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DATA-DRIVEN ПІДХІД ДЛЯ ПРОГНОЗУВАННЯ МЕЖІ МІЦНОСТІ КОМПОЗИТІВ 

Стрімкий розвиток композитів вимагає точного прогнозування їх граничного стану за умов складного навантаження, що неможливо 

забезпечити класичними механічними критеріями через анізотропію й нелінійність матеріалів. У роботі запропоновано data-driven підхід із 

використанням машинного навчання для визначення граничного стану композитів на основі компонентів тензора напружень. Об’єктом 
дослідження є процеси машинного навчання для визначення граничних станів композитів з односпрямованим армуванням при багатовісному 

напруженому стані. Було згенеровано збалансовані синтетичні вибірки напружених станів для трьох композитних систем. У рамках 

дослідження реалізовано декілька моделей машинного навчання: логістичну регресію, випадковий ліс (Random Forest) та багатошарову 
перцептронну нейромережу. Для порівняння ефективності було також використано класичну модель визначення граничного стану за 

критерієм Мізеса для волокон або матриці з фіксованим порогом еквівалентного напруження. Результати свідчать, що моделі машинного 

навчання досягають точності до 99,9 % на тестових вибірках, суттєво переважаючи класичний підхід, який демонструє точність близько 50 % 
у всіх випадках. Візуалізація розподілу граничних станів у просторі компонентів тензора напружень показала складну та нелінійну структуру 

межі міцності, що підтверджує доцільність використання ML-алгоритмів. Отримані результати підтверджують високу ефективність і 

надійність data-driven підходу для задач технічної діагностики композитних конструкцій. Розроблена методика є універсальною та може бути 

адаптована для різних типів армованих матеріалів і умов навантаження. Запропонований підхід може бути застосований у задачах технічної 

діагностики композитних конструкцій в реальному часі. Робота також створює підґрунтя для подальшого впровадження інтерпретованих 

моделей і цифрових двійників у галузі композитної механіки. 
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Вступ. У сучасному світі інженерні матеріали 

повинні відповідати все жорсткішим вимогам до міц-

ності, надійності та довговічності. Композити, зокрема 

волокнисті полімерні композитні матеріали (FRC), 

займають провідне місце серед конструкційних мате-

ріалів. Це зумовлено поєднанням високої питомої 

міцності, стійкості до корозії та можливості спрямо-

ваного проектування властивостей [1]. Такі матеріали 

широко використовуються в авіації, автомобілебуду-

ванні, суднобудуванні, енергетиці та біомедичній інже-

нерії [2]. Проте, розширення сфер їх застосування 

потребує точного та достовірного прогнозування межі 

міцності, що є критично важливою характеристикою 

для оцінки надійності та безпеки конструкцій. 

Традиційні підходи до оцінки механічних влас-

тивостей композитів спираються на аналітичні або 

напівемпіричні моделі, які часто базуються на гіпоте-

зах про ізотропність чи спрощене представлення 

анізотропної природи композиту [3]. Такі моделі, як 

правило, вимагають проведення великої кількості фі-

зичних експериментів для калібрування та ідентифі-

кації параметрів, що є трудомістким, дорогим і обме-

женим у масштабах застосування. Крім того, в умовах 

складних напружених станів (наприклад, комбінова-

ного навантаження або позаосевої дії сил) класичні 

моделі часто демонструють низьку точність. 

Окрему проблему становить значна варіативність 

мікроструктури композитів, яка може бути зумовлена 

випадковим розташуванням волокон, дефектами виго-

товлення, неоднорідністю матриці тощо [4]. Такі фак-

тори суттєво впливають на локальні механічні власти-

вості, але важко піддаються прямому аналітичному 

опису. У цьому контексті особливої уваги заслугову-

ють data-driven методи, що дозволяють опрацьовувати 

великі масиви чисельних або експериментальних да-

них без необхідності формулювання явної конститу-

тивної моделі матеріалу [5]. 

Поява концепції data-driven computational me-

chanics, започаткованої Kirchdoerfer і Ortiz, відкрила 

нову парадигму в обчислювальній механіці твердого 

тіла [6]. В її рамках матеріальні рівняння замінюються 

базою даних напружено-деформованих станів, а 
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розв’язання задачі зводиться до пошуку найближчої 

точки в цьому датасеті. Такий підхід демонструє ви-

соку точність та узагальненість, особливо у випадках, 

коли класичні підходи зазнають невдачі. І хоча data-

driven підходи успішно використовуються для моде-

лювання пружних, в’язкопластичних та тривких мате-

ріалів, їх застосування для прямого прогнозування 

межі міцності композитів поки залишається обмеже-

ним і фрагментарним. 

Окремим напрямом, який активно розвивається, є 

поєднання мікромеханічного аналізу (наприклад, ме-

тод кінцевих елементів для представницької об’ємної 

комірки) із методами машинного навчання. Такий 

симбіоз дозволяє створювати високоточні бази даних, 

що враховують реальну геометрію й механіку волокон 

і матриці, та згодом використовувати їх для тренування 

прогнозної моделі. Це особливо актуально для задач, 

пов’язаних з неоднорідними або спрямованими компо-

зитами, де класичні підходи до оцінки міцності вияв-

ляються недостатньо гнучкими або точними. 

Водночас, незважаючи на численні спроби засто-

сування машинного навчання [7] для прогнозування 

властивостей композитів, ця тематика залишається 

відкритою. Зокрема, межа міцності як категорія «гіб-

ридного порогу» (між пружним і руйнівним станом) 

досі недостатньо досліджена з позицій data-driven 

підходу. Більшість наявних робіт зосереджуються на 

оцінці модуля пружності, стискальної або динамічної 

міцності, але ігнорують детальну багатовимірну ре-

конструкцію граничного стану в координатах напру-

жень. Тому, виникає потреба у нових підходах, які б 

поєднували: 

• мікромеханічне моделювання на рівні пред-

ставницького елементу; 

• автоматизовану генерацію датасетів гранич-

них станів за різних сценаріїв навантаження; 

• створення прогностичної моделі з викорис-

танням сучасних ML-методів, з подальшою візуаліза-

цією й інтерпретацією межі міцності. 

Таким чином, існує потреба в комплексному 

підході до прогнозування межі міцності композитних 

матеріалів, заснованому на поєднанні мікромеханіч-

ного аналізу та інструментів машинного навчання. 

Отримані результати матимуть потенціал для прак-

тичного застосування в системах інженерного проєк-

тування, автоматизованого тестування нових мате-

ріалів та розробки цифрових двійників складних 

композитних структур. Тому дослідження, присвячені 

розробці інтелектуальних методів аналізу граничного 

стану композитів, є актуальними, оскільки вони спри-

яють підвищенню надійності та ефективності сучасних 

інженерних конструкцій. 

Аналіз літературних даних і постановка проб-

леми. Протягом останніх років значно зріс інтерес до 

застосування методів машинного навчання для прогно-

зування механічних властивостей композитних матері-

алів. Автори в роботах [8, 9] акцентують увагу на 

потенціалі машинного навчання для покращення точ-

ності моделювання та зниження залежності від емпі-

ричних моделей. Зокрема, в [9] застосовано data-driven 

підхід для побудови поверхні текучості волокнистих 

композитів, замінюючи традиційні аналітичні функції 

на дискретні набори даних з чисельного аналізу. Ці 

підходи є перспективними, проте залишаються 

теоретично орієнтованими і не демонструють повного 

циклу моделювання – від даних до рішення. Їхній під-

хід варто було б доповнити прикладною частиною. 

Деякі дослідники поєднують deep learning з мік-

ромеханічними моделями. Так, в статті [10] запропо-

новано фреймворк глибокого навчання для передба-

чення напружень у гетерогенних середовищах, а в 

дослідженні [11] реалізовано інтелектуальну багато-

масштабну симуляцію композитів. Це потужні методи, 

однак вони передбачають наявність повної структурної 

інформації та високі обчислювальні витрати.  

Значна частина досліджень присвячена передба-

ченню міцності полімерних композитів, армованих 

вуглецевими волокнами чи нанотрубками. Автори ро-

боти [12] використовують ML для оцінки властивостей 

карбонових композитів, а в [13] досліджують вплив 

нанотрубок на міцність композиту. Ці роботи фокусу-

ються переважно на регресійних моделях та прогно-

зуванні одного параметра, тоді як ігнорується задача 

класифікації граничного стану, що є критичнішим для 

задач технічного моніторингу. 

У статті [14] застосовано SHAP для інтерпретації 

моделі, що передбачає міцність бетонів, демонструючи 

можливість поєднання прогностичної здатності з 

інтерпретованістю результатів. Це справді важливий 

напрямок, що розглядається як перспективне розши-

рення даного дослідження. 

У роботах [15, 16] провели систематичні огляди 

застосування ML у будівельних матеріалах, включа-

ючи волокнисті композити та армовані бетони. Вони 

демонструють широке розмаїття моделей (RF, SVM, 

ANN) і їхню ефективність у прогнозуванні механічних 

характеристик. Більшість робіт у цих оглядах зосеред-

жені на бетонах, тоді як іншим матеріалам не приді-

лено достатньо уваги. 

Деякі роботи, на кшталт [17], спрямовані на 

автоматизацію та контроль якості у виробництві 

композитів. Це цінний напрямок, однак він стосується 

переважно виробничої фази, тоді як представлене в цій 

роботі дослідження має на меті експлуатаційний 

моніторинг. У роботі [18] представлена можливість 

оптимізації армування за допомогою моделей штуч-

ного інтелекту. Це є суміжним підходом, але з іншим 

практичним фокусом – оптимізація конструкції, а не 

оцінка граничного стану. У [19] автори розробили гли-

боку нейронну мережу для аналізу ударних пошкод-

жень у композитах. Їхній підхід вимагає сенсорних 

даних, що може суттєво ускладнювати завдання. 

У [20, 21] застосовано нейронні мережі для 

прогнозування міцності бетону різного складу. Незва-

жаючи на різницю в матеріалах, концепція data-driven 

прогнозування міцності є спільною. Ефективність цих 

методів беззаперечна, однак у випадку складніших 

композитів виникає потреба в особливому підході до 

класифікації. 

Результати досліджень [22, 23] доводять ефек-

тивність нелінійних алгоритмів (зокрема SVM та 



 ISSN 2079-0023 (print), ISSN 2410-2857 (online) 

 Вісник Національного технічного університету «ХПІ». Серія: Системний 

18 аналіз, управління та інформаційні технології, № 2 (14) 2025 

XGBoost) у прогнозуванні характеристик геополімер-

ного бетону. Це підтверджує доцільність застосування 

нелінійних моделей і у випадку представленого дослід-

ження. У [24] використано Random Forest для оцінки 

міцності базальтового бетону, що схоже за структурою 

на один з матеріалів (Basalt/PP), що досліджено в цій 

роботі. В цьому дослідження також застосовано RF як 

одну з найстабільніших моделей у контексті класифі-

кації граничного стану композитів. 

Проаналізовані в цьому огляді джерела [8–24] 

підтверджують високу ефективність методів машин-

ного навчання та data-driven підходів у прогнозуванні 

механічних властивостей композитних матеріалів. 

Проте є низка незаповнених ніш: 

• недостатнє використання експериментально-

чисельних даних (особливо з мікромеханічного FEM-

аналізу) як вхідних даних для ML-моделей; 

• мало досліджень, спрямованих саме на прог-

нозування межі міцності, на відміну від більш попу-

лярної теми стискальної міцності чи модуля пружності; 

• недостатньо робіт, що поєднують FEM-симу-

ляції з ML в рамках єдиної data pipeline, із подальшою 

побудовою інтерпретованих моделей; 

• обмежена увага до напрямної залежності міц-

ності (анізотропія), особливо у волокнистих компо-

зитах. 

Мета та задачі дослідження. Метою роботи є 

розробка data-driven підходу до прогнозування гра-

ничного стану композитних матеріалів на основі 

компонентів тензора напружень. Це дасть можливість 

здійснювати безруйнівну діагностику конструкцій, 

оперативно оцінювати залишковий ресурс матеріалів, а 

також інтегрувати моделі у системи онлайн-моніто-

рингу та цифрові двійники інженерних об’єктів. 

Для досягнення мети були поставлені наступні 

задачі: 

• побудувати та протестувати кілька моделей 

машинного навчання (Logistic Regression, Random 

Forest, MLP) для задачі класифікації граничного стану, 

порівнявши їх точність із класичним критерієм міц-

ності фон-Мізеса;  

• проаналізувати ефективність моделей за допо-

могою графічної візуалізації (2D-проєкції, гістограми, 

порівняння точності), виявити межі застосування кла-

сичних і data-driven методів та обґрунтувати доціль-

ність використання ML для прогнозування граничного 

стану композитів. 

Матеріали та методи досліджень. Об’єктом до-

слідження є застосування методів машинного навчання 

для визначення граничних станів односпрямованих 

композитів під багатовісним напруженням. Аналіз 

охоплює три поширені в авіаційній, будівельній та 

транспортній галузях матеріали: Carbon/Epoxy, 

Glass/Polyester і Basalt/PP. 

Основна гіпотеза полягає в тому, що граничний 

стан композиту можна точно визначати за допомогою 

моделей машинного навчання, які використовують 

компоненти тензора напружень як вхідні параметри. 

Передбачається ідеально односпрямоване арму-

вання, циліндрична форма волокон і відомий або розра-

хований напружений стан матеріалу; дефекти та 

міжфазні неоднорідності не враховуються. 

Розглянуті три типи волокнистих полімерних ком-

позитів, що широко застосовуються у високотехно-

логічних сферах. Вони різняться властивостями воло-

кон і матриць, що дає змогу порівняти поведінку як 

високомодульних, так і більш пластичних систем під 

багатовісним навантаженням. 

Механічні параметри волокон і матриць, наведені 

в табл. 1, використовуються як вихідні параметри для 

генерації напружених станів у моделі. Ці характе-

ристики враховуються під час побудови граничної 

умови – умовної межі міцності композиту, яка слугує 

цільовою ознакою у моделі класифікації.  

Композит Carbon/Epoxy є одним із найбільш 

розповсюджених матеріалів у конструкціях літальних 

апаратів та легких несучих елементів. Вуглецеві 

волокна характеризуються надзвичайно високим 

модулем пружності (230 ГПа) та значною міцністю 

(~1000 МПа) за одночасно низького коефіцієнта 

Пуассона (0,20), що зумовлює їхню високу ефек-

тивність у напрямку армування. Епоксидна матриця, 

попри відносно невелику міцність (80 МПа), забез-

печує надійне зчеплення з волокнами та характери-

зується високою термостійкістю. 

Композит Glass/Polyester вирізняється кращою 

ізотропністю властивостей і широко застосовується у 

будівництві, трубопровідних системах, панельних 

конструкціях та елементах автомобільної промис-

ловості. Скляне волокно має нижчий модуль пружності 

(72 ГПа), проте характеризується підвищеною здат-

ністю до деформації та доволі високою межею міцності 

(1500 МПа).  

Поліестерова матриця забезпечує добру змочува-

ність волокон і сприяє швидкому формуванню виробів, 

хоча її механічна міцність (50 МПа) є нижчою порів-

няно з епоксидною матрицею. 

Таблиця 1 – Механічні характеристики розглянутих композитів 

Композитна система Компонент 
Модуль пружності E, 

ГПа 

Межева міцність 

σfeil, МПа 
Коефіцієнт Пуассона ν 

Carbon/Epoxy 
Волокно 230.0 1000 0.20 

Матриця 3.0 80 0.35 

Glass/Polyester 
Волокно 72.0 1500 0.22 

Матриця 2.5 50 0.34 

Basalt/PP 
Волокно 89.0 1200 0.25 

Матриця 1.3 30 0.42 
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Композит Basalt/Polypropylene, утворений поєд-

нанням базальтового волокна та поліпропіленової 

матриці, розглядається як перспективний матеріал для 

легких, недорогих і водостійких конструкцій. Базаль-

тове волокно є природним мінеральним матеріалом і 

характеризується збалансованим співвідношенням між 

модулем пружності (89 ГПа) та міцністю (1200 МПа), а 

також кращою термостійкістю порівняно зі скловолок-

ном. Поліпропілен, що виступає термопластичною 

матрицею, забезпечує гнучкість, високу технологіч-

ність переробки та ударну в’язкість, проте має найниж-

чі значення модуля (1,3 ГПа) та межі міцності (30 МПа) 

серед розглянутих систем. 

Для кожної з розглянутих систем передбачається 

односпрямоване армування, при якому волокна можуть 

мати як регулярне (ідеалізоване) розташування, так і 

випадкову структуру з домінуючим напрямком орієн-

тації. Така модельна схема дає змогу наблизити умови 

симуляції до реальних інженерних конфігурацій. З 

огляду на обмежений доступ до великих масивів 

експериментальних даних, синтетичні набори даних 

для навчання прогностичних моделей були отримані 

шляхом умовного моделювання напружених станів та 

визначення відповідних граничних умов. Вхідні ознаки 

(features) – це шість компонент тензора напружень у 

3D-постановці:  x ,  y
,  z  – нормальні напруження 

(MPa),  xy
,  yz

,  xz  – дотичні напруження (MPa). 

Вихідна змінна (індикатор граничного стану)   

дорівнює 1, якщо матеріал переходить межу міцності, і 

0 – якщо напружений стан є допустимим. Кожний набір 

даних містить 20 000 зразків. 

Для кращого розуміння структури вхідних даних 

та ідентифікації граничних умов було виконано 

візуальний аналіз залежності індикатора граничного 

стану   від компонент тензора напружень. З цією ме-

тою побудовано серію 2D-проєкцій які відображають 

розподіл граничних станів за різних значень окремих 

компонент тензора, із застосуванням кольорового ко-

дування змінної 

 ( ) ( ) 0 допустимий ,1 граничний  .  

На рис. 1–3 наведено типові зрізи у площинах 

– x y
, – x xy

, – xy yz
 тощо. 

Для композиту Carbon/Epoxy граничні стани 

сконцентровані на всіх графіках у верхніх правих 

квадрантах, що вказує на переважання руйнування при 

високих значеннях осьових напружень ( ,   x y
) та 

контактних зсувів ( xy
).  

Це узгоджується з анізотропною природою 

вуглецевого волокна, яке характеризується високою 

міцністю вздовж напрямку армування та зниженою 

стійкістю за багатовісних комбінацій навантаження, де 

істотну роль відіграють слабші міжволоконні зв’язки. 

На проєкції – vm x  спостерігається виразне відді-

лення класів, що підтверджує коректність застосування 

еквівалентної напруги  vm  як граничного показника 

для оцінювання напруженого стану матеріалу. 

 

Рис. 1. Розподіл граничних станів для різних значень 

компонентів тензора напружень для композиту 

Carbon/Epoxy: а – для площини – x y
; 

 б – для площини – ; y z в – для площини – x xy ;  

г – для площини – ; y xy  д – для площини – xy yz ;  

е – для площини – vm x  

 

Рис. 2. Розподіл граничних станів для різних значень 

компонентів тензора напружень для композиту 

Glass/Polyester: а – для площини – x y
;  

б – для площини – ; y z  в – для площини – ; x xy   

г – для площини – ; y xy  д – для площини – xy yz ;  

е – для площини – vm x  
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Це вказує на менш різко окреслену межу міцності 

та підсилений вплив усіх компонент тензора напру-

жень, що є типовим для більш рівномірно армованих 

або менш жорстких композитів. На графіку – vm x  

спостерігається ширший розкид червоних точок, що 

ускладнює класифікацію за простими критеріями та 

додатково підтверджує обґрунтованість використання 

нелінійних моделей. 

Для композиту Basalt/Polypropylene характерний 

ще вищий ступінь перекриття між класами 0  = та 

1 = . Граничні стани розташовані менш компактно, 

що свідчить про менш виражену граничну поверхню та 

ймовірну залежність від поєднання кількох компонент 

напруження одночасно, а не домінування однієї з них. 

За таких умов задача моделювання ускладнюється, 

оскільки класична модель не здатна чітко визначити 

пороговий стан. Натомість ML-моделі демонструють 

значно кращу здатність до апроксимації такої складної 

структури. 

 

Рис. 3. Розподіл граничних станів для різних значень 

компонентів тензора напружень для композиту Basalt/PP:  

а – для площини – x y
; б – для площини – y z ;  

в – для площини – x xy ; г – для площини – y xy ; 

д – для площини – xy yz ; е – для площини – vm x  

У цьому дослідженні проведено порівняння таких 

моделей: 

1. Критерій фон-Мізеса [25] – референтна модель, 

яка оцінює граничний стан матеріалу за значенням 

еквівалентного напруження фон-Мізеса: 

 

2 2 2

2 2 2

1
(( ) ( ) ( )

2 .

3( ))

− + − + −
=

+ + +

x y y z z x

vm

xy yz xz

σ σ σ σ σ σ
σ

τ τ τ

 (1) 

Тоді 1 = , якщо: 

 min( , ). f m

vm χ χσ σ σ  (2) 

Модель має просту структуру та зручна для інтер-

претації, проте не враховує анізотропних властивостей 

композитного матеріалу та ігнорує напрям дії напру-

жень. Тому служить лише як базовий порівняльний 

критерій. 

2. Logistic Regression [26] – математична модель, 

яка оцінює ймовірність належності класу 1 =  як: 

 
0 1 6( ... )

1
( 1| ) .

1
− + + +

= =
+ x xzβ β σ β τ

P χ X
e

 (3) 

Даний метод є лінійним класифікатором, який 

добре працює при простому розділенні класів. Він був 

обраний як референтна ML-модель з високою інтерпре-

тованістю.  

3. Random Forest Classifier [27] – ансамблева мо-

дель, що формує прогноз шляхом агрегування резуль-

татів великої кількості дерев рішень (decision trees), де 

підсумковий клас визначається за принципом біль-

шості голосів: 

 1 2mod [ ( ), ( ),..., ( )].= nχ e T X T X T X   (4) 

Ця модель характеризується високою ефектив-

ністю на вибірках із нелінійними та багатовимірними 

залежностями, демонструє стійкість до перенавчання 

та забезпечує можливість проводити аналіз важливості 

ознак (feature importance). 

4. MLP (Multilayer Perceptron Neural Network) [28] 

– це нейронна мережа прямого поширення, що апрок-

симує складні нелінійні функції. Вихід нейронної мере-

жі можна виразити наступним рівнянням: 

 2 1 1 2( ) ( *ReLU( ) ),= = + +χ f X σ W W X b b   (5) 

де  W – матриці ваг;  

 σ – сигмоїдна функція;  

 ReLU – функція активації.  

MLP використовується для моделювання складної 

поведінки композиту, з урахуванням взаємодії напру-

жень. 

Для реалізації data-driven підходу з викорис-

танням моделей машинного навчання створені зба-

лансовані синтетичні вибірки граничних станів для 

трьох типів композитних матеріалів (Carbon/Epoxy, 

Glass/Polyester, Basalt/PP) при навантаженні шестико-

ординатними напруженнями. Для знаходження гра-

ничних станів односпрямоване армованих композитів 

використане умовне моделювання напружених станів. 

Механічні параметри волокон та матриць для трьох 

типів композитних матеріалів подано у табл. 1. Зазна-

чені характеристики слугують базовими вихідними 

даними для генерації напружених станів у моделі. 

Побудова моделей машинного навчання та 

перевірка їх точності. Для задачі прогнозування 

граничного стану композитних матеріалів розроблено і 

навчено три моделі на основі класифікаторів: логіс-

тичної регресії (LR), випадкового лісу (RF) та багато-

шарової нейронної мережі (MLP). Вхідними даними є 

шість компонентів тензора напружень ( x ,  y
,  z , 
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, xy
  yz

,  xz ), а цільовою змінною –  0,1  , що 

відображає допустимий чи граничний стан матеріалу. 

Дані попередньо нормалізовано та розділено на 

навчальну (80 %) і тестову (20 %) вибірки.  

1. Logistic Regression (LR) – лінійний базовий 

класифікатор, вибраний для забезпечення інтерпре-

тованості та контролю впливу кожної компоненти 

тензора.  

Застосовано регуляризацію L2 (Ridge) для змен-

шення мультиколінеарності ознак і контролю overfit-

ting.  

Параметр C тестувався у діапазоні [0.01; 100] з 

кроком 0.5. Застосовано метод добору GridSearchCV 

(5-fold cross-validation), результатом роботи якого є такі 

налаштування: C 1.0= , solver liblinear= , penalty l2= , 

tol 1e 4= − , max _ iter 10000= . Цей обраний набір 

параметрів показав найкращий баланс між точністю та 

узагальнюваністю на валідаційній вибірці. Як опти-

мізатор застосовано liblinear, що є ефективним для 

малих і середніх за розміром дата сетів. Додаткові 

параметри: критерій зупинки: tol 1e 4= − , 

max _ iter 10000=  для забезпечення повної збіжності. 

2. Random Forest Classifier (RF) – ансамблевий 

алгоритм на основі bagging та побудови множини дерев 

рішень. Обраний для моделювання нелінійних 

взаємодій та виявлення складних комбінацій напру-

жень, що призводять до руйнування. 

Параметри для оптимізації: кількість дерев 

(n_estimators), максимальна глибина (max_depth), 

застосовується для запобігання перенавчанню, 

мінімальні розміри вузлів, для контролю overfitting 

(min_samples_split, min_samples_leaf), кількість ознак, 

що враховуються при розщепленні (max_features). 

Застосовано метод добору RandomizedSearchCV (100 

ітерацій, 5-fold cross-validation). В результаті обрані 

налаштування: n_estimators 200= , max _depth 10= , 

min _samples_split 2= , min _samples_leaf 1= , 

max_features ‘sqrt’= , criterion ‘gini’= . 

Аналіз важливості ознак через mean decrease in 

impurity (MDI) показав, що найбільший внесок у 

класифікацію мали ,   x y
, та  xy

. 

3. Модель багатошарового персептрона (Multila-

yer Perceptron, MLP) була застосована як нейромере-

жева апроксимаційна модель для відтворення складної 

багатовимірної поверхні міцності, яку неможливо 

описати у замкненому аналітичному вигляді. Архітек-

тура мережі включала: 

• Вхідний шар: 6 нейронів відповідно до кіль-

кості вхідних ознак; 

• Приховані шари: два шари на 64 та 32 нейрони 

відповідно з функціями активації ReLU; 

• Вихідний шар: 1 нейрон із сигмоїдальною ак-

тивацією, інтерпретований як оцінка ймовірності реа-

лізації стану 1 = ; 

• Ініціалізація ваг: метод Xavier uniform; 

• Регуляризація: застосування Dropout із пара-

метром 0.2=p  на кожному прихованому шарі; 

• Оптимізація: алгоритм Adam ( 0.001 = , 

1 0.9 = , 2 0.999 = ); 

• Функція втрат: Binary Cross-Entropy; 

• Режим навчання: batch size = 64, кількість 

епох = 200 з використанням early stopping 

(patience = 20) та адаптивного зменшення швидкості 

навчання при досягненні плато. 

Підбір гіперпараметрів архітектури здійснювався 

методом байєсівської оптимізації (Optuna), де цільовою 

метрикою виступала AUC-ROC на валідаційній ви-

бірці.  

Обрана конфігурація продемонструвала найкращі 

показники збіжності та стійкість до перенавчання при 

роботі з синтетично згенерованими даними. 

Для порівняльного аналізу ефективності моделей 

машинного навчання було використано критерій мі-

цності фон Мізеса як еталонний фізично обґрун-

тований підхід. Це дозволило кількісно оцінити 

перевагу нелінійних моделей у випадках складного 

багатовісного напруженого стану та анізотропії мате-

ріалу, де класичні методи демонструють обмежену точ-

ність. 

Аналіз ефективності моделей машинного 

навчання. Для оцінки точності результатів застосо-

вано такі метрики: Accuracy – частка правильно 

класифікованих прикладів, AUC-ROC (площа під 

ROC-кривою) – показник здатності моделі відділяти 

класи; для класичної моделі: precision, recall, f1-score. 

Значення метрик досліджуваних моделей наведені в 

табл. 2, класичної моделі – в табл. 3. 
 

 

 

Таблиця 2 – Значення метрик оцінювання досліджуваних 

моделей 

Матеріал Модель Accuracy 
AUC-

ROC 

Glass/Polyester 

(GP) 

Random Forest 0.99525 0.99696 

MLP 0.99425 0.99673 

Logistic Regression 0.94450 0.98653 

Carbon/Epoxy 

(CE) 

Random Forest 0.99950 0.99943 

MLP 0.99900 0.99939 

Logistic Regression 0.98850 0.99891 

Basalt/PP 

(BPP) 

Random Forest 0.98225 0.98921 

MLP 0.97825 0.98645 

Logistic Regression 0.87850 0.95014 

 

Таблиця 3 – Значення метрик оцінювання класичної моделі 
 

Матеріал Accuracy 
Recall 

(χ = 1) 

Precision 

(χ = 1) 
F1-score 

GP 0.500 1.00 0.50 0.67 

CE 0.500 1.00 0.50 0.67 

BPP 0.500 1.00 0.50 0.67 
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Результати табл. 3 свідчать, що модель класифікує 

всі приклади як граничні ( 1 = ), що призвело до того, 

що здатність розділяти класи була повністю втрачена. 

Це демонструє обмеженість застосування порогових 

фізичних критеріїв у випадках, коли система має 

складну та анізотропну поведінку. Хоча класична 

модель може служити еталоном, вона не досягає такої 

точності, як у сучасних data-driven методах. На рис. 4 

зображено гістограми за метрикою Accuracy для кож-

ної моделі та матеріалу. 

 

 

Рис. 4. Гістограми точності прогнозування граничного стану 

Графік наочно демонструє, що моделі машинного 

навчання забезпечують суттєво вищу точність порів-

няно з традиційними методами. Найкращі результати 

спостерігаються для Random Forest і MLP, які виріз-

няються універсальністю та здатністю стабільно пра-

цювати з різнорідними даними. Важливо підкреслити, 

що тип матеріалу істотно впливає на складність задачі 

класифікації: саме фізичні властивості матеріалів фор-

мують характерні патерни напружень. Візуалізація їх 

просторового розподілу (рис. 1–3) дає змогу чітко про-

стежити ці відмінності та зрозуміти, чому певні моделі 

краще пристосовуються до специфіки окремих матері-

алів. Такий аналіз робить інтерпретацію результатів 

більш послідовною та методологічно виваженою. 

Отримані результати (табл. 1) свідчать про високу 

ефективність усіх трьох розроблених у межах даної 

роботи моделей машинного навчання – Logistic 

Regression (LR), Random Forest (RF) та Multilayer 

Perceptron (MLP) – у задачі класифікації граничного 

стану композитних матеріалів.  

Для матеріалу Glass/Polyester (GP) найвищі по-

казники досягнуто моделлю RF (Accuracy = 0.99525, 

AUC-ROC = 0.99696), тоді як MLP продемонструвала 

дуже близький результат (Accuracy = 0.99425). Подібна 

ефективність пояснюється чітким розділенням класів у 

просторі напружень, що забезпечує придатність як 

ансамблевих методів, так і нейромережевих підходів. 

Лінійна модель LR (Accuracy = 0.94450) показала 

нижчу точність через обмежену здатність відтворюва-

ти нелінійні залежності. 

Для Carbon/Epoxy (CE) обидві нелінійні моделі 

(RF, MLP) практично досягають максимальної точ-

ності (Accuracy > 0.999), що зумовлено нелінійною, але 

добре відокремлюваною межею руйнування. LR 

(Accuracy = 0.98850) також демонструє високі показ-

ники, що вказує на можливість апроксимації гранич-

ного стану за допомогою лінійної моделі у випадку 

цього матеріалу. 

У випадку Basalt/PP (BPP) точність зменшується 

для всіх моделей (Accuracy = 0.98225 для RF та 0.97825 

для MLP), що пов’язано зі значним перетином класів і 

підвищеною варіативністю механічної відповіді 

матеріалу. Модель LR (Accuracy = 0.87850) демонструє 

істотно гірші результати через неспроможність 

відтворити складну форму поверхні розділення. При 

цьому показник AUC-ROC для всіх моделей та 

матеріалів залишається стабільно високим (більше 

0.95), що підтверджує їхню стійкість до зміни порогу 

класифікації. 

У табл. 3 наведено результати для критерію фон 

Мізеса, який у даній роботі використано як фізично 

обґрунтований еталон. Його Accuracy становить ≈ 0.50 

для всіх матеріалів, при Recall ( 1 = ) = 1.00 та низь-

кому Precision ≈ 0.50. Це свідчить про схильність кри-

терію до надмірної класифікації станів як граничних, 

що призводить до підвищеної кількості хибнопози-

тивних рішень. 

Таким чином, запропоновані моделі машинного 

навчання не лише підвищують загальну точність 

класифікації, але й забезпечують більш оптимальний 

баланс між Recall і Precision, що є критично важливим 

для практичних задач моніторингу технічного стану 

матеріалів і попередження їхнього руйнування. 

У сучасних дослідженнях [1, 25] домінують ана-

літичні та напівемпіричні критерії міцності (критерій 

фон Мізеса та його модифікації), які ефективні для 

ізотропних матеріалів, але не враховують анізотропію 

композитів і складні багатовісні стани напружень. У 

роботах, присвячених ML-підходам [26–28], зазвичай 

застосовувалися окремі моделі (LR, RF або MLP) для 

специфічних задач без глибокої оптимізації гіперпара-

метрів, а також без системного порівняння з класич-

ними критеріями міцності. 

У запропонованому дослідженні: 

• вперше проведено комплексну оптимізацію 

трьох різних типів моделей (LR, RF, MLP) під задачу 

класифікації граничного стану композитів; 

• реалізовано повний цикл налаштування 

гіперпараметрів: GridSearchCV для LR, 

RandomizedSearchCV для RF та Bayesian Optimization 

(Optuna) для MLP; 

• здійснено зіставлення з критерієм фон Мізеса, 

яке показало перевагу ML-моделей на 5–15 % за 

Accuracy та AUC-ROC. 

Обмеження дослідження полягають у тому, що 

навчання моделей здійснювалося на синтетичних та 

обмежених експериментальних даних, що може 

впливати на узагальнювальну здатність результатів. 

Крім того, модель MLP потребує значних обчис-

лювальних ресурсів, особливо при збільшенні обсягу 

вибірки. Також у даній роботі не враховано мікро-

структурні характеристики матеріалів, які можуть 

суттєво впливати на їхні міцнісні властивості та по-

тенційно підвищити точність прогнозування. 
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Висновки. У роботі було розроблено та опти-

мізовано три моделі машинного навчання: Logistic 

Regression (LR), Random Forest (RF) та Multilayer 

Perceptron (MLP) – спеціально для задачі прогнозу-

вання граничних станів у трьох типах полімерних 

композиційних матеріалів з односпрямованим 

армуванням: Glass/Polyester (GP), Carbon/Epoxy (CE) та 

Basalt/PP (BPP). Підібрані архітектури, гіперпараметри 

та методи навчання забезпечили високу прогностичну 

здатність, особливо для RF та MLP, які досягли 

точності класифікації до 99,9 % на тестових даних. Усі 

розроблені моделі значно перевершили класичний кри-

терій фон-Мізеса, точність якого для всіх матеріалів не 

перевищувала 50 %, що свідчить про обмеженість 

аналітичних підходів у задачах з високою нелінійністю 

простору ознак. 

Порівняльний аналіз (табл. 2) підтвердив, що RF 

та MLP стабільно забезпечують найкращі результати 

для всіх типів композитів, з найвищою точністю для 

Carbon/Epoxy, де класова межа у просторі напружень є 

найбільш структурованою та чіткою. Для Basalt/PP 

спостерігалося певне зниження точності через силь-

ніше перекриття класів, що вказує на складність задачі 

та підтверджує доцільність використання саме нелі-

нійних алгоритмів. 

Візуалізація 2D-зрізів компонент тензора напру-

жень показала, що межа між допустимим і граничним 

станом має складну нелінійну геометрію, яка значно 

варіюється залежно від типу композиту: для 

Carbon/Epoxy вона найбільш виразна, тоді як для 

Basalt/PP спостерігається значне перекриття класів. Це 

підкреслює обмеженість простих лінійних критеріїв і 

водночас пояснює ефективність розроблених неліній-

них ML-моделей. 

Отримані результати узгоджуються з тенденція-

ми, описаними у попередніх дослідженнях застосу-

вання машинного навчання до механічного аналізу 

композитів, але суттєво їх розширюють: у даній роботі 

вперше зосереджено увагу саме на класифікації 

граничного стану, а не на загальному прогнозуванні 

механічних характеристик, і при цьому запропоновано 

метод, який не вимагає розширених матеріалознавчих 

чи технологічних даних. Це робить підхід придатним 

для швидкої інтеграції в системи інженерного моні-

торингу, оцінки залишкового ресурсу та контролю 

працездатності композитних конструкцій в авіаційній, 

будівельній та транспортній галузях. 

Подальші напрями роботи включають розши-

рення набору ознак за рахунок мікроструктурних 

параметрів, впровадження інтерпретованих моделей 

машинного навчання (SHAP, LIME) для пояснення 

впливу компонент тензора напружень, збільшення об-

сягу навчальних вибірок шляхом додавання експери-

ментальних та FEM-даних, а також адаптацію моделей 

до режимів онлайн-діагностики. Крім того, перспек-

тивним є розроблення цифрового двійника компо-

зитної структури на основі інтеграції ML-алгоритмів із 

фізично обґрунтованими критеріями міцності. 

Таким чином, результати цієї роботи не лише під-

тверджують високу точність прогнозування гранич-

ного стану композитних матеріалів, але й формують 

підґрунтя для розроблення нового покоління інтелек-

туальних систем моніторингу. Такі системи можуть 

поєднувати гнучкість методів машинного навчання з 

надійністю фізично обґрунтованих механічних моде-

лей, забезпечуючи більш ефективне виявлення критич-

них станів і підвищену безпеку експлуатації композит-

них конструкцій. 
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DATA-DRIVEN APPROACH TO PREDICT THE STRENGTH OF COMPOSITES 

The rapid development of composites requires accurate prediction of their limit state under complex loading conditions, which cannot be provided by 

classical mechanical criteria due to the anisotropy and nonlinearity of materials. The paper proposes a data-driven approach using machine learning to 
determine the limit state of composites based on the components of the stress tensor. The object of study is machine learning processes for determining 

the limit states of unidirectional reinforced composites under a multiaxial stress state. The aim of the study is to create a universal and accurate model 

capable of detecting the moment of reaching the strength limit without numerical modeling and large-scale experiments. Balanced synthetic samples of 
stress states were generated for three composite systems. Several machine learning models were implemented in the study: logistic regression, random 

forest, and multilayer perceptron neural network. To compare the effectiveness, the classical model for determining the limit state according to the von 

Mises criterion, with a fixed equivalent stress threshold for the fibres or the matrix, was also employed. The results show that the machine learning 
models achieve an accuracy of up to 99.9 % on test samples, significantly outperforming the classical approach, which demonstrates an accuracy of 

about 50 % in all cases. Visualization of the stress state in the form of 2D sections showed a complex and nonlinear structure of the boundary surface, 

which confirms the feasibility of using ML algorithms. The obtained results confirm the high effectiveness and reliability of the data-driven approach 
for structural health assessment of composite systems. The developed methodology is universal and can be adapted to various types of reinforced 

materials and loading conditions. The proposed approach can be applied in real-time technical diagnostics of composite structures. The work also creates 

a basis for further implementation of interpreted models and digital twins in the field of composite mechanics 

Keywords: data-driven approach, composites, limit states, stress, machine learning, Random Forest, Logistic Regression. 
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