
 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

26 аналіз, управління та інформаційні технології, № 2 (14) 2025

УПРАВЛІННЯ В ОРГАНІЗАЦІЙНИХ СИСТЕМАХ

MANAGEMENT IN ORGANIZATIONAL SYSTEMS

DOI: 10.20998/2079-0023.2025.02.04

UDC 004.72

P. Y. ZHERZHERUNOV, Student, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: Pavlo.Zherzherunov@cs.khpi.edu.ua; ORCID: https://orcid.org/0009-0005-7240-9395

O. V. SHMATKO, Doctor of Philosophy (PhD), Docent, National Technical University "Kharkiv Polytechnic Institute",

Ass. Prof of Software Engineering and Management Intelligent Technologies Department,

Kharkiv, Ukraine, e mail: oleksandr.shmatko@khpi.edu.ua, ORCID: https://orcid.org/0000-0002-2426-900X

ARCHITECTURAL APPROACH TO DATA PROTECTION IN DISTRIBUTED SUPPLY CHAIN

MANAGEMENT SYSTEM USING BLOCKCHAIN NODES

Dockerised blockchain solution can mitigate the low levels of distributed technology adoption in small and medium enterprises. It can be done via

designing and implementing an environment which inherits ease of deployment and scalability of containerized systems with safety and transparency of
distributed applications. Practical implementation of a dockerized blockchain solution designed as a demonstrative implementation for existing client–

server architecture is described in this paper. This solution uses Docker containers to simplify the setup and deployment of a private blockchain network,

a mediator server and a reverse proxy. Implementation of this system on a low scale demonstrates feasibility of integrating blockchain technology into
existing business processes without fundamental architectural changes and acknowledges deployment and maintaining challenges that usually

accompany distributed systems using private blockchain. Discussed implementation is a demonstration of designed architecture being potentially a

reproducible and easily maintainable environment for logging and validating data through an immutable ledger on a smaller scale. Proof of concept
successfully validates the core idea. The implementation shows a mediator server intercepting client request, recording them on a private Ethereum

blockchain via a JSON-RPC interface, and then forwarding them to the original server. This confirms the solution’s ability to introduce a trusted,

intermediate layer for data immutability. The project demonstrates a working framework for embedding distributed ledger technologies into client–

server ecosystems. While the current Proof of Work consensus mechanism presents scalability limitations, the architecture provides a strong foundation

for future research, including migrating to more efficient consensus mechanisms and integrating smart contracts.

Keywords: dockerized blockchain architecture, supply chain management, containerized blockchain nodes, small-medium enterprises, supply

chain, data protection in distributed system, blockchain proxy, hashing algorithms, ethereum.

Introduction. This paper provides a detailed practical

overview of the fundamental layer of dockerised

blockchain solution that allows for simplified process of

setup and deployment of distributed tools into existing

client–server architectures. This implementation overview

is based on the architecture described in the previous

research paper, which focuses on wrapping the blockchain

network setup and connection in the Docker containers,

connected into shared network, to enable easy and quick

setup of these tools and integrating them into existing

business processes [1].

Foundational part of the solution is a Docker tool,

which enables networking and orchestration of several

server-like containers, acting as separate virtual machines.

It allows to construct a network of several servers with

different purpose and blockchain nodes to simplify

deployment and maintenance of all its parts. Crucial parts

of the mentioned blockchain solution are proxy and reverse

proxy for routing requests coming into the network,

mediator server, which is responsible for taking original

request, parsing its meta and body information and sending

it to the blockchain ledger and blockchain node, which is

deployed alongside the proxy and mediator to connect to

the shared private blockchain network.

In this paper, private blockchain network is going to

be contained on the same network as proxy, mediator and

test original server for ease of testing and initial setup

procedure. In the future this implementation will be

extended to allow blockchain nodes, being setup via

docker-compose, connect to an external network.

NGINX web-server is used as a proxy and reverse

proxy in the solution subnetwork. Django framework is

used to build a basic mediator server able to receive

requests from the proxy, parse their metadata, save them to

the blockchain and then pass the request to the original

server. Private blockchain network is created using

Ethereum geth tool with a PoW (Proof of Work) consensus.

Thus, regular node, bootnode and mining node are

contained within Docker subnetwork for testing purposes

[2].

Client server architecture is expected to be able to

integrate this solution into existing business process. But

neither client nor server implementation have to be

important for this architecture to be integrated, so regular

API client is used as a client in this implementation and a

Research Article: This article was published by the publishing house of NTU "KhPI" in the collection

"Bulletin of the National Technical University "KhPI" Series: System analysis, management and
information technologies." This article is distributed under a Creative Common Creative Common

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

© Zherzherunov P.Y., Shmatko O. V., 2025

https://orcid.org/0009-0005-7240-9395
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Zherzherunov P. Y., Shmatko O. V. Architectural approach to data protection

in distributed supply chain management system using blockchain nodes 27

simple Django web-server with Postgres database.

Example web-server doesn’t represent any real business

activity and is provided for demonstration purposes as a

proof of concept.

Docker Environment Description. To start with the

implementation of the system, high level description of the

fundamental tools has to be provided. The most important

tool in this implementation is Docker. Docker is an open-

source platform that has simplified process of how

applications are developed, shipped, and run. At its core,

Docker uses OS-level virtualization to package software

into standardized units called containers [3].

In the Docker network every container is emulated as

a separate virtual machine allowing them to run as different

client and server machines. In our case, containers will be

NGINX reverse proxy, Django mediator server and

Blockchain network, which is being represented as several

different containers with nodes tailored to different

purposes. It’s the implementation needed at this stage.

Blockchain nodes are going to be connected so a bridge

subnet work to differentiate them from the main network.

On the Docker application network, we will also have

container for original server and container postgresql with

a database for that server. Here and further on “original

server” refers to a type of server which is not a part of

dockerised blockchain solution architecture, but

presumably a part of the client–server system that business

planning on integrating blockchain solution already owns.

In this paper for the sake of demonstration this “original

server” will be a simple todo list backend implementation,

as specifics of this type of server is not important for the

dockerised blockchain implementation. It is only required

from it to have a API interface and means of providing

necessary credentials for Mediator server to be able to

connect to it.

Each container is first being built as an image in

docker infrastructure. A Docker Image is a lightweight,

standalone, executable package that includes everything

needed to run a piece of software. It can be considered a

blueprint, template, or a snapshot of an application and its

entire environment at a specific point in time. It's the

"buildtime" artifact in the Docker ecosystem and it’s

created before the container.

A Docker container is the running instance of a

Docker image. If a Docker image is the blueprint, a Docker

container is the actual virtual machine built from that

blueprint, where your application is executing. The key

difference of container from image is that after container is

built from image, it obtains several writing layers that allow

to mutate data inside that container. Meanwhile in docker

images data mutation is prohibited and cannot be done [4].

The drawback of containers is that when containers

are removed, they lose the data the store in their data

storage, as they store everything in the runtime memory

(RAM). Solution for that is volume, a preferred mechanism

for persisting data generated by and used by Docker

containers. It provides a way to store data outside the

container's writable layer, ensuring that the data remains

intact even if the container is stopped, removed, or

recreated. But in this research paper volume storage is not

used, it is going to be implemented as a later improvement.

Dockerfile configuration files are used for defining

each image scheme, which container is built from later on.

A Dockerfile typically consists of several instructions, each

on a new line. The order of these instructions is crucial, as

each instruction creates a new layer in the final Docker

image. The most important commands crucial for our

implementation are those below.

FROM: specifies the base image for the container. It

defines the environment this image is going to be run in, as

it sets the image for each subsequent instruction. There are

different variations of the images and light weight ones

have to be a priority, to reduce container loading times and

size taken.

WORKDIR: Sets the current working directory for

any subsequent RUN, CMD, ADD, or COPY instructions.

COPY / ADD: Copies new files or directories from

<src> (host path) and adds them to the filesystem of the

image at the path <dest> (image path). COPY is generally

preferred over ADD because it's more transparent and less

prone to unexpected behavior.

RUN: Executes Commands during Image Build.

Executes any commands in a new layer on top of the current

image and commits the results.

EXPOSE: Command that is used for providing

information about the ports, that can be used to send

requests to the container based off this image. This

command does not do any actual networking, but is useful

for maintainability of the Docker environment.

ENV: Sets environment variables that will be

available inside the container at runtime. This command is

used excessively in our test implementation of the

dockerised blockchain implementation to configure

communication between containers in the sub-network. It

is not as useful for configuring external variables, as we

don’t want to alter Dockerfiles directly after they are

already established.

CMD: Specifies the Default Command to Execute

when a Container Starts. It is crucial command to build the

image and must not be omitted [5]. requests to a necessary

service in the docker network or outside of it, to the existing

applications.

Dockerfiles are written to build planned images, and

basic structure of the docker looks can be seen on Fig. 1.

Fig. 1. Docker Container Structure

Basic docker container structure contains separate

containers for NGINX reverse proxy, “Original” server and

Mediator server. They are not connected into subnetwork

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

28 аналіз, управління та інформаційні технології, № 2 (14) 2025

and “original” server is meant to be reached outside of the

docker network, but for this test purposes it’s located in the

same docker network.

Bridge network connects Geth bootnode, geth miner

node and Geth JSON/RPC interface node into the same

sub-network inside docker. It is done to simplify access to

Geth JSON/RPC interface outside of the bridge network

and prevent direct access to the geth bootnode and geth

miner node, which are not required for the implementation

to function and could allow harmful actions, as bootnode is

responsible for connecting new nodes to the blockchain

network.

It is important to select optimal base images for all the

containers mentioned as we want to reduce the time to setup

and size of the memory, that is going to be allocated to

running those containers.

For NGINX reverse proxy existing implementation is

used, which is called nginx-proxy. It provides an extensive

tool to work with rerouting requests from outside to internal

network and vice versa. Using this service allows to omit

implementing generation of NGINX configs from ground

up by using docker-gen file generator [6]. Docker-gen is a

powerful utility that generates files based on Docker

container metadata and Go text/template language.

Essentially, it acts as a dynamic configuration tool that

watches for Docker events (like containers starting or

stopping) and then automatically updates configuration

files, scripts, or other artifacts [7].

Table 1 describes all the images needed to create

respective containers. Selected images are described in

more detail in the information below.

nginx-proxy requires these base images to build from:

docker-gen:0.15.0, forego:0.18.3, nginx:1.29.0-alpine. So

total size of the proxy container will be sum of those

images’ sizes, but it is a necessary compromise to be able

to utilize proper reverse proxy implementation to

orchestrate requests between networks and containers.

Mediator server in its foundation requires python:3.13

image and we are going to use python:3.13-slim speci-

fically to reduce image size. Total container size is going to

also include all the libraries required to run Django server

and server itself.

Test version of “original” server is going to be similar

to that of mediator, as they share Django framework as a

base for web server implementation. In both of them default

SQLite database is used to simplify setup process of the env

and WSGI (Web Server Gateway Interface) is used to run

Django servers.

For all blockchain nodes the same ethereum/client-

go:v1.10.1 is used, which allows to setup and run Ethereum

nodes in private blockchain network. It is important to have

that exact version of the base image, as newer version don’t

support PoW (Proof of Work) consensus protocol, which is

easier to setup as a private blockchain network locally. It is

an area for future improvement to replace PoW consensus

mechanism with PoS (Proof of Stake), which is used by

latest Geth library version and corresponds with the current

consensus mechanism used on mainnet – global Ethereum

blockchain network [8].

Full information about the base images used for this

demonstration implementation can be found on Docker hub

website, which provides hosting for public Docker con-

tainers [9].

This is the configuration needed for building our

demonstrative solution. First step is to set up basic docker

network and deploy reverse proxy in it, mediator server and

“original” server. Mediator server is not sending

information to blockchain ledger until ethereum private

network is deployed, which is described later in the paper.

Docker Proxy and Basic Server Setup. Dockerized

blockchain implementation is expected to operate on a

single server machine to lower maintenance cost and

simplify setup process. But it is desired to leave possibility

to send requests not only to mediator server but also to

original one, for the term of setting up new environment

and for possible emergencies which might occur on the

early stages of distributed solution deployment.

For that purpose, we are setting up nginx-proxy

container first, so that it acts as a reverse proxy for our

network of mediator server, original server and blockchain

private network, that is going to be examined later in this

paper. Idea is to be able to send the same requests, which

are already being sent from the client, but to a different

host, process the metadata and then redirect request to the

original server and return its response back.

Table 1 – Selected Images Characteristics

Image Description Container Size Last Updated

python:3.13-

slim

Python is an interpreted,

interactive, object-oriented,

open-source programming

language.

Mediator server,

“Original” server

43.43 MB Jul 24, 2025

nginx:1.29-

alpine

Official build of Nginx NGINX Proxy 20.57 MB Jul 18, 2025

jwilder/docker-

gen:0.15.0

File generator that renders

templates using docker container

metadata

NGINX Proxy 11.42 MB Jul 23, 2025

nginx-

proxy/forego:

0.18.3

Foreman⁠ in Go NGINX Proxy 6.62 MB May 8, 2025

ethereum/client-

go:v1.10.1

Official golang implementation

of the Ethereum protocol.

Ethereum Bootnode,

Ethereum JSON/RPC

node

20.58 MB Mar 8, 2021

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Zherzherunov P. Y., Shmatko O. V. Architectural approach to data protection

in distributed supply chain management system using blockchain nodes 29

Imagine that client.com is a client’s host and original-

server.com is a host of original server. Before

implementing this blockchain solution, they would simply

send messages to each other: client.com, original-

server.com. Dockerized solution introduces mediator-

server.com host for a mediator server inside docker

network. So new chain of requests looks like this:

client.com to mediator-server.com to original-server.com.

 Reverse proxy requires DNS of the host machine to

be configured in a way, so that hosts original-server.com

and mediator-server.com are routed to our localhost:80 [6].

80 is a port to which we expose our nginx-proxy in the

Dockerfile. In our case local machine is used as a server

machine for the Docker network, so Windows hosts file has

to be adjusted with added hosts mappings. File can usually

be found here: C:\Windows\System32\drivers\etc. Added

mapping might look like this: 127.0.0.1 original-

server.com, 127.0.0.1 mediator-server.com.

 We could also specify hosts for the links we are

setting as redirects to localhost, but for ease of setup in our

case we are going to redirect links without any port

specified.

We have several ways to deploy nginx-proxy

container in our network. First one is to download source

code from public nginx-proxy repository and build

container from the Dockerfile, it has two different files for

Debian and Alpine environments. By default, Debian one

is used and we don’t have specific requirements to change

that approach, so we are going to proceed with Debian

dockerfile too.

We can specify Dockerfile to build in the docker-

compose file under the container section that we want to

build, in this case it’s nginx-proxy. It is done to remove

building Docker image step from the setup chain, as we

could first created image with docker build command and

then spin up container with docker run. docker-

compose.yaml file is a config for creating containers where

we specify either path to the local Dockerfile build file or

specify remote image, that is already hosted on Docker

Hub. To reduce complexity and code overhead remote

image from Docker Hub is used, as it already includes all

the images required for container to work and we don’t

have to attach and build them manually [5].

nginx-proxy implementation includes default docker-

compose.yaml file, which is used for running this tool via

command line interface, as specified in the Readme

instruction in the nginx-proxy repository. To include this

container as part of our network we just have to include

nginx-proxy container section in dockerised blockchain

solution docker-compose.yaml file, but omit whoami

container from it, as it is a container created for testing

purposes required to ping the proxy functionality if no other

servers configured. In our case we will have original server

and mediator servers in the network, so we don’t need

whoami container.

Servers are created as Django containers. As first step

we have to create local virtual environment to be able to

setup servers via Django CLI, but after initial setup is

complete, instructions will be provided in Dockerfile for

each server how to setup corresponding environment in the

docker container. To create virtual environment python

venv command is used and, depending on the operating

system, different scripts inside that venv are used in CLI to

activate it. Main dependency for newly created virtual

environment is Django. We install it with pip install

command. Installation of Django will also include

dependencies it needs to operate. After that we have to

create requirements.txt file to be able to let Docker

environment know, what dependencies have to be installed

inside container environment. It is done via pip freeze >

requirements.txt command and not by hand, to include

internal dependencies and simplify the process. Django and

its internal dependencies are enough for original-server, but

we also have to include requests library in the mediator-

server virtual environment to enable main functionality

mediator-server is created for.

It is going to receive requests, process the request

body and metadata, save it to the blockchain ledger, and

then send this request further to the original-server. As a

response it returns response from the original-server. It is

basically acting as a middleware between client side, which

is Echo VS Code plugin in our case (simple API client), and

original server. As the first step, mediator server will wait

for result of writing data to the blockchain network. Making

it work on eventbased system is an improvement that is

planned for future work. Requests library is needed to be

able to send requests to the external hosts, which original-

server will act as, based on our configuration.

Due to the limits and demonstrative nature of the

solution described in this paper, original-server is included

in the docker network, so it is factually a server located on

the same network as mediator. But nginx-proxy is set up to

treat it as external host, so that when solution is adjusted for

the real infrastructure, implementation won’t be deprecated

and not applicable or at least require minimal intervention.

Ideally most the configuration should be done via

environmental file, except security related things like secret

keys.

Both servers’ projects contain one Dockerfile each,

which describes how image has to be built. By default,

EXPOSE command in the dockerfile is declarative but does

not serve any function. But as we use nginx-proxy reverse

proxy, we have to specify ports with EXPOSE command,

as nginx container uses that metadata to dynamically

generate IP addressed of the servers inside the Docker

network. There is an alternative way to let nginx-proxy

know to which ports different hosts are rerouted, which is

specifying ports under server container section in the

docker-compose.yaml file. But to avoid confusion and

possible errors, exposed port for each server is specified in

both Dockerfile for each server and shared docker-

compose.yaml of the entire project.

Next requirement for the proxy to work is to specify

VIRTUAL_HOST environmental variables for each

container in the docker-compose.yaml file. In our case,

mediator server has VIRTUAL_HOST variable set to

mediator-server.com and original server – has env variable

set to original-server.com. Final requirement for the Docker

network to work is to configure DNS to map our proxy

hosts to the localhost, so that when request from Docker

host machine is made to those hosts, they are redirected to

nginx proxy address [7].

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

30 аналіз, управління та інформаційні технології, № 2 (14) 2025

For testing purposes, original server is a simple todo

application backend, which allows to add and get all the

todo entries. SQLite database is used to avoid setting up

separate Postgres container, but it is marked as an area for

future improvement. Dockerised blockchain solution also

shouldn’t care about details of original server implement-

tation, we just need its RESTful API interface to operate

with. Otherwise, it would break the interoperability of the

proposed solution for different original servers, which are

already present on customer side.

 Mediator server on this stage has endpoint

implemented, that catches all the incoming requests to that

server and then redirects them to original server. Original

server’s host is currently hardcoded, but eventually it will

be managed from environment configuration, as one of the

possible solutions.

To launch whole project, docker-compose up com-

mand is used. To test implemented functionality, we send

same /api/todo GET request to both hosts. So sent requests

endpoints are: original-server.com/api/todo and mediator-

server.com/api/todo. Responses to the client for these

URLs have to be identical. Result can be seen on Fig. 2.

Docker Blockchain Network Setup. Next step is to

introduce private blockchain network inside the existing

docker solution network. For that another Docker image is

used – ethereum-client/go. It will allow us to deploy

ethereum nodes with necessary interfaces to communicate

with them.

On this stage of demonstrative solution imple-

mentation Proof of Work consensus mechanism is used

when setting up private blockchain network. In this con-

sensus mechanism other nodes in the network have to

perform cryptographic calculation to prove the new

encrypted records in the ledger.

Proof of Work is not supported by the latest version

of ethereum-client/go, so we have to use specific version,

which supports PoW. In our case it is 1.10.1. Version with

this consensus mechanism is selected because of the

official documentation for latest version of the ethereum

client providing instructions on how to deploy separate

blockchain network with a tool different from Docker.

Although that new tool is based on Docker and allows for

simpler process of the network deployment, it doesn’t pro-

vide effective ways to possibly separate process of creation

of new nodes in different Docker networks, connecting to

an overarching private blockchain network [8].

Proposed solution relies on being able to deploy

blockchain nodes separately from the main private network

but also purely in the scope of each separate Docker

network belonging to each separate business owner of the

node. Due to this reason and better documented process of

setting up Proof of Work nodes in an autonomous Docker

environment, older version and consensus mechanisms are

chosen.

But it is clear that Proof of Authority consensus

mechanism is able to improve blockchain network

performance, as it won’t be requiring cryptographic

approvement calculation for each new record [10]. This

would decrease latency time for getting responses to

requests from the original client. So, moving to the PoA

mechanism is considered a further improvement for this

solution, which will be considered in the scope of a

different research.

For setting up Ethereum nodes in the docker network

we don’t have to have any source code for them, but we

need separate Dockerfiles for each type of the nodes

required for the network.

To run private network for our solution these types of

nodes are required:

• Bootnode, which acts as an entry point and a

gateway to the private ethereum network. Its’ port has to be

exposed, so that we are able to connect via it, when

deploying several other instances of our solution for

different participants of the supply chain, that are

integrating blockchain solution [11];

• JSON-RPC node, which is providing an interface

for sending information to blockchain ledger via HTTP

1.1/2 request, in our case – through requests python library

in Django framework. Each participant of the supply chain

has separate node for each of them acting as both node

allowing to connect to the blockchain network and a

separate interface for API communication, not to overlap

with other participants’ nodes;

• Miner node. This node is required for a Proof of

Work consensus mechanism, confirming writing operati-

ons in the ledger. It might be theoretically combined with

JSON-RPC node, so that one node has two of those cha-

racteristics, separate testing will be conducted for that

matter [12].

Starting state of the blockchain network is described

in the genesis.json file, which is located in the ethereum-

network folder, which is allocated for source files used to

set up distributed network. So basic accounts and funds

allocations are specified in genesis.json file. In the scope of

current research, creating new network is implemented as a

part of running this solution via docker-compose, but it is

planned to improve it later on with separating the private

blockchain network and making it external, so that propose

dockerised solution only deploys one blockchain node to

connect to the existing network to reduce load on the server

and maintenance costs. Also, each bootnode has to generate

a enode link, which has to be available to other members of

Fig. 2. Docker Running Proxy and Two Servers

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Zherzherunov P. Y., Shmatko O. V. Architectural approach to data protection

in distributed supply chain management system using blockchain nodes 31

the private blockchain network and those, who is going to

join it. Having multiple enode is complicating the process

and creating more risks of those links being exposed,

allowing malicious actors to access private blockchain

network and manipulate the data. Thus, it might be better

to have one enode as a single source of truth and treat that

enode as a secret link. Additional security mechanisms

might be implemented to secure that enode link, such as

cyphering and deciphering it with a secret/public keys, that

each member of a supply chain has. But this security issue

requires more investigation and is not covered in this paper.

This is also considered as a future improvement.

Resulting images and containers running can be seen

in Docker Desktop window on Fig. 3. Captured logs of

demonstrative solution running can be seen on Fig. 4.

Interface configurations are specified in the general

docker-compose.yaml file, where ports for bootnode and

JSON-RPC interface node are specified. For containers

with those nodes VIRTUAL_HOST also has to be specified

to allow nginx-proxy container to send requests from

mediator server and outside blockchain nodes to those.

Additionally, we can temporarily group all the

blockchain nodes into a sub-network inside our Docker

network to better organize them in our solution. It can be

done by specifying new sub-network in the docker-

compose.yaml file.

It will create necessary images first and then run new

containers based of them. After necessary configuration is

done, we can run our solution via docker-compose up

command.

To check if servers and blockchain containers are

running correctly we first look at the logs, which are being

printed out in the terminal, where docker-compose up

command is executed. Absence of errors there is the first

signal of our solution working correctly on that stage.

Next step to check if blockchain is running correctly

is to try getting network information, such as accounts, via

API client, such as Echo API used in this project.

For that we are sending a POST request first to check

connectivity of nodes. To see the list of peers available, we

send request with raw JSON data and Content-Type header

equal to “application/json”. Raw data has to look like this:

{"jsonrpc": "2.0", "id": 1, "method": "admin_peers",

"params": []}. As a result, we get a JSON response, body

of which contains information enodes available for use.

localhost:8545 is used as an API URL, as we

accessing it outside of docker container for now.

This response is a JSON-RPC reply from a Geth (Go

Ethereum) node, specifically the result of calling something

like admin_peers. It lists information about one connected

peer on the Ethereum network. This JSON shows that your

Geth node is connected to one peer at 172.16.254.2:30303,

running Geth v1.10.1, supporting Ethereum protocols

(eth/64–66, snap/1), and currently on a blockchain head

with difficulty. It signals, that it is accessible both outside

the docker environment, as we want it to be, and inside the

docker network. Host will be geth-rpc-endpoint in that case

as we are reaching out through RPC interface node.

Example result of the communication via RPC

interface is displayed on Fig. 5.

Fig. 3. Built Images and Running Containers

Fig. 4. Docker Solution Logs

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

32 аналіз, управління та інформаційні технології, № 2 (14) 2025

Area for Improvement. Showcased demonstrative

proof of concept of the dockerized blockchain solution

presents main idea of the proposed architecture and proves

its implementation being possible, but it’s still missing

several key features, that are intended to be in the final

solution. First, we deploy and access private blockchain

network alongside deploying original and mediator servers.

It’s done for demonstration purposes, but goal is to make it

possible to connect mediator server to the server outside of

the docker network. It’s not a difficult implementation, but

experimental part of the implementation for that aspect will

be done in a context of next research papers.

The more complicated topic is deploying, maintaining

and connecting to the private blockchain network, that is

shared between mediator servers’ instances. Idea is to setup

and run only RPC miner node alongside the mediator,

which is able to connect to an outside private blockchain

network. Ideal option is to have it check, if the mentioned

network is available and connect to it only if it’s present.

Otherwise, system could set up missing network and

provide necessary credentials for other systems to connect

to it. But plausibility of such implementation is to be

estimated, so this work is also planned for the further

research.

Third aspect for improvement is implementation of

custom smart contracts in Solidity language for custo-

mizing the way requests data is being saved and handled. It

is yet to be researched, how those smart contracts can be

shipped together with the solution, either as a part of initial

setup or a separate script in mediator server, that will trigger

deploying smart contracts from the solution to the private

blockchain network.

Conclusions. The research presented in this paper

demonstrates the feasibility of deploying a dockerised

blockchain network as a modular extension to existing

client–server architectures. By leveraging Docker’s con-

tainerization, networking, and orchestration capabilities, it

becomes possible to encapsulate blockchain nodes,

mediator servers, and reverse proxies into an environment

that is both reproducible and easily maintainable. The

proof-of-concept shows how a mediator server, imple-

mented in Django and connected to an Ethereum private

network via JSON-RPC, can intercept client requests,

record them on a blockchain ledger, and then transparently

forward them to the original server. This validates the core

idea that blockchain technologies can be integrated into

existing infrastructures without fundamentally altering

their design, instead introducing an intermediate layer that

ensures data immutability and trust.

At the same time, the work highlights limitations and

directions for further development. The current architecture

relies on Proof of Work nodes within a Docker subnetwork,

which simplifies experimentation but introduces scalability

and performance constraints. Future iterations of the

system could migrate to more efficient consensus mecha-

nisms, such as Proof of Authority or Proof of Stake, to

reduce latency and computational overhead. Similarly,

persisting data using Docker volumes, refining external

network connectivity, and introducing Solidity-based smart

contracts would strengthen the robustness, adaptability, and

business applicability of the solution.

Overall, the project delivers a working demonstration

of how distributed ledger technologies can be contai-

nerized, orchestrated, and embedded into client–server

ecosystems in a way that lowers deployment complexity

while paving the path for more advanced features. It not

only validates the technical foundation of such integration

but also establishes a framework upon which future

research and enterprise-grade blockchain applications can

be built.

References

1. Жержерунов П. Ю., Шматко О. В. Designing the architecture and

software components of the dockerised blockchain mediator.
Системний аналіз, управління та інформаційні технології. 2025.

№. 1 (13), P. 101–105. DOI: https://doi.org/10.20998/2079-

0023.2025.01.15.
2. Gervais A., Karame G., Wust K., Glykantiz V., Ritzdorf H.,

Capkun S. On the Security and Performance of Proof of Work

Blockchains. CCS '16: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 2016. P. 3–

16. DOI: https://doi.org/10.1145/2976749.2978341.

Fig. 5. Peer Connectivity Result

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Zherzherunov P. Y., Shmatko O. V. Architectural approach to data protection

in distributed supply chain management system using blockchain nodes 33

3. Docker. URL: https://www.docker.com/what-docker (дата

звернення: 21.08.2025).
4. Rad B. B., Bhatti H. J., Ahmadi M. An introduction to docker and

analysis of its performance. International Journal of Computer

Science and Network Security (IJCSNS). 2017. №. 17 (3). P. 228–
235. URL:

https://www.researchgate.net/publication/318816158_An_Introducti

on_to_Docker_and_Analysis_of_its_Performance (дата звернення:
21.08.2025).

5. Dockerfile reference. Docker Docs. URL:

https://docs.docker.com/reference/dockerfile/ (дата звернення:
21.08.2025).

6. nginx-proxy. URL: https://github.com/nginx-proxy/nginx-proxy

(дата звернення: 21.08.2025).
7. docker-gen. URL: https://github.com/nginx-proxy/docker-gen (дата

звернення: 21.08.2025).

8. Kurtosis. Go Ethereum. URL:
https://ethereum.org/docs/fundamentals/kurtosis/ (дата звернення:

21.08.2025).

9. Docker Hub container image library: App containerization. URL:
https://hub.docker.com/ (дата звернення: 21.08.2025).

10. Joshi S. Feasibility of proof of authority as a consensus protocol

model. arXiv. 2021. URL: https://arxiv.org/abs/2109.02480 (дата
звернення: 21.08.2025)

11. Luo J. Unveiling Ethereum's P2P network: The role of chain and
client diversity. arXiv. 2025. URL: https://arxiv.org/abs/2501.16236

(дата звернення: 21.08.2025)

12. Command-line options. Go Ethereum. URL:
https://geth.ethereum.org/docs/fundamentals/command-line-options

(дата звернення: 21.08.2025).

References (transliterated)

1. Zherzherunov P. Y., Shmatko O. V. Designing the architecture and

software components of the dockerised blockchain mediator.

Systemnyi analiz, upravlinnia ta informatsiini tekhnolohii. 2025,
no. 1 (13), pp. 101–105. DOI: https://doi.org/10.20998/2079-

0023.2025.01.15.

2. Gervais A., Karame G., Wust K., Glykantiz V., Ritzdorf H.,

Capkun S. On the Security and Performance of Proof of Work
Blockchains. CCS '16: Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security. 2016, pp. 3–

16. DOI: https://doi.org/10.1145/2976749.2978341.
3. Docker. Available at: https://www.docker.com/what-docker (access

date: 21.08.2025).

4. Rad B. B., Bhatti H. J., Ahmadi M. An introduction to docker and
analysis of its performance. International Journal of Computer

Science and Network Security (IJCSNS). 2017, no. 17 (3), pp. 228–

235. Available at:
https://www.researchgate.net/publication/318816158_An_Introducti

on_to_Docker_and_Analysis_of_its_Performance (access date:

21.08.2025).
5. Dockerfile reference. Docker Docs. Available at:

https://docs.docker.com/reference/dockerfile/ (access date:

21.08.2025).
6. nginx-proxy. Available at: https://github.com/nginx-proxy/nginx-

proxy (access date: 21.08.2025).

7. docker-gen. Available at: https://github.com/nginx-proxy/docker-gen
(access date: 21.08.2025).

8. Kurtosis. Go Ethereum. Available at:

https://ethereum.org/docs/fundamentals/kurtosis/ (access date:
21.08.2025).

9. Docker Hub container image library: App containerization.
Available at: https://hub.docker.com/ (access date: 21.08.2025).

10. Joshi S. Feasibility of proof of authority as a consensus protocol

model. arXiv. 2021. Available at: https://arxiv.org/abs/2109.02480
(access date: 21.08.2025)

11. Luo J. Unveiling Ethereum's P2P network: The role of chain and

client diversity. arXiv. 2025. Available at:
https://arxiv.org/abs/2501.16236 (access date: 21.08.2025)

12. Command-line options. Go Ethereum. Available at:

https://geth.ethereum.org/docs/fundamentals/command-line-options
(access date: 21.08.2025).

Received 19.11.2025

УДК 004.72

П. Ю. ЖЕРЖЕРУНОВ, студент, Національний технічний університет «Харківський політехнічний інститут», м.

Харків, Україна, e-mail: Pavlo.Zherzherunov@cs.khpi.edu.ua, ORCID: https://orcid.org/0009-0005-7240-9395

О. В. ШМАТКО, доктор філософії (PhD), доцент, Національний технічний університет

«Харківський політехнічний інститут», доцент кафедри програмної інженерії та інтелектуальних технологій

управління, м. Харків, Україна, e-mail: oleksandr.shmatko@khpi.edu.ua, ORCID: https://orcid.org/0000-0002-2426-900X

АРХІТЕКТУРНИЙ ПІДХІД ДО ЗАХИСТУ ДАНИХ У РОЗПОДІЛЕНІЙ СИСТЕМІ УПРАВЛІННЯ

ЛАНЦЮГОМ ПОСТАЧАННЯ З ВИКОРИСТАННЯМ БЛОКЧЕЙН-ВУЗЛІВ

Рішення на основі блокчейну, реалізоване за допомогою Docker, може покращити поточний низький рівень впровадження розподілених

технологій у малих та середніх підприємствах. Це можна зробити шляхом проектування та впровадження середовища, яке успадковує

простоту розгортання та масштабованість контейнерних систем із безпекою та прозорістю розподілених додатків. У цій статті описано
практичне впровадження рішення на основі блокчейну, розробленого як демонстраційну реалізацію для існуючої клієнт–серверної

архітектури. Це рішення використовує контейнери Docker для спрощення налаштування та розгортання приватної мережі блокчейну, сервер-

посередника та зворотній проксі-сервер. Впровадження цієї системи в невеликому масштабі демонструє можливість інтеграції технології
блокчейну в існуючі бізнес-процеси без фундаментальних архітектурних змін і підтверджує проблеми розгортання та обслуговування, які

зазвичай супроводжують розподілені системи, що використовують приватний блокчейн. Обговорювана реалізація є демонстрацією того, що

розроблена архітектура є потенційно відтворюваним і легко підтримуваним середовищем для реєстрації та перевірки даних за допомогою
незмінного реєстру в меншому масштабі. Доказ концепції успішно підтверджує основну ідею. Реалізація показує, як сервер-посередник

перехоплює запити клієнтів, записує їх у приватний блокчейн Ethereum через інтерфейс JSON-RPC, а потім пересилає їх на оригінальний

сервер. Це підтверджує здатність рішення впровадити надійний проміжний рівень для незмінності даних. Проект демонструє робочу
структуру для вбудовування технологій розподіленого реєстру в екосистеми клієнт–сервер. Хоча поточний механізм консенсусу Proof of Work

має обмеження щодо масштабованості, архітектура забезпечує міцну основу для майбутніх досліджень, включаючи перехід на більш

ефективні механізми консенсусу та інтеграцію смарт-контрактів.
Ключові слова: докеризована архітектура блокчейну, управління ланцюгами поставок, контейнеризовані вузли блокчейну, малі та

середні підприємства, ланцюг поставок, захист даних у розподіленій системі, блокчейн проксі, алгоритми хешування, ethereum.

Повні імена авторів / Author's full names

Автор 1 / Author 1: Жержерунов Павло Юрійович / Zherzherunov Pavlo Yuriiovych

Автор 2 / Author 2: Шматко Олександр Віталійович / Shmatko Olexandr Vitaliiovych

