sufficient
number of individual ideal regressions, for each of which

simulate a statistical experiment ()_(i —VY,,i =]_,_n) As the

result of each statistical experiment, the estimates of un-
known coefficients are found by the selected algorithms.
Using the scalar measure (14), average comparative char-
acteristics of their efficiency are found by them. According
to the results of average comparative characteristics for a
given class of multivariate regressions (item 1 of the meth-
odology), the best algorithm is selected.
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Table 2 — The values of y,, X, ,i :m, for the second example.

Yi X;
-33.81 | 1.00 4.76 3.92 1.67 3.07 1.93 2.13 3.31 4.09 3.62 2.71 2.94 1.96
-78.63 | 1.00 2.61 2.28 294 2.20 1.25 2.00 3.55 1.71 4.76 4.50 3.61 3.11
10.00 | 1.00 3.49 4.74 3.18 4.08 1.20 3.48 1.76 4.74 2.83 2.96 4.82 2.18
—73.60 | 1.00 1.04 1.12 4.65 3.57 4.01 1.59 2.20 2.87 1.33 3.74 3.53 4.97
-1.08 | 1.00 1.49 2.01 2.28 1.40 1.62 3.48 1.87 1.94 4.86 2.74 2.40 1.26
39.96 | 1.00 2.39 2.61 4.14 2.75 1.47 2.75 2.45 1.72 1.24 1.29 3.98 3.91
-54.97 | 1.00 3.17 1.55 4.56 3.67 1.94 211 1.84 1.92 1.33 3.01 3.72 2.54
3.05| 1.00 3.19 1.94 331 441 4.46 4.49 3.15 3.55 4.57 3.45 2.04 3.96
-25.91 | 1.00 2.38 2.90 341 1.25 4.22 1.40 1.95 4.18 2.12 1.57 391 2.04
-27.47 | 1.00 1.44 3.79 1.23 3.15 1.42 3.16 4.20 3.26 3.85 1.76 1.04 2.34
12.03 | 1.00 1.46 1.75 2.83 4.38 3.40 1.29 2.38 3.83 2.29 2.21 4.16 1.39
-0.54 | 1.00 3.86 3.25 1.60 1.39 2.70 111 4.21 3.15 1.89 321 3.88 1.16
10.28 | 1.00 3.74 3.19 1.22 3.13 3.63 4.52 1.67 4.08 3.43 491 1.20 1.99
-26.98 | 1.00 2.39 4.29 2.77 2.81 3.32 2.89 1.37 4.27 4.35 471 4.55 3.31
-24.92 | 1.00 3.31 1.27 4.26 3.41 3.10 4.70 2.62 1.68 2.49 331 4.45 3.67
102.55 | 1.00 1.94 1.91 1.20 1.54 1.70 1.88 4.20 3.67 1.52 1.40 2.50 4.44
-72.91 | 1.00 1.17 3.15 3.97 3.52 4.92 1.71 3.24 3.10 3.07 3.13 4.36 3.75
-39.34 | 1.00 1.04 3.65 1.70 4.67 4.12 3.59 2.84 1.72 4.75 3.42 3.30 1.76
-27.53 | 1.00 4.98 3.67 3.57 2.63 2.36 3.79 2.66 1.21 2.57 1.04 451 441
75.31 | 1.00 1.74 4.40 1.51 4.62 4.57 2.84 1.48 4.68 4.77 4.09 2.81 1.22
-129.01 | 1.00 2.35 1.54 3.97 4.18 1.62 131 1.41 4.60 1.17 4.73 2.67 3.88
-86.66 | 1.00 1.50 2.02 1.75 1.53 111 3.14 2.00 3.40 1.20 4.06 3.07 4.66
43.84 | 1.00 2.38 2.14 2.01 3.91 261 294 1.91 1.77 2.77 1.35 1.02 1.08
74.30 | 1.00 1.36 1.84 3.97 5.00 4.98 2.81 3.90 2.30 1.46 2.26 2.10 1.84
11.83 | 1.00 4.87 4.13 4.38 1.64 3.53 2.90 3.33 1.42 3.59 3.60 4.76 1.38
-72.21 | 1.00 3.79 2.64 2.69 1.46 2.10 391 3.40 1.74 1.54 1.83 4.64 1.99
-78.39 | 1.00 3.14 2.42 2.93 1.18 3.95 4.62 2.14 2.50 4.14 4.03 2.13 3.59
-15.96 | 1.00 3.10 2.38 4.46 4.66 3.75 4.39 4.80 4.05 1.31 3.75 1.48 4.80
-32.83 | 1.00 1.25 3.80 451 3.41 1.78 1.84 4.31 3.34 1.77 1.76 3.19 4.65
-52.88 | 1.00 1.31 1.19 4.49 1.72 4.04 3.25 1.55 2.94 2.88 1.66 1.85 241
11.88 | 1.00 1.62 1.61 2.53 4.80 1.45 1.15 2.83 1.52 1.30 2.30 4.30 3.59
92.08 | 1.00 3.04 4.56 1.46 3.92 3.56 1.14 1.10 1.19 3.22 1.71 4.86 224
-8.43 | 1.00 1.62 1.33 4.15 3.31 4.95 4.66 3.06 1.99 4.08 1.53 2.66 3.24
-37.11 | 1.00 4.55 1.59 1.40 4.77 3.02 4.87 3.92 245 245 1.02 1.19 3.53
-45.35 | 1.00 3.61 1.73 3.62 3.55 4.30 4.65 1.04 1.19 3.38 3.92 2.19 3.19
43.38 | 1.00 2.88 3.70 1.37 3.57 1.26 4.01 2.53 1.38 1.80 1.98 453 3.99
19.76 | 1.00 4.16 3.47 2.80 3.98 331 3.06 4.05 3.05 1.99 4.55 2.12 1.49
67.07 | 1.00 3.22 3.71 1.28 1.95 1.57 2.49 1.49 1.77 2.87 4.79 3.71 1.06
-8.05 | 1.00 4.60 1.98 1.93 4.26 3.95 1.64 4.49 1.64 2.87 4.05 1.67 1.31
-85.96 | 1.00 1.17 1.89 2.18 2.84 1.34 4.64 4.62 3.68 1.68 2.30 4.46 1.39
43.70 | 1.00 3.60 2.75 1.30 4.33 3.97 4.96 2.07 2.13 3.14 2.45 4.85 3.62
-6.41 | 1.00 3.18 2.52 4.65 1.74 4.60 2.23 2.14 4.72 3.37 2.90 1.90 231
25,51 | 1.00 3.47 4.14 4.11 1.86 3.04 4.44 3.53 4.15 1.30 1.52 1.19 212
85.34 | 1.00 4.98 4.00 4.36 2.50 4.65 251 4.72 4.28 1.86 3.60 2.35 1.94
10.16 | 1.00 2.14 1.82 3.32 2.02 3.39 3.17 2.64 4.48 3.48 3.50 1.59 3.99
68.99 | 1.00 2.04 2.05 1.14 3.41 1.52 2.97 4.07 2.66 3.65 1.70 4.68 3.96
-10.22 | 1.00 3.45 1.16 1.70 3.65 2.08 4.16 4.03 3.15 3.81 411 4.68 4.28
-6.35 | 1.00 3.83 1.65 4.74 4.03 4.77 1.14 3.07 1.76 4.74 4.27 2.76 2.09
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Remark 7. The choice of a uniform distribution guar-
antees the generation of the most “rigorous” for estimating
unknown parameters of individual regression problems. If
desired, the uniform distribution can be replaced by other
distributions in the simulation modeling system by the user.

Conclusions. 1. We substantiated the feasibility of
using linear programming models to find estimates of a
multivariate regression linear with respect to unknown
coefficients.

2. We proposed a new algorithm for constructing es-
timates of unknown coefficients of a multivariate regres-
sion using the example of a linear multivariate regression,
which uses a single linear programming model. The pecu-
liarity of the algorithm is, in particular, that, unlike LSM, it
does not give degenerate estimates for the case when the
number of tests does not exceed the number of unknown
coefficients.3. We proposed a new iterative algorithm for
constructing estimates of a multivariate regression using
the example of a multivariate linear regression, which finds
consistent estimates of unknown coefficients implementing
a special linear programming model at each iteration.

4. We give two illustrative examples confirming the
efficiency of using the proposed algorithms with a small
number of tests and a significant value of the variance of
the random factor in comparison with the average value of
the ideal regression on the values of the input variables in
tests of a statistical experiment on the regression model.

5. We give the methodology for using the proposed
algorithms in a statistical simulation modeling system.
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AJITOPUTMU NOBYJIOBU PEI'PECI], JIIHIMHOI BIZITHOCHO HEBIZJOMUX KOE®IIIEHTIB, HA
OBMEXKEHOMY OB’€MI EKCHEPUMEHTAJIBHUX TAHUX

Jlana myOumikaiisi IPOIOBKYE LUK HAYKOBHX POOIT aBTOPIB MO CTBOPEHHIO AITOPUTMIB MOOYIOBH GAaraTOBUMIPDHHX perpeciii, JHIHHUX BiZHOCHO
HEBIZIOMHX KOE(DII[ieHTiB, 3 BUKOPHCTaHHIM MOeNeH NiHIHHOro mporpamyBaHHs. JUJIsl CIIPOINCHHS iMITAaI[ifHOTO MOJENIOBAHHS iX e(EeKTHBHOCTI,
ITOPUTMH HaBOAATHCS UL 3a1a4i OaraToBUMIpHO] JIiHiIHOT perpecii. BukoprucTanHs Mozgenel MiHIHHOTO IporpaMyBaHHS BUMarae MiHiMi3yBaTH CyMy
MOJYJIiB PI3HHMIb, 10 BHKOPHUCTOBYIOTBCS B 3arajbHiil mpouenypi Meroga HaimeHmmx kBapatiB. OIiHKH HEBiIOMHX KOE(DIli€HTIB, OTPUMAHUX
BHACJIIIOK PO3B’si3aHHS 3a]adi JIHIHHOTO NporpaMyBaHHS, € JIHIHHAMH BIZHOCHO BEKTOpPY 3Ha4yeHb perpeciiiHoi Mojeli B CTaTHCTHYHOMY
eKCIIepuMeHTy. BinomMo, mo B cumity TeopeMu MapkoBa OLIHKM HEBIOMHUX KOE(ILi€HTIB, OTPUMAaHUX 3araJIbHOI0 MIPOLETYPOI0 MeTo/a HalHMEHIINX
KBAJIpaTiB, € e(eKTHBHUMH B KJIACI JITHIHHUX HE3MILIEHUX OLIHOK. TakuM YMHOM, 371aBajoch Ou, Iepexi/ Bix MeToly HaMEHIINX KBAAPATiB 1O METOLY
MiHiMi3aIlii cyMH MOIYINIB Pi3HHIb, 1[0 BUKOPHCTOBYETHCS B METOAI HallMEHINMX KBaJparTiB, € 3a3Jajeriib He NPOAYKTHBHHM. AJle Il HE Tak. 3
JIOBEJICHHSI TeopeMU MapkoBa BHIUIMBA€, IO MAaTPHIlL JIHIHHOI OIIHKM Mae OyTH CTajJoOl0 1 HE 3aJeXaTH BiJ 3Ha4eHb perpeciiHoi Moxmeni B
CTaTHCTUYHOMY ekcrepuMeHTy. OLIHKH, OTpUMaHi METOIOM MiHiMi3amil CyMH MOXYIiB, Wiif yMOBi He BimmoBimaroTh. [liliCHO, MATpHUIS OLIHOK €
ONTHMAIBGHAM 0a3UCOM JUIS PO3B’S3aHHS 3amadi JIHIHHOIO NpOrpaMyBaHHS CHMIUICKC-METOIOM 1 3aJIeXHTh BiJl 3HAa4eHb perpeciiiHoi mozeni B
CTaTHCTUYHOMY eKCIICpHMEHTy. Taka IOCTaHOBKa 3ajadi JO03BOJSIE B MOJENI ONTHMi3allii BBOXWTH JIiHIHHI OOMEXECHHS, IO BHKOPHUCTOBYIOTH
pe3yJbTaTH CTATUCTUYHUX BUIIPOOYBaHb 1 peasi3yloTh JOJATKOBI BIACTUBOCTI IIyKaHOi OararoBuMipHoi perpecii. [lepiui gocmikeHHs LHX aIrOpUTMIB
MIOKa3aJIH iX e()eKTHBHICTH, 1[0 JJO3BOJIMIIO aBTOPaM [IOCTAaBUTH 3a/iady CTBOPEHHS TaKHX aJrOPUTMIB, SIKi HE TUIBKHA MOXKYTh KOHKYPYBAaTH 3 3aTJILHOIO
AITOPUTMIYHOIO IPOLIEyPOI0 METO/Ia HaiIMeHIIINX KBaPaTiB, aje 1 JUIs BUIaJKy 0OMEKEHOTo 00’ €My eKCIIepIMEHTAIBHUX JaHHX, KOJIH BiHONICHHS
CepeHbOr0 3HAUEHHSI MOIYJIS peai3amiil BUagKOBOro (akTtopy B €KCIIEPHMEHTI 0 CepeIHbOro 3HAYCHHS HA HbOMY MOIYJSl iCTHHHOI perpecii €
JIOCTaTHHO BEJIMKOIO BEIMYMHOW. B IbOMy BHIaAKy CTaBHTHM IHUTaHHSA NP0 3HAXO/DKCHHS OLIHOK HEBIIOMUX KOEQil€HTIB, SKi IPAaKTHYHO He
BIZPI3HAIOTHCS BiJl ICTHHHEX, € HE KOPEKTHHUM, aje, sIK MOKa3all eKCIepUMEeHTH 1, 30KpeMa, HaBe[ieH] B JaHill poOOTi MPHUKIIAAN, MOXKHA 3HAXOAUTH
JIOCTaTHHO XOPOLIl OILIHKM CEepeAHIX 3Ha4YeHb iCTMHHOI perpecii Ha MPOBEACHUX EKCIEPUMEHTAaX, SIKi MOXKHA BMKOPHCTOBYBATH, HANpPUKIAM, MPU
JIIarHOCTYBaHHI Ha paHHIM cTafii moYaTKy emifeMii pisHUX 3aXBOPIOBAHb YM B IHIIMX 33/1a4aX pO3Ii3HABAHHS.

Kurouogi ciioBa: 6aratoBuMipHa perpecis, METo HalMEHINMX KBapaTiB, METOA MiHIMI3aIlii CyMI MOTyITiB, MOJIEIb JIIHIHHOTO TPOrpaMyBaHHS,
CHMILIEKC-METOJI, ONTHMANIbHHI 6a3HucC.
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