ISSN 2079-0023 (print), ISSN 2410-2857 (online)

YIPABJITHHS B OPTAHIBAIIIHHUX CUCTEMAX

MANAGEMENT IN ORGANIZATIONAL SYSTEMS

DOI: 10.20998/2079-0023.2025.02.04
UDC 004.72

P.Y.ZHERZHERUNOV, Student, National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine;
e-mail: Pavlo.Zherzherunov@cs.khpi.edu.ua; ORCID: https://orcid.org/0009-0005-7240-9395

0. V. SHMATKO, Doctor of Philosophy (PhD), Docent, National Technical University "Kharkiv Polytechnic Institute",
Ass. Prof of Software Engineering and Management Intelligent Technologies Department,

Kharkiv, Ukraine, e mail: oleksandr.shmatko@khpi.edu.ua, ORCID: https://orcid.org/0000-0002-2426-900X

ARCHITECTURAL APPROACH TO DATA PROTECTION IN DISTRIBUTED SUPPLY CHAIN
MANAGEMENT SYSTEM USING BLOCKCHAIN NODES

Dockerised blockchain solution can mitigate the low levels of distributed technology adoption in small and medium enterprises. It can be done via
designing and implementing an environment which inherits ease of deployment and scalability of containerized systems with safety and transparency of
distributed applications. Practical implementation of a dockerized blockchain solution designed as a demonstrative implementation for existing client—
server architecture is described in this paper. This solution uses Docker containers to simplify the setup and deployment of a private blockchain network,
a mediator server and a reverse proxy. Implementation of this system on a low scale demonstrates feasibility of integrating blockchain technology into
existing business processes without fundamental architectural changes and acknowledges deployment and maintaining challenges that usually
accompany distributed systems using private blockchain. Discussed implementation is a demonstration of designed architecture being potentially a
reproducible and easily maintainable environment for logging and validating data through an immutable ledger on a smaller scale. Proof of concept
successfully validates the core idea. The implementation shows a mediator server intercepting client request, recording them on a private Ethereum
blockchain via a JSON-RPC interface, and then forwarding them to the original server. This confirms the solution’s ability to introduce a trusted,
intermediate layer for data immutability. The project demonstrates a working framework for embedding distributed ledger technologies into client—
server ecosystems. While the current Proof of Work consensus mechanism presents scalability limitations, the architecture provides a strong foundation

for future research, including migrating to more efficient consensus mechanisms and integrating smart contracts.
Keywords: dockerized blockchain architecture, supply chain management, containerized blockchain nodes, small-medium enterprises, supply
chain, data protection in distributed system, blockchain proxy, hashing algorithms, ethereum.

Introduction. This paper provides a detailed practical
overview of the fundamental layer of dockerised
blockchain solution that allows for simplified process of
setup and deployment of distributed tools into existing
client—server architectures. This implementation overview
is based on the architecture described in the previous
research paper, which focuses on wrapping the blockchain
network setup and connection in the Docker containers,
connected into shared network, to enable easy and quick
setup of these tools and integrating them into existing
business processes [1].

Foundational part of the solution is a Docker tool,
which enables networking and orchestration of several
server-like containers, acting as separate virtual machines.
It allows to construct a network of several servers with
different purpose and blockchain nodes to simplify
deployment and maintenance of all its parts. Crucial parts
of the mentioned blockchain solution are proxy and reverse
proxy for routing requests coming into the network,
mediator server, which is responsible for taking original
request, parsing its meta and body information and sending
it to the blockchain ledger and blockchain node, which is

deployed alongside the proxy and mediator to connect to
the shared private blockchain network.

In this paper, private blockchain network is going to
be contained on the same network as proxy, mediator and
test original server for ease of testing and initial setup
procedure. In the future this implementation will be
extended to allow blockchain nodes, being setup via
docker-compose, connect to an external network.

NGINX web-server is used as a proxy and reverse
proxy in the solution subnetwork. Django framework is
used to build a basic mediator server able to receive
requests from the proxy, parse their metadata, save them to
the blockchain and then pass the request to the original
server. Private blockchain network is created using
Ethereum geth tool with a PoW (Proof of Work) consensus.
Thus, regular node, bootnode and mining node are
contained within Docker subnetwork for testing purposes
[2].

Client server architecture is expected to be able to
integrate this solution into existing business process. But
neither client nor server implementation have to be
important for this architecture to be integrated, so regular
API client is used as a client in this implementation and a

© Zherzherunov P.Y., Shmatko O. V., 2025

"Bulletin of the National Technical University "KhPI" Series: System analysis, management and

Research Article: This article was published by the publishing house of NTU ""KhPI"" in the collection
information technologies.” This article is distributed under a Creative Common Creative Common OPEN 8ACCESS

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii

26

ananiz, ynpaguinus ma ingopmayiini mexnoaoeii, Ne 2 (14) 2025

https://orcid.org/0009-0005-7240-9395
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

simple Django web-server with Postgres database.
Example web-server doesn’t represent any real business
activity and is provided for demonstration purposes as a
proof of concept.

Docker Environment Description. To start with the
implementation of the system, high level description of the
fundamental tools has to be provided. The most important
tool in this implementation is Docker. Docker is an open-
source platform that has simplified process of how
applications are developed, shipped, and run. At its core,
Docker uses OS-level virtualization to package software
into standardized units called containers [3].

In the Docker network every container is emulated as
a separate virtual machine allowing them to run as different
client and server machines. In our case, containers will be
NGINX reverse proxy, Django mediator server and
Blockchain network, which is being represented as several
different containers with nodes tailored to different
purposes. It’s the implementation needed at this stage.
Blockchain nodes are going to be connected so a bridge
subnet work to differentiate them from the main network.

On the Docker application network, we will also have
container for original server and container postgresgl with
a database for that server. Here and further on “original
server” refers to a type of server which is not a part of
dockerised blockchain solution architecture, but
presumably a part of the client—server system that business
planning on integrating blockchain solution already owns.
In this paper for the sake of demonstration this “original
server” will be a simple todo list backend implementation,
as specifics of this type of server is not important for the
dockerised blockchain implementation. It is only required
from it to have a API interface and means of providing
necessary credentials for Mediator server to be able to
connect to it.

Each container is first being built as an image in
docker infrastructure. A Docker Image is a lightweight,
standalone, executable package that includes everything
needed to run a piece of software. It can be considered a
blueprint, template, or a snapshot of an application and its
entire environment at a specific point in time. It's the
"buildtime" artifact in the Docker ecosystem and it’s
created before the container.

A Docker container is the running instance of a
Docker image. If a Docker image is the blueprint, a Docker
container is the actual virtual machine built from that
blueprint, where your application is executing. The key
difference of container from image is that after container is
built from image, it obtains several writing layers that allow
to mutate data inside that container. Meanwhile in docker
images data mutation is prohibited and cannot be done [4].

The drawback of containers is that when containers
are removed, they lose the data the store in their data
storage, as they store everything in the runtime memory
(RAM). Solution for that is volume, a preferred mechanism
for persisting data generated by and used by Docker
containers. It provides a way to store data outside the
container's writable layer, ensuring that the data remains
intact even if the container is stopped, removed, or
recreated. But in this research paper volume storage is not
used, it is going to be implemented as a later improvement.

Dockerfile configuration files are used for defining
each image scheme, which container is built from later on.
A Dockerfile typically consists of several instructions, each
on a new line. The order of these instructions is crucial, as
each instruction creates a new layer in the final Docker
image. The most important commands crucial for our
implementation are those below.

FROM: specifies the base image for the container. It
defines the environment this image is going to be run in, as
it sets the image for each subsequent instruction. There are
different variations of the images and light weight ones
have to be a priority, to reduce container loading times and
size taken.

WORKDIR: Sets the current working directory for
any subsequent RUN, CMD, ADD, or COPY instructions.

COPY / ADD: Copies new files or directories from
<src> (host path) and adds them to the filesystem of the
image at the path <dest> (image path). COPY is generally
preferred over ADD because it's more transparent and less
prone to unexpected behavior.

RUN: Executes Commands during Image Build.
Executes any commands in a new layer on top of the current
image and commits the results.

EXPOSE: Command that is used for providing
information about the ports, that can be used to send
requests to the container based off this image. This
command does not do any actual networking, but is useful
for maintainability of the Docker environment.

ENV: Sets environment variables that will be
available inside the container at runtime. This command is
used excessively in our test implementation of the
dockerised blockchain implementation to configure
communication between containers in the sub-network. It
is not as useful for configuring external variables, as we
don’t want to alter Dockerfiles directly after they are
already established.

CMD: Specifies the Default Command to Execute
when a Container Starts. It is crucial command to build the
image and must not be omitted [5]. requests to a necessary
service in the docker network or outside of it, to the existing
applications.

Dockerfiles are written to build planned images, and
basic structure of the docker looks can be seen on Fig. 1.

&

Geth JSON/RFC
interface node.
Expose port. 8545

Mediator server ¢

Expose port: 5000
A

v

Geth bootnode
Expose port: 3030

¢

Geth miner node
Expose port: None

Eridge
netwarl

NGINX
Expose port: 4000

"Original" server
Expose port: 6000

Fig. 1. Docker Container Structure

Basic docker container structure contains separate
containers for NGINX reverse proxy, “Original” server and
Mediator server. They are not connected into subnetwork

Zherzherunov P. Y., Shmatko O. V. Architectural approach to data protection
in distributed supply chain management system using blockchain nodes 27

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

and “original” server is meant to be reached outside of the
docker network, but for this test purposes it’s located in the
same docker network.

Bridge network connects Geth bootnode, geth miner
node and Geth JSON/RPC interface node into the same
sub-network inside docker. It is done to simplify access to
Geth JSON/RPC interface outside of the bridge network
and prevent direct access to the geth bootnode and geth
miner node, which are not required for the implementation
to function and could allow harmful actions, as bootnode is
responsible for connecting new nodes to the blockchain
network.

It is important to select optimal base images for all the
containers mentioned as we want to reduce the time to setup
and size of the memory, that is going to be allocated to
running those containers.

For NGINX reverse proxy existing implementation is
used, which is called nginx-proxy. It provides an extensive
tool to work with rerouting requests from outside to internal
network and vice versa. Using this service allows to omit
implementing generation of NGINX configs from ground
up by using docker-gen file generator [6]. Docker-gen is a
powerful utility that generates files based on Docker
container metadata and Go text/template language.
Essentially, it acts as a dynamic configuration tool that
watches for Docker events (like containers starting or
stopping) and then automatically updates configuration
files, scripts, or other artifacts [7].

Table 1 describes all the images needed to create
respective containers. Selected images are described in
more detail in the information below.

nginx-proxy requires these base images to build from:
docker-gen:0.15.0, forego:0.18.3, nginx:1.29.0-alpine. So
total size of the proxy container will be sum of those
images’ sizes, but it is a necessary compromise to be able
to utilize proper reverse proxy implementation to
orchestrate requests between networks and containers.

Mediator server in its foundation requires python:3.13
image and we are going to use python:3.13-slim speci-
fically to reduce image size. Total container size is going to
also include all the libraries required to run Django server
and server itself.

Test version of “original” server is going to be similar
to that of mediator, as they share Django framework as a
base for web server implementation. In both of them default
SQL.ite database is used to simplify setup process of the env
and WSGI (Web Server Gateway Interface) is used to run
Django servers.

For all blockchain nodes the same ethereum/client-
go0:v1.10.1 is used, which allows to setup and run Ethereum
nodes in private blockchain network. It is important to have
that exact version of the base image, as newer version don’t
support PoW (Proof of Work) consensus protocol, which is
easier to setup as a private blockchain network locally. It is
an area for future improvement to replace PoOW consensus
mechanism with PoS (Proof of Stake), which is used by
latest Geth library version and corresponds with the current
consensus mechanism used on mainnet — global Ethereum
blockchain network [8].

Full information about the base images used for this
demonstration implementation can be found on Docker hub
website, which provides hosting for public Docker con-
tainers [9].

This is the configuration needed for building our
demonstrative solution. First step is to set up basic docker
network and deploy reverse proxy in it, mediator server and
“original” server. Mediator server is not sending
information to blockchain ledger until ethereum private
network is deployed, which is described later in the paper.

Docker Proxy and Basic Server Setup. Dockerized
blockchain implementation is expected to operate on a
single server machine to lower maintenance cost and
simplify setup process. But it is desired to leave possibility
to send requests not only to mediator server but also to
original one, for the term of setting up new environment
and for possible emergencies which might occur on the
early stages of distributed solution deployment.

For that purpose, we are setting up nginx-proxy
container first, so that it acts as a reverse proxy for our
network of mediator server, original server and blockchain
private network, that is going to be examined later in this
paper. ldea is to be able to send the same requests, which
are already being sent from the client, but to a different
host, process the metadata and then redirect request to the
original server and return its response back.

Table 1 — Selected Images Characteristics

Image Description Container Size Last Updated
python:3.13- Python is an interpreted, Mediator server, 43.43 MB Jul 24, 2025
slim interactive, object-oriented, “Original” server
open-source programming
language.
nginx:1.29- Official build of Nginx NGINX Proxy 20.57 MB Jul 18, 2025
alpine
jwilder/docker- File generator that renders NGINX Proxy 11.42 MB Jul 23, 2025
gen:0.15.0 templates using docker container
metadata
nginx- Foreman in Go NGINX Proxy 6.62 MB May 8, 2025
proxy/forego:
0.18.3
ethereum/client- | Official golang implementation Ethereum Bootnode, 20.58 MB Mar 8, 2021
go:v1.10.1 of the Ethereum protocol. Ethereum JSON/RPC
node
Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii
28 ananiz, ynpaguinus ma ingopmayiini mexnoaoeii, Ne 2 (14) 2025

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Imagine that client.com is a client’s host and original-
servercom is a host of original server. Before
implementing this blockchain solution, they would simply
send messages to each other; client.com, original-
server.com. Dockerized solution introduces mediator-
server.com host for a mediator server inside docker
network. So new chain of requests looks like this:
client.com to mediator-server.com to original-server.com.

Reverse proxy requires DNS of the host machine to
be configured in a way, so that hosts original-server.com
and mediator-server.com are routed to our localhost:80 [6].
80 is a port to which we expose our nginx-proxy in the
Dockerfile. In our case local machine is used as a server
machine for the Docker network, so Windows hosts file has
to be adjusted with added hosts mappings. File can usually
be found here: C:\Windows\System32\drivers\etc. Added
mapping might look like this: 127.0.0.1 original-
server.com, 127.0.0.1 mediator-server.com.

We could also specify hosts for the links we are
setting as redirects to localhost, but for ease of setup in our
case we are going to redirect links without any port
specified.

We have several ways to deploy nginx-proxy
container in our network. First one is to download source
code from public nginx-proxy repository and build
container from the Dockerfile, it has two different files for
Debian and Alpine environments. By default, Debian one
is used and we don’t have specific requirements to change
that approach, so we are going to proceed with Debian
dockerfile too.

We can specify Dockerfile to build in the docker-
compose file under the container section that we want to
build, in this case it’s nginx-proxy. It is done to remove
building Docker image step from the setup chain, as we
could first created image with docker build command and
then spin up container with docker run. docker-
compose.yaml file is a config for creating containers where
we specify either path to the local Dockerfile build file or
specify remote image, that is already hosted on Docker
Hub. To reduce complexity and code overhead remote
image from Docker Hub is used, as it already includes all
the images required for container to work and we don’t
have to attach and build them manually [5].

nginx-proxy implementation includes default docker-
compose.yaml file, which is used for running this tool via
command line interface, as specified in the Readme
instruction in the nginx-proxy repository. To include this
container as part of our network we just have to include
nginx-proxy container section in dockerised blockchain
solution docker-compose.yaml file, but omit whoami
container from it, as it is a container created for testing
purposes required to ping the proxy functionality if no other
servers configured. In our case we will have original server
and mediator servers in the network, so we don’t need
whoami container.

Servers are created as Django containers. As first step
we have to create local virtual environment to be able to
setup servers via Django CLI, but after initial setup is
complete, instructions will be provided in Dockerfile for
each server how to setup corresponding environment in the
docker container. To create virtual environment python

venv command is used and, depending on the operating
system, different scripts inside that venv are used in CLI to
activate it. Main dependency for newly created virtual
environment is Django. We install it with pip install
command. Installation of Django will also include
dependencies it needs to operate. After that we have to
create requirements.txt file to be able to let Docker
environment know, what dependencies have to be installed
inside container environment. It is done via pip freeze >
requirements.txt command and not by hand, to include
internal dependencies and simplify the process. Django and
its internal dependencies are enough for original-server, but
we also have to include requests library in the mediator-
server virtual environment to enable main functionality
mediator-server is created for.

It is going to receive requests, process the request
body and metadata, save it to the blockchain ledger, and
then send this request further to the original-server. As a
response it returns response from the original-server. It is
basically acting as a middleware between client side, which
is Echo VS Code plugin in our case (simple API client), and
original server. As the first step, mediator server will wait
for result of writing data to the blockchain network. Making
it work on eventbased system is an improvement that is
planned for future work. Requests library is needed to be
able to send requests to the external hosts, which original-
server will act as, based on our configuration.

Due to the limits and demonstrative nature of the
solution described in this paper, original-server is included
in the docker network, so it is factually a server located on
the same network as mediator. But nginx-proxy is set up to
treat it as external host, so that when solution is adjusted for
the real infrastructure, implementation won’t be deprecated
and not applicable or at least require minimal intervention.
Ideally most the configuration should be done via
environmental file, except security related things like secret
keys.

Both servers’ projects contain one Dockerfile each,
which describes how image has to be built. By default,
EXPOSE command in the dockerfile is declarative but does
not serve any function. But as we use nginx-proxy reverse
proxy, we have to specify ports with EXPOSE command,
as nginx container uses that metadata to dynamically
generate IP addressed of the servers inside the Docker
network. There is an alternative way to let nginx-proxy
know to which ports different hosts are rerouted, which is
specifying ports under server container section in the
docker-compose.yaml file. But to avoid confusion and
possible errors, exposed port for each server is specified in
both Dockerfile for each server and shared docker-
compose.yaml of the entire project.

Next requirement for the proxy to work is to specify
VIRTUAL_HOST environmental variables for each
container in the docker-compose.yaml file. In our case,
mediator server has VIRTUAL_HOST variable set to
mediator-server.com and original server — has env variable
set to original-server.com. Final requirement for the Docker
network to work is to configure DNS to map our proxy
hosts to the localhost, so that when request from Docker
host machine is made to those hosts, they are redirected to
nginx proxy address [7].

Zherzherunov P. Y., Shmatko O. V. Architectural approach to data protection
in distributed supply chain management system using blockchain nodes 29

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

For testing purposes, original server is a simple todo
application backend, which allows to add and get all the
todo entries. SQL.ite database is used to avoid setting up
separate Postgres container, but it is marked as an area for
future improvement. Dockerised blockchain solution also
shouldn’t care about details of original server implement-
tation, we just need its RESTful API interface to operate
with. Otherwise, it would break the interoperability of the
proposed solution for different original servers, which are
already present on customer side.

Mediator server on this stage has endpoint
implemented, that catches all the incoming requests to that
server and then redirects them to original server. Original
server’s host is currently hardcoded, but eventually it will
be managed from environment configuration, as one of the
possible solutions.

To launch whole project, docker-compose up com-
mand is used. To test implemented functionality, we send
same /api/todo GET request to both hosts. So sent requests
endpoints are: original-server.com/api/todo and mediator-
server.com/api/todo. Responses to the client for these
URLSs have to be identical. Result can be seen on Fig. 2.

Docker Blockchain Network Setup. Next step is to
introduce private blockchain network inside the existing
docker solution network. For that another Docker image is
used — ethereum-client/go. It will allow us to deploy
ethereum nodes with necessary interfaces to communicate
with them.

On this stage of demonstrative solution imple-
mentation Proof of Work consensus mechanism is used
when setting up private blockchain network. In this con-
sensus mechanism other nodes in the network have to
perform cryptographic calculation to prove the new
encrypted records in the ledger.

Proof of Work is not supported by the latest version
of ethereum-client/go, so we have to use specific version,
which supports PoW. In our case it is 1.10.1. Version with
this consensus mechanism is selected because of the
official documentation for latest version of the ethereum
client providing instructions on how to deploy separate
blockchain network with a tool different from Docker.
Although that new tool is based on Docker and allows for
simpler process of the network deployment, it doesn’t pro-
vide effective ways to possibly separate process of creation
of new nodes in different Docker networks, connecting to
an overarching private blockchain network [8].

Proposed solution relies on being able to deploy
blockchain nodes separately from the main private network
but also purely in the scope of each separate Docker
network belonging to each separate business owner of the
node. Due to this reason and better documented process of

original-server.com,

setting up Proof of Work nodes in an autonomous Docker
environment, older version and consensus mechanisms are
chosen.

But it is clear that Proof of Authority consensus
mechanism is able to improve blockchain network
performance, as it won’t be requiring cryptographic
approvement calculation for each new record [10]. This
would decrease latency time for getting responses to
requests from the original client. So, moving to the PoA
mechanism is considered a further improvement for this
solution, which will be considered in the scope of a
different research.

For setting up Ethereum nodes in the docker network
we don’t have to have any source code for them, but we
need separate Dockerfiles for each type of the nodes
required for the network.

To run private network for our solution these types of
nodes are required:

e Bootnode, which acts as an entry point and a
gateway to the private ethereum network. Its’ port has to be
exposed, so that we are able to connect via it, when
deploying several other instances of our solution for
different participants of the supply chain, that are
integrating blockchain solution [11];

e JSON-RPC node, which is providing an interface
for sending information to blockchain ledger via HTTP
1.1/2 request, in our case — through requests python library
in Django framework. Each participant of the supply chain
has separate node for each of them acting as both node
allowing to connect to the blockchain network and a
separate interface for APl communication, not to overlap
with other participants’ nodes;

e Miner node. This node is required for a Proof of
Work consensus mechanism, confirming writing operati-
ons in the ledger. It might be theoretically combined with
JSON-RPC node, so that one node has two of those cha-
racteristics, separate testing will be conducted for that
matter [12].

Starting state of the blockchain network is described
in the genesis.json file, which is located in the ethereum-
network folder, which is allocated for source files used to
set up distributed network. So basic accounts and funds
allocations are specified in genesis.json file. In the scope of
current research, creating new network is implemented as a
part of running this solution via docker-compose, but it is
planned to improve it later on with separating the private
blockchain network and making it external, so that propose
dockerised solution only deploys one blockchain node to
connect to the existing network to reduce load on the server
and maintenance costs. Also, each bootnode has to generate
a enode link, which has to be available to other members of

[{"1d":2,"tit1e":"Sample Todo 2", "description”:"This is a sample todo item","completed":false,"crested at”:"2025-88-05T08:46:45.8516312", "updated_at”:"2025-93-05T08:46:45.8516582"}, {"1d" 1, "title":"Sample Todo","description”:"This is a sample todo

item" “"completed":false,"created at":"2025-08-05788: 26:36.5503072", "updated at":"2825-08-05T08: 26:36.5503312"

mediator-server.com,

{"original_server_response™: [{"id": 2, "title": "Sample Todo 2", "description”: "This is a sample todo iten”, “completed”: false, "created at™: “2025-08-85T88:46:45.8516317", "updated_at”: "2025-08-05T08:46:45.8516582"}, {"id": 1, "title": "Sample Toc
"description”: "This is a sample todo item", "conpleted”: false, "created at": "2025-68-05Te8:26:36.5503072", "updated at": "2025-8-85T@s:26:36.5503312"}], "blockchain transaction™: null, "timestamp”: ", "request path": “api/todo/"}

Fig. 2. Docker Running Proxy and Two Servers

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii

30

ananiz, ynpaguinus ma ingopmayiini mexnoaoeii, Ne 2 (14) 2025

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

the private blockchain network and those, who is going to
join it. Having multiple enode is complicating the process
and creating more risks of those links being exposed,
allowing malicious actors to access private blockchain
network and manipulate the data. Thus, it might be better
to have one enode as a single source of truth and treat that
enode as a secret link. Additional security mechanisms
might be implemented to secure that enode link, such as
cyphering and deciphering it with a secret/public keys, that
each member of a supply chain has. But this security issue
requires more investigation and is not covered in this paper.
This is also considered as a future improvement.

Resulting images and containers running can be seen
in Docker Desktop window on Fig. 3. Captured logs of
demonstrative solution running can be seen on Fig. 4.

Interface configurations are specified in the general
docker-compose.yaml file, where ports for bootnode and
JSON-RPC interface node are specified. For containers
with those nodes VIRTUAL_HOST also has to be specified
to allow nginx-proxy container to send requests from
mediator server and outside blockchain nodes to those.

Additionally, we can temporarily group all the
blockchain nodes into a sub-network inside our Docker
network to better organize them in our solution. It can be
done by specifying new sub-network in the docker-
compose.yaml file.

It will create necessary images first and then run new
containers based of them. After necessary configuration is
done, we can run our solution via docker-compose up
command.

To check if servers and blockchain containers are
running correctly we first look at the logs, which are being
printed out in the terminal, where docker-compose up
command is executed. Absence of errors there is the first
signal of our solution working correctly on that stage.

Next step to check if blockchain is running correctly
is to try getting network information, such as accounts, via
API client, such as Echo API used in this project.

For that we are sending a POST request first to check
connectivity of nodes. To see the list of peers available, we
send request with raw JSON data and Content-Type header
equal to “application/json”. Raw data has to look like this:
{"jsonrpc™: "2.0", "id": 1, "method": "admin_peers",
"params": []}. As a result, we get a JSON response, body
of which contains information enodes available for use.

localhost:8545 is used as an APl URL, as we
accessing it outside of docker container for now.

This response is a JSON-RPC reply from a Geth (Go
Ethereum) node, specifically the result of calling something
like admin_peers. It lists information about one connected
peer on the Ethereum network. This JSON shows that your
Geth node is connected to one peer at 172.16.254.2:30303,
running Geth v1.10.1, supporting Ethereum protocols
(eth/64-66, snap/1), and currently on a blockchain head
with difficulty. It signals, that it is accessible both outside
the docker environment, as we want it to be, and inside the
docker network. Host will be geth-rpc-endpoint in that case
as we are reaching out through RPC interface node.

Example result of the communication via RPC
interface is displayed on Fig. 5.

O m Name Tag image 10 Created Size Actions

0 ® dockerized-proxyblockchairrmeditor-server latest Deadasaan912 Bdays ago so0ssMB [> i T
() ® dockerized proxy-blockchain-toda-server latest 49862865109 Bdays ago S629MB [» o
(m] ® ngineproxy/nginx-praxy latest 3eTSA1BATLBE 10 days ags 3eIIME [3 o
[m} Name Container 1D Image Port(s) CPU(%) Last started Actians

0O « & dckeizedpronyblackchain 16% 2minutessge | @ o
[m] [] ngine:proxy 60156205785 Dgingroxy/ nginy-proxy 2080 63 0.14% 2 minutes ago [] o
D L] toaa-server-1 CA505431944a dockerizeg-prowy-LIoCkohain1000-gerver 4000:4000 2 0.98% 2 Minutes ago ' E
[m} . mediator-server1 be3es3a2dd0 dockerizeg-prowy-blockchainmediator-server 500015000 (4 0.48% 2 minutes ago [] o

Fig. 3. Built Images and Running Containers

52

» EIP150: O E

Fig. 4. Docker Solution Logs

Zherzherunov P. Y., Shmatko O. V. Architectural approach to data protection
in distributed supply chain management system using blockchain nodes 31

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Headers Cookie Actual f

Response

Pretty Raw Preview

Fig. 5. Peer Connectivity Result

Area for Improvement. Showcased demonstrative
proof of concept of the dockerized blockchain solution
presents main idea of the proposed architecture and proves
its implementation being possible, but it’s still missing
several key features, that are intended to be in the final
solution. First, we deploy and access private blockchain
network alongside deploying original and mediator servers.
It’s done for demonstration purposes, but goal is to make it
possible to connect mediator server to the server outside of
the docker network. It’s not a difficult implementation, but
experimental part of the implementation for that aspect will
be done in a context of next research papers.

The more complicated topic is deploying, maintaining
and connecting to the private blockchain network, that is
shared between mediator servers’ instances. Idea is to setup
and run only RPC miner node alongside the mediator,
which is able to connect to an outside private blockchain
network. Ideal option is to have it check, if the mentioned
network is available and connect to it only if it’s present.
Otherwise, system could set up missing network and
provide necessary credentials for other systems to connect
to it. But plausibility of such implementation is to be
estimated, so this work is also planned for the further
research.

Third aspect for improvement is implementation of
custom smart contracts in Solidity language for custo-
mizing the way requests data is being saved and handled. It
is yet to be researched, how those smart contracts can be
shipped together with the solution, either as a part of initial
setup or a separate script in mediator server, that will trigger
deploying smart contracts from the solution to the private
blockchain network.

Conclusions. The research presented in this paper
demonstrates the feasibility of deploying a dockerised
blockchain network as a modular extension to existing
client-server architectures. By leveraging Docker’s con-
tainerization, networking, and orchestration capabilities, it
becomes possible to encapsulate blockchain nodes,
mediator servers, and reverse proxies into an environment
that is both reproducible and easily maintainable. The

proof-of-concept shows how a mediator server, imple-
mented in Django and connected to an Ethereum private
network via JSON-RPC, can intercept client requests,
record them on a blockchain ledger, and then transparently
forward them to the original server. This validates the core
idea that blockchain technologies can be integrated into
existing infrastructures without fundamentally altering
their design, instead introducing an intermediate layer that
ensures data immutability and trust.

At the same time, the work highlights limitations and
directions for further development. The current architecture
relies on Proof of Work nodes within a Docker subnetwork,
which simplifies experimentation but introduces scalability
and performance constraints. Future iterations of the
system could migrate to more efficient consensus mecha-
nisms, such as Proof of Authority or Proof of Stake, to
reduce latency and computational overhead. Similarly,
persisting data using Docker volumes, refining external
network connectivity, and introducing Solidity-based smart
contracts would strengthen the robustness, adaptability, and
business applicability of the solution.

Overall, the project delivers a working demonstration
of how distributed ledger technologies can be contai-
nerized, orchestrated, and embedded into client-server
ecosystems in a way that lowers deployment complexity
while paving the path for more advanced features. It not
only validates the technical foundation of such integration
but also establishes a framework upon which future
research and enterprise-grade blockchain applications can
be built.

References

1. Xepxepynos II. 10., IlImartko O. B. Designing the architecture and
software components of the dockerised blockchain mediator.
Cucmemnuil ananis, ynpaeninus ma ingpopmayiini mexmonoeii. 2025.
Ne.1 (13), P.101-105. DOI: https://doi.org/10.20998/2079-
0023.2025.01.15.

2. Gervais A., Karame G., Wust K., Glykantiz V., Ritzdorf H.,
Capkun S. On the Security and Performance of Proof of Work
Blockchains. CCS '16: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 2016. P. 3—
16. DOI: https://doi.org/10.1145/2976749.2978341.

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii

32

ananiz, ynpaguinus ma ingopmayiini mexnoaoeii, Ne 2 (14) 2025

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

3. Docker. URL: https://www.docker.com/what-docker ~ (mata 2. Gervais A., Karame G., Wust K., Glykantiz V., Ritzdorf H.,

3BepHeHHs: 21.08.2025). Capkun S. On the Security and Performance of Proof of Work

4. Rad B. B., Bhatti H. J., Ahmadi M. An introduction to docker and Blockchains. CCS '16: Proceedings of the 2016 ACM SIGSAC
analysis of its performance. International Journal of Computer Conference on Computer and Communications Security. 2016, pp. 3—
Science and Network Security (IJCSNS). 2017. Ne. 17 (3). P. 228- 16. DOI: https://doi.org/10.1145/2976749.2978341.

235. URL: 3. Docker. Available at: https://www.docker.com/what-docker (access
https://www.researchgate.net/publication/318816158_An_Introducti date: 21.08.2025).

on_to_Docker_and_Analysis_of _its_Performance (nara 3sepuenns: 4. Rad B. B., Bhatti H. J., Ahmadi M. An introduction to docker and
21.08.2025). analysis of its performance. International Journal of Computer

5. Dockerfile reference. Docker Docs. URL: Science and Network Security (IJCSNS). 2017, no. 17 (3), pp. 228—
https://docs.docker.com/reference/dockerfile/ (nara 3BepHenHs: 235. Auvailable at:
21.08.2025). https://www.researchgate.net/publication/318816158 An_Introducti

6. nginx-proxy. URL: https://github.com/nginx-proxy/nginx-proxy on_to_Docker_and_Analysis_of_its_Performance (access date:
(nara 3Bepuenns: 21.08.2025). 21.08.2025).

7. docker-gen. URL: https://github.com/nginx-proxy/docker-gen (mara 5. Dockerfile reference. Docker Dacs. Available at:
3BepHeHHs: 21.08.2025). https://docs.docker.com/reference/dockerfile/ (access date:

8. Kurtosis. Go Ethereum. URL: 21.08.2025).
https://ethereum.org/docs/fundamentals/kurtosis/ (mara 3Bepuenns: 6. nginx-proxy. Available at: https://github.com/nginx-proxy/nginx-
21.08.2025). proxy (access date: 21.08.2025).

9. Docker Hub container image library: App containerization. URL: 7. docker-gen. Available at: https://github.com/nginx-proxy/docker-gen
https://hub.docker.com/ (nara 3Bepuenns: 21.08.2025). (access date: 21.08.2025).

10. Joshi S. Feasibility of proof of authority as a consensus protocol 8. Kurtosis. Go Ethereum. Available at:
model. arXiv. 2021. URL: https://arxiv.org/abs/2109.02480 (nara https://ethereum.org/docs/fundamentals/kurtosis/ ~ (access date:
3BepHeHHs: 21.08.2025) 21.08.2025).

11. Luo J. Unveiling Ethereum's P2P network: The role of chain and 9. Docker Hub container image library: App containerization.
client diversity. arXiv. 2025. URL: https://arxiv.org/abs/2501.16236 Auvailable at: https://hub.docker.com/ (access date: 21.08.2025).
(nara 3Bepuenns: 21.08.2025) 10. Joshi S. Feasibility of proof of authority as a consensus protocol

12. Command-line options. Go Ethereum. URL: model. arXiv. 2021. Available at: https://arxiv.org/abs/2109.02480
https://geth.ethereum.org/docs/fundamentals/command-line-options (access date: 21.08.2025)

(nara 3Bepuenns: 21.08.2025). 11. Luo J. Unveiling Ethereum's P2P network: The role of chain and
client diversity. arXiv. 2025. Auvailable at:
References (transliterated) https://arxiv.org/abs/2501.16236 (access date: 21.08.2025)

12. Command-line options. Go Ethereum. Awvailable at:

1. Zherzherunov P. Y., Shmatko O. V. Designing the architecture and https://geth.ethereum.org/docs/fundamentals/command-line-options
software components of the dockerised blockchain mediator. (access date: 21.08.2025).

Systemnyi analiz, upravlinnia ta informatsiini tekhnolohii. 2025,
no.1(13), pp.101-105. DOI: https://doi.org/10.20998/2079- Received 19.11.2025
0023.2025.01.15. o

VJIK 004.72

II. 10. JKEP’KEPYHOB, crynenr, HanjionansHuil TeXHi9HUE YHIBEPCHTET «XapKiBCHKUiA MONITEXHIYHAN IHCTUTYTY, M.
Xapkis, Ykpaina, e-mail: Pavlo.Zherzherunov@cs.khpi.edu.ua, ORCID: https://orcid.org/0009-0005-7240-9395

0. B. IIMATKO, nokrop dinocodii (PhD), nonent, HarionansHuii TexHiYHUi YHIBEPCUTET

«XapKiBCHKUH MOJIITEXHIYHUH IHCTUTYT», TOLEHT Kadepu MporpaMHOi iHXKeHepii Ta iIHTeNeKTyalbHUX TeXHOJIOT i
ympaeJiHHs, M. XapkiB, Ykpaina, e-mail: oleksandr.shmatko@khpi.edu.ua, ORCID: https://orcid.org/0000-0002-2426-900X

APXITEKTYPHUM MIIXII 10 3AXUCTY JAHUX Y PO3NOALJIEHII CUCTEMI YIIPABJIHHSA
JAHIIOTOM MMOCTAYAHHS 3 BAKOPUCTAHHSM BJIOKYEWH-BY311B

PimenHst Ha OcHOBI OJIOKdYelHy, peaii3oBane 3a jgormomoror Docker, MoXe IOKpamuTH MOTOYHMIT HU3BKMH PIBEHh BIPOBAIKEHHS PO3IIOMITCHHUX
TEXHONOTIH y Manux Ta cepenHix mianpuemcrBax. lle MOkHA 3pOOMTH IUISXOM HPOEKTYBaHHS Ta BIPOBADKEHHsS CEPEOBHINA, SKE YCIaIKOBYE
MPOCTOTY PO3TOPTAaHHS Ta MacINTabOBaHICTh KOHTEHHEPHHWX CHCTEM i3 OE3MeKOr0 Ta IPO30pICTI0 PO3MOJINIEHUX JOAATKIiB. Y Iiif CTaTTi OMHMCaHO
TPaKTHYHE BIPOBAJKEHHS PIllIeHHS Ha OCHOBI OJOKYeiiHy, po3poOleHOro sfK JEeMOHCTpaliifHy peami3allifo s iCHyrUOl KIli€eHT—CepBepHOI
apxitekTypu. Lle pilieHHs: BUKOPHCTOBYE KOHTelHepr Docker 171st CHIpOIIEHHS HAJIAIITYBaHHS Ta pO3TOPTaHHs NPUBATHOT Mepexi OIOKYeliHy, cepBep-
MOCepeTHAKa Ta 3BOPOTHIN MpoKci-cepBep. BripoBa/pkeHHS 1i€l CHCTEMH B HEBEIMKOMY MacIITadi JEMOHCTPYE MOXIIMBICTBH IHTErpamii TeXHOJOTIT
Orok4eiHy B icHyrodi 6i3Hec-Tporiecn 6e3 QyHAAMEHTaIBHHUX apXiTEKTYPHHX 3MiH i MiATBEpUKYe MPOOIIEMH PO3TOPTaHHS Ta 0OCIYTOBYBAaHHS, SKI
3a3BUYall CYIPOBOKYIOTh PO3MOJIIICHI CUCTEMH, 1110 BUKOPUCTOBYIOTH NPUBATHUI OnokueiiH. OOroBoproBaHa peaizaiis € JEMOHCTPALIEI0 TOTO, 0
po3pobiieHa apXiTeKTypa € MOTEHIIHHO BiJTBOPIOBAHMM i JIETKO IMiITPHMYBAaHHUM CEPEJJOBUIIEM JUIS pEECTpallil Ta MepeBIPKH JaHHUX 3a JOOMOTO0
HE3MIiHHOTO PEeCTpy B MEHIIOMY MaciuTabi. Jloka3 KOHIENIil YCHilIHO IMiITBEpKye OCHOBHY inero. Peamizaiis mokasye, sik cepBep-NOCEPEIHUK
MEPEXOIUTIOE 3aIIUTH KJIIEHTIB, 3amucye iX y npuBatHuid OnokueiH Ethereum uepes intepdeiic JSON-RPC, a motim nepecunae iX Ha OpUTiHAIbHUMA
cepsep. lle miaTBEp/KYye 3MATHICTH DIllIeHHS BIPOBAJWTH HaJiHHUN NPOMIKHMHA piBEHb I HE3MIHHOCTI AaHUX. IIpoekT neMoHCTpye pobouy
CTPYKTYpY 11 BOY/IOBYBaHHs TEXHOJIOTii PO3MOALICHOTO PEECTPY B €KOCHCTEMH KIIiEHT—cepBep. X0oua MOTOYHUI MeXaHi3M koHceHcycy Proof of Work
Mae OOMEXEHHs IOA0 MAacIITabOBaHOCTI, apXiTeKTypa 3a0e3rnedye MIlHYy OCHOBY /Uil MaiOyTHIX JOCHI/DKEHb, BKIIOYAIOYM MEpexi Ha Ol
eeKTHBHI MeXaHi3MN KOHCEHCYCY Ta iHTErpallito CMapT-KOHTPAKTIB.

KarouoBi cioBa: nokepn3oBaHa apXiTeKTypa OJOKUYelHy, YIPaBiiHHS JIAHIIOTaMU ITOCTAaBOK, KOHTEHHEPH30BaHi By3/IH OJOKUYeHHy, Mani Ta
CepejIHi MiIMPUEMCTBA, JTaHIIOT MOCTABOK, 3aXKCT JAHKUX y PO3MOIIICHIH cucTeMi, OJI0KYEHH IPOKCi, aropuT™Me XelryBanust, ethereum.

Toeni imena asmopis / Author's full names

Astop 1/ Author 1: XKepxepynos [asno IOpiiiosua / Zherzherunov Pavlo Yuriiovych
ABTop 2 / Author 2: IlImatko Onekcanap Bitamiiiosuu / Shmatko Olexandr Vitaliiovych

Zherzherunov P. Y., Shmatko O. V. Architectural approach to data protection
in distributed supply chain management system using blockchain nodes 33

