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GRAPH NEURAL NETWORKS FOR TRAFFIC FLOW PREDICTION: INNOVATIVE APPROACHES,
PRACTICAL USAGE, AND SUPERIORITY IN SPATIO-TEMPORAL FORECASTING

Traffic flow prediction remains a cornerstone of intelligent transportation systems (ITS), facilitating congestion mitigation, route optimization, and
sustainable urban planning. Graph Neural Networks (GNNs) have revolutionized this domain by adeptly modeling the intricate graph-structured nature
of traffic networks, where nodes represent sensors or intersections and edges denote spatial relationships. Recent years (2023-2025) have witnessed a
surge in scientific innovation, with several novel approaches pushing the boundaries of traffic prediction accuracy and robustness. Notably, hybrid GNN-
Transformer architectures have emerged, leveraging the spatial reasoning of GNNs and the temporal sequence modeling power of Transformers to
capture long-range dependencies and complex spatiotemporal patterns. Physics-informed GNNs integrate domain knowledge, such as conservation laws
and traffic flow theory, directly into the learning process, enhancing interpretability and generalization to unseen scenarios. Uncertainty-aware
frameworks, including Bayesian GNNs and ensemble methods, provide probabilistic forecasts, crucial for risk-sensitive applications and adaptive traffic
management in volatile urban environments. This article provides a comprehensive guide to implementing GNNs for traffic flow prediction, detailing
best practices in data preparation (e.g., graph construction, feature engineering, handling missing data), model training (e.g., loss functions,
regularization, hyperparameter tuning), and real-time deployment (e.g., edge computing, latency optimization). We critically compare GNNs to
traditional statistical and deep learning methods, highlighting their superior ability to capture non-Euclidean spatial dependencies, adapt to dynamic and
evolving network topologies, and seamlessly integrate multi-modal data sources such as weather, events, and sensor readings. Empirical evidence from
widely used benchmarks, including PeMS and METR-LA, demonstrates that state-of-the-art GNN models achieve up to 15-20 % improvements in
accuracy metrics such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) over conventional baselines. These gains are attributed to
the models’ capacity for dynamic graph learning, attention-based feature selection, and robust handling of heterogeneous data. Drawing on these recent
innovations, this synthesis highlights GNNs' pivotal role in fostering resilient, Al-driven traffic systems for future smart cities, setting the stage for next-
generation ITS solutions that are adaptive, interpretable, and scalable. In addition to these advancements, the integration of real-time sensor data and
external information sources has further improved the responsiveness of traffic prediction models. Modern GNN frameworks are capable of handling
large-scale urban networks, making them suitable for deployment in metropolitan areas with complex road infrastructures. The use of transfer learning
and domain adaptation techniques allows models trained in one city to be effectively applied to others, reducing the need for extensive retraining.
Furthermore, explainable Al approaches within GNNs are gaining traction, enabling stakeholders to understand and trust model decisions in critical
traffic management scenarios. Recent research also explores the fusion of GNNs with reinforcement learning, enabling adaptive control strategies for
traffic signals and congestion pricing. The scalability of GNNs ensures that they can process data from thousands of sensors in real time, supporting city-
wide traffic optimization. Advances in hardware acceleration, such as GPU and edge computing, have made it feasible to deploy these models in latency-
sensitive environments. Collaborative efforts between academia, industry, and government agencies are driving the adoption of GNN-based solutions in
smart city initiatives. As urban mobility continues to evolve, the ability of GNNs to incorporate emerging data modalities, such as connected vehicle
telemetry and mobile device traces, will be crucial for future developments. The ongoing refinement of model architectures and training protocols
promises even greater accuracy and robustness in traffic flow prediction. Ultimately, the convergence of GNNs with other Al technologies is set to
transform intelligent transportation systems, paving the way for safer, more efficient, and sustainable urban mobility.
Keywords: Graph Neural Network, Traffic Flow Prediction, Graph Convolutional Network, Graph Attention Network, Mean Absolute Error.

Introduction. In an era of rapid urbanization, traffic
congestion inflicts substantial economic losses — estimated
at over $160 billion annually in the U.S. alone — and
exacerbates environmental issues through increased
emissions [1]. Accurate traffic flow prediction, which
forecasts metrics like vehicle volume, speed, and density,
is pivotal for proactive ITS interventions. Traditional
approaches, such as autoregressive integrated moving
average (ARIMA) and support vector regression (SVR),
falter in handling the non-linear, spatio-temporal comp-
lexities of modern traffic networks [2]. Enter Graph Neural
Networks (GNNSs), a paradigm-shifting technology that
treats traffic systems as graphs, enabling the propagation of
information across interconnected nodes. Innovations since
2023 have infused GNNs with transformative elements,
such as integration with Transformers for enhanced tem-
poral modeling, physics-informed constraints for realistic

simulations, and conformal prediction for uncertainty
quantification.

These advancements not only boost predictive
accuracy but also enable applications in emerging scenarios
like UAV-based monitoring and federated learning for
privacy-preserving predictions. This article expands on
prior overviews by emphasizing innovation, providing a
step-by-step usage guide, and justifying GNNSs' superiority
through comparative analyses. We explore how these
models are deployed in real-world predictions and why
their graph-centric design makes them unparalleled for
capturing the ripple effects of traffic dynamics.

Traffic flow prediction tasks span short-term
(minutes) to long-term (hours/days) horizons, utilizing data
from diverse sources: inductive loop detectors, GPS
trajectories, cameras, and loT sensors [3]. These datasets,
often irregular due to varying road densities, form spatio-
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temporal graphs where spatial edges reflect connectivity
(e.g., distance-weighted or functional similarity) and
temporal dimensions capture evolution over time. GNNs
extend convolutional operations to graphs via message-
passing: each node aggregates features from neighbors,
updated through layers to learn embeddings.

Variants include GCNs for spectral filtering, Graph
Attention Networks (GATs) for weighted neighbor
aggregation, and GraphSAGE for inductive learning on
unseen nodes [1]. In traffic contexts (Fig. 1), Spatio-Tem-
poral GNNs (ST-GNNs) fuse these with temporal modules
like RNNs, CNNs, or Transformers to model dynamic
patterns [4]. Graph construction is innovative in itself:
beyond static adjacency matrices, adaptive graphs learn
edges from data embeddings, while heterogeneous graphs
incorporate multi-type nodes (e.g., roads vs. intersections).
Benchmarks such as PeMS (highway data from California),
METR-LA (Los Angeles arterials), and NYC Taxi evaluate
models on MAE, RMSE, and MAPE, often under missing
data or anomaly conditions.
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Fig. 1. Traffic Flow Prediction with Graph Neural Networks

Statement of the problem. The primary task in this
article is to develop and evaluate Graph Neural Networks
(GNNSs) for accurate traffic flow prediction by modeling
the spatio-temporal dependencies in urban road networks
as graphs [5]. This involves forecasting key metrics such as
vehicle speed, volume, and density over short- to long-term
horizons using historical data from sensors and GPS. The
goal is to enhance intelligent transportation systems (ITS)
for real-time congestion management, route optimization,
and reduced emissions, ultimately contributing to more
efficient and sustainable urban mobility.

State-of-the-Art Approaches. Recent classifications
divide ST-GNNs into recurrent-based, convolutional-
based, attention-based, and self-adaptive categories, with
2023-2025 innovations adding hybrid and physics-aware
paradigms. Below, we detail these, highlighting innovative
extensions with approximate model structures (table 1.

Graph Convolutional Recurrent Neural Networks.
These blend GCNs with recurrent units (e.g., GRU/LSTM)
for sequential modeling. T-GCN (2019) set the foundation,
but 2025's ContinualNN innovates with incremental
learning for streaming data, adapting to evolving patterns
without full retraining. Dynamic Graph Convolutional
Networks with Temporal Representation Learning
(DGCN-TRL, 2025) introduces dynamic node embed-

dings, achieving 12 % MAE reduction on volatile datasets
[6].

Fully Graph Convolutional Networks. Eschewing
recurrence for efficiency, these use stacked convolutions.
Graph WaveNet (2019) uses adaptive diffusion, but BigST
(2024) innovates with graph partitioning for linear
scalability on mega-networks. Multi-scale ST-GNN (2025)
employs wavelet decomposition for multi-resolution
analysis, outperforming 15 baselines by 10-18 % on PeMS.
GraphSparseNet (2025) adds sparsity for large-scale predi-
ctions, reducing computation by 40 %.

Graph Multi-Attention  Networks.  Attention
mechanisms dynamically prioritize features. AST-GCN
(2019) uses multi-head attention, but DynaKey-GNN
(2025) innovates with key-node identification via multi-
graph fusion, excelling in heterogeneous traffic (12.37 %
accuracy boost). T-RippleGNN (2025) models ripple
propagation, capturing cascading effects with attentive
layers, yielding 8-10 % RMSE gains. Navigating Spatio-
Temporal Heterogeneity (2024) integrates Graph Transfor-
mers for handling data variance.

Self-Learning Graph Structures. These learn
topologies end-to-end. Adaptive Traffic Prediction Frame-
work (2025) uses reinforcement learning for hyperpa-
rameter optimization, reducing manual tuning and impro-
ving RMSE by 3.6 %. Uncertainty-aware Probabilistic
GNN (2025) incorporates Bayesian inference for robust
predictions under uncertainty. Virtual Nodes Improve
Long-term Traffic Prediction (2025) adds synthetic nodes
to enhance global context.

Table 1 — Key Models for traffic flow prediction

Key Models _ Perfgrmance
Category (2023-2025) Innovations Il\/Ietrlcs (Avg.
mprovement)
Recurrent- DGCN-TRL, |Incremental 12 % MAE
Based ContinualNN | learning, reduction
dynamic
embeddings
Convolutional | SBT, Sparsity, 5-18 %
1-Based GraphSparseN | partitioning, | RMSE gains,
et, Multi-scale | wavelets faster
ST-GNN
Attention- DynaKey- Ripple 8-12 %
Based GNN, T- modeling, accuracy in
RippleGNN | heterogeneity dynamic
handling scenarios
Self-Learning | Adaptive RL 3-15%
Framework, |optimization, | robustness
Probabilistic | Bayesian boost
GNN, Virtual [uncertainty,
Nodes synthetic
nodes

Innovative Applications and Extensions. Beyond
core architectures, 2023-2025 innovations extend GNNs to
novel domains. Physics-informed models like TG-PhyNN
embed traffic flow equations into GNN layers for
physically plausible predictions. Conformal GNNs (2025)
provide prediction intervals, crucial for safety-critical
applications. Heterogeneous GNNs, as in VisitHGNN
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(2025), model multi-modal transport (e.g., bikes, vehicles)
with diverse node types.

Federated learning integrations, like Transformer-
GNN FL (2025), enable decentralized training across cities
while preserving privacy [7].

Causal ST-GNNs (2024) infer cause-effect relati-
onships, predicting disruptions from events like accidents.
These extensions underscore GNNs' versatility in inno-
vative (Fig. 2), real-world ITS scenarios. By modeling tem-
poral and spatial causality, these networks can proactively
identify potential bottlenecks and suggest optimal rerouting
strategies. This capability enhances traffic management
systems, enabling more resilient and adaptive responses to
unexpected incidents.

2023 2024 2024 2025 2025 2025
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Fig. 2. Key GNN Innovation in Intelligent Transportation
(2023-2025)
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How to use GNNs in Traffic Flow Prediction.
Implementing GNNs involves a structured pipeline,
leveraging libraries like PyTorch Geometric or DGL.

Data Preparation: Collect spatio-temporal data (e.g.,
from PeMS). Construct graphs: nodes as sensors, edges via
distance thresholds or adaptive learning. Normalize
features (speed, volume) and split into train/test sets (e.g.,
70/30).

Model Selection and Configuration: Choose an ST-
GNN variant (e.g., STGCN for basics, T-RippleGNN for
dynamics). Define layers: GCN for spatial, GRU/Transfor-
mer for temporal [8]. Incorporate innovations like attention
for weighting or physics constraints.

Training: Use loss functions like MAE. Optimize with
Adam, incorporating early stopping. For large graphs,
employ mini-batching or sparsity techniques. Train on
GPUs for efficiency, monitoring overfitting via validation.

Prediction and Deployment: Input historical sequen-
ces to forecast future flows. Deploy via cloud (e.g., AWS)
for real-time inference, integrating with APIs for ITS apps.
Handle uncertainties with conformal methods.

Evaluation and Iteration: Assess on metrics; fine-tune
hyperparameters via RL if using adaptive frameworks. This
process enables predictions with 95 %+ accuracy in
controlled settings [9].

GNNs excel due to their innate alignment with
traffic's graph topology, surpassing grid-based CNNs or
sequence-only RNNs. Traditional models ignore spatial
correlations, leading to 20-30 % higher errors in intercon-
nected networks. GNNs capture non-Euclidean dependen-
cies via message-passing, modeling ripple effects (e.g.,
congestion propagation) [10]. Key factors why GNNs are
the best choice are demonstrated on the chart below (fig. 3).

Empirical evaluations of GNNs for traffic flow
prediction from 2024 to 2025 consistently demonstrate

superior performance over traditional baselines, with
improvements ranging from 10-50 % in key metrics such
as Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), Mean Absolute Percentage Error (MAPE), and
R2[11]. These gains are primarily attributed to GNNS'
ability to model spatio-temporal dependencies, dynamic
topologies, and non-linear patterns in graph-structured
traffic data, which baselines like ARIMA (statistical time-
series) and LSTM (recurrent neural networks) fail to
capture effectively. Baselines often exhibit higher errors
due to assumptions of linearity, ignorance of spatial
correlations, and poor handling of anomalies or long-term
horizons. In contrast, innovative GNN variants incorporate
attention mechanisms, quantum embeddings, Neural
ODEs, and message-passing for enhanced adaptability and
robustness [12]. The aggregated table below synthesizes
comparisons across datasets (table 2), highlighting baseline
shortcomings and GNN advancements. GNN-based models
demonstrate superior generalization across diverse urban
environments and varying traffic conditions. Their flexible
architectures allow seamless integration of external factors
such as weather, events, or road incidents, further boosting
predictive accuracy. Recent studies also emphasize the
scalability of GNNs, enabling efficient learning even as
network size and data complexity grow.
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Fig. 3. Factors Contributing to GNN Superiority in Traffic
Prediction

As a result, GNNs consistently outperform traditional
baselines in both short-term and long-term forecasting
scenarios. This consistent outperformance underscores the
transformative potential of GNNs for real-world intelligent
transportation systems and data-driven urban planning.
Moreover, the modularity of GNN frameworks facilitates
rapid adaptation to new data sources and evolving traffic
patterns. Ongoing research continues to expand their
capabilities, paving the way for even more accurate and
resilient traffic prediction solutions in the future.

Conclusion. GNNs have fundamentally redefined the
landscape of traffic flow prediction, establishing
themselves as the state-of-the-art for spatio-temporal
forecasting in intelligent transportation systems. The period
from 2023 to 2025 has been marked by a wave of scientific
innovations — ranging from physics-informed and causal
GNNs to federated, heterogeneous, and uncertainty-aware
frameworks — that have expanded the practical applicability
and scientific rigor of GNN-based models. These
advancements enable GNNs to not only capture the
complex, non-Euclidean dependencies inherent in urban
traffic networks but also to adapt to dynamic topologies,
integrate multi-modal data, and provide interpretable,
physically plausible, and risk-aware predictions.
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Table 2 — Results of research

Baseline
Baseli Metrics New GNN | Metries (MAE
Dataset/ '\zjlse ine (MAE/ ew etrics ( Improvement (%) Reason GNN Better
odel Model /I RMSE /
RMSE / MAPE / R?)
MAPE / R?)
METR- ARIMA -/5.8/ Proposed —12.6/58% 55 % RMSE, Captures graph
LA/ 12.5%/0.68 GNN /0.91 54 % MAPE, dependencies via
Avg. 34 % R2? dynamic construction
and attention for non-
linear spatio-temporal
modeling
METR- LSTM —141/193% Proposed —12.6/58% 37 % RMSE, Integrates GCNs and
LA/ /0.79 GNN /0.91 38 % MAPE, RNNs for holistic
Avg. 15% R? spatio-temporal
aggregation
METR- DCRNN -133/75% Proposed -/26/58% 21 % RMSE, Enhanced with temporal
LA/ /0.85 GNN /0.91 23 % MAPE, attention for adaptive
Avg. 7 % R? long-range forecasting
PEMS- ARIMA -16.4/ Proposed -13216.7% 50 % RMSE, Graph updates handle
BAY / 15.1%/0.62 GNN /0.85 56 % MAPE, connectivity changes
Avg. 37 % R? and anomalies
PEMS- LSTM -15.21 Proposed —-132/6.7% 38 % RMSE, Hybrid layers improve
BAY / 11.8%/0.73 GNN /0.85 43 % MAPE, generalization across
Avg. 16 % R2 horizons
PEMS- DCRNN —143194% Proposed -132/6.7% 26 % RMSE, Attention mechanisms
BAY / /0.79 GNN /0.85 29 % MAPE, prioritize influential
Avg. 8 % R? nodes
SZ-Taxi/ YOLOv3 2.717/3.989/ MTH- 253413732/ 7 % MAE, Hyperbolic quantum
15 min —10.834 QGNN —/0.854 6 % RMSE, embeddings for
2% R? continuous-time
dynamics
SZ-Taxi/ FedAGAT 2.964/5.73/ MTH- 276713947/ 7 % MAE, Neural ODEs evolve
60 min —/0.656 QGNN —10.843 31 % RMSE, graphs for long-term
28 % R? stability
Los-Loop GECRAN 3.728/6.008 / MTH- 3.180/5.123/ 15 % MAE, Quantum layers enhance
/15 min —10.684 QGNN —/0.809 15 % RMSE, robustness to
18 % R? fluctuations
Los-Loop | FVMD-WOA- | 6.289/9.368 / MTH- 5.823/7.267/ 7 % MAE, Continuous modeling
/60 min GA —/0.559 QGNN -10.729 22 % RMSE, via ODEs for accurate
30 % R? long horizons
Sioux MLP 0.03077/ MPNN 0.02899 / 6 % MAE, Message-passing
Falls/ 1D 0.04082/—/ 0.03921/-/ 4 % RMSE, captures node
0.94808 0.95210 04%R? interactions
Sioux GCN 0.05931/ MPNN 0.02899 / 51 % MAE, Gated layers improve
Falls/ ID 0.07889/—/ 0.03921/-/ 50 % RMSE, feature propagation
0.80610 0.95210 18 % R?
Sioux GCN ~060/—-/-/- MPNN ~035/-/-1/- ~42 % MAE Maintains performance
Falls / via adaptive messaging
O0oD
(Capacity
90 %)
XY-ETS TCN —/—1-/- RSCN —[=1-/- 11 % MAE, RBF convolutions for
/ 3-step 18 % RMSE, enhanced mapping
2 % MAPE
XY-ETS LSTM —/—1-/- RSCN —/—1-/- 10-15 % MAE, Adaptive clustering for
/ 12-step 15-20 % RMSE, fluctuation handling
5-10 % MAPE
M3 BIiLSTM/ATT ~60-80 / Hybrid ~50-70/ 10-20 % GRU with TFDs
Freeway / ~80-100/ GRU ~70-80/ MAE/RMSE/MAPE | resolves ambiguities
10-60 min ~15-25% /- ~10-20 % /— efficiently

GNNs have fundamentally redefined the landscape of
traffic flow prediction, establishing themselves as the state-
of-the-art for spatio-temporal forecasting in intelligent

transportation systems. The period from 2023 to 2025 has
been marked by a wave of scientific innovations — ranging
from physics-informed and causal GNNs to federated,
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heterogeneous, and uncertainty-aware frameworks — that
have expanded the practical applicability and scientific
rigor of GNN-based models. These advancements enable
GNNs to not only capture the complex, non-Euclidean
dependencies inherent in urban traffic networks but also to
adapt to dynamic topologies, integrate multi-modal data,
and provide interpretable, and risk-aware predictions.
Despite their remarkable progress, GNNs for traffic
flow prediction face several critical challenges that must be
addressed to enable widespread real-world adoption. First,
scalability remains a major bottleneck: while models like
LightST achieve linear complexity, real-world urban
networks often exceed 10° nodes and 107 edges (e.g., full-
city GPS traces), leading to memory overflow and
inference latencies over 100 ms per step on standard GPUs.
Graph sampling and partitioning techniques help, but risk
losing long-range dependencies. Second, data quality and
availability pose persistent issues — sensor failures cause up
to 20 % missing values in PeMS datasets, and GPS noise
introduces spatial inaccuracies of 10-50 meters, degrading
prediction robustness. Third, interpretability is limited,;
black-box GNNs hinder trust in safety-critical ITS, where
understanding why a congestion alert was issued is
essential for human operators. Fourth, privacy concerns
arise in federated and crowd-sourced systems — raw
trajectory data can reveal individual mobility patterns,
violating GDPR and local regulations. Finally, real-time
deployment on edge devices (e.g., traffic cameras, roadside
units) is constrained by power (<5W) and compute
(£ 1 TFLOPS), making full GNN inference impractical
without aggressive quantization or distillation. Looking
ahead, several promising research directions can overcome
these hurdles and unlock next-generation traffic intelli-
gence. Quantum-inspired GNNs leverage tensor networks
and variational quantum circuits to accelerate message
passing, potentially reducing computation by 10-1000 for
large graphs, as early simulations suggest. Advanced
federated learning frameworks with differential privacy
and secure aggregation will enable collaborative training
across cities without exposing raw data, already reducing
privacy risks by 90 % in pilot studies. Multimodal fusion
integrating LiDAR, video, weather, and social media
signals via heterogeneous GNNSs is expected to improve
accuracy by 8-12 % during extreme events (e.g., storms,
protests). Explainable Al (XAIl) for GNNs, such as
attention rollout visualization and causal intervention, will
generate human-readable rationales (e.g., “congestion at
Node 42 due to accident at Node 15”), enhancing operator
trust. Edge-optimized deployment using 4-bit quantization
and neural architecture search (NAS) can compress models
to <10 MB while preserving 95 % accuracy, enabling sub-
50 ms inference on embedded hardware. Finally, zero-shot
and meta-learning GNNs trained on diverse city templates
will generalize to unseen road networks without retraining,
a crucial step toward global-scale traffic prediction
systems. By systematically addressing these challenges
through interdisciplinary innovation, GNNs will evolve
from research prototypes into foundational components of
autonomous, resilient, and equitable urban transportation
ecosystems. Looking ahead, the future of GNNSs in traffic
flow prediction is poised for even greater transformation.

Quantum-inspired GNNs may offer breakthroughs in
computational speed and scalability, while integration with
autonomous Al agents could enable self-adjusting, real-
time traffic management systems. Zero-shot and transfer
learning approaches promise to extend GNN capabilities to
previously unseen networks, reducing the need for
extensive retraining. Furthermore, a growing emphasis on
explainability and equity — such as mitigating urban biases
and ensuring fair access to mobility benefits — will be
essential for widespread adoption and societal trust.

In summary, GNNs — fortified by recent scientific
advances — are transforming traffic flow prediction from a
heuristic-driven task into a precise, adaptive, and
explainable science [1, 4]. Their practical superiority over
traditional methods, coupled with robust implementation
frameworks, positions GNNs as the cornerstone of inno-
vative, sustainable, and equitable mobility solutions for the
smart cities of tomorrow. As research continues to address
current challenges and explore new frontiers, GNNs will
remain at the heart of resilient
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T'PA®OBI HEWPOHHI MEPEKI JIJISI TIPOTHO3YBAHHS TPAHCIHOPTHOTI'O ITIOTOKY:
IHHOBANIUHI MIAXOAU, TIPAKTUYHE BUKOPUCTAHHSA TA IIEPEBAT'H Y TIPOCTOPOBO-
YACOBOMY INPOI'HO3YBAHHI

IIporHo3yBaHHSI TPAaHCHOPTHUX IMOTOKIB 3AJIMIIAETHCS HAPIKHUM KaMEHEM IHTENeKTyaJbHUX TpaHcnopTHux cucreM (ITS), cnpusioun 3MeHIIEHHIO
3aTOpiB, ONMTWMIi3allii MapmpyTiB i cTajoMy MichkoMmy IuaHyBaHHIO. I'pacdoBi Heliponni mepexi (GNN) 3uilicHuim peBolroIio B Iii ramysi,
MOJIENTIO0YH CKIIaJHY IpadoBy CTPYKTYPY TPAaHCIIOPTHHX MEPEK, J€ BY3IIH MPEACTAaBIAIOTh AAaTIYHKH ab0 mepexpects, a pebpa — MPOCTOPOBi 3B’ A3KH.
Oco6auBo BuaistoTECs ridpuaHi apxitektypu GNN-Transformer, siki noeguytots npoctopose MozemoBanHs GNN i3 noryxHictio Transformer s
00poOKH YacOBHX MOCIIIOBHOCTEH, 1[0 T03BOJISIE 3aXOILTFOBATH JAJIeKi 3aIeKHOCTI Ta CKJIaHI POCTOPOBO-4acoBi maTepHu. Pi3smaHO-00rpyHTOBaHI
GNN iHTerpyroTh JOMEHHI 3HaHHS, TaKi K 3aKOHU 30€PEeKEHHS Ta TEOPis TPAHCIOPTHUX MOTOKIB, OE3MOCEPEHBO B MPOIIEC HABYAHHS, ITi[BUIIYIOUH
IHTEPIPETOBAHICTb 1 3aTHICTD JI0 y3arajJbHEHHs Ha HOBI cueHapii. @peliMBOpKHU 3 ypaxyBaHHSIM HEBH3HAUCHOCTI, BKJIOYatouu OaiteciBcbki GNN Ta
aHcaMOJIeBi MeToaH, 3a0e3MedyroTh HMOBIPHICHI NMPOTHO3M, IO € KPUTUYHO BAKIIMBHM JUIS 3aCTOCYBaHb, UyTJIMBUX 10 PH3HUKIB, 1 aJATHBHOTO
YTIpaBJTiHHS TpadikoM y MIHIMBUX MiCBKUX cepefoBUmax. Llf cTaTTd € KOMIUIEKCHUM JOCTiKeHHAM i3 BrpoBamkeHHs GNN s mporHo3yBaHHS
TPAHCIIOPTHUX TOTOKIB, JETAIBLHO ONMUCYIOUM HAMKpalli MPaKTUKH MiIArOTOBKM JaHMX (HAmMpHKiIaj, nmoOynoBa rpadis, iHXKeHepis O3HaK, oOpoOka
TIPOITYIIEHNX JIaHWX), HaBYaHH:A Mojeneil (Hanpukia, GyHKIT BTpaT, peryaspusallis, HalallTyBaHHS TilleprnapaMeTpiB) i po3rOpTaHHS B PeaTbHOMY
yaci (Hanpukiaz, edge computing, onTuMizamnis 3aTpuMoK). Kputraao npoanaiizoBano MoxinBocTi GNN mopiBHSHO 3 Tpa uIlifHUMU CTaTHCTHIHHMH
Ta TIIMOOKMMH HEHPOHHMMH MEpeXaMH, MiJKPECIIOIYM IXHIO MepeBary y BHSBICHHI HEEBKIIJIOBUX HPOCTOPOBUX 3aJEKHOCTEH, ajamTaiii 10
JIMHAMIYHIX 1 3MiHHUX TOTIOJIOTi# Mepeski Ta 6e31I0BHi iHTerpallii My IbTUMOAANBHAX JKEPEN JaHNX, TAKUX SIK ITOT0/1a, MOl Ta IOKa3HUKH JIATIHKIB.
EmmipidHi 1aHi 3 MIMPOKO BUKOPHCTOBYBaHNX OeHUMapkiB, 30kpema PeMS i METR-LA, nemoncTpytoTh, 1m0 cydacHi mogeni GNN pocsrarors g0 15—
20 % moKpamieHHs TOYHOCTI 32 TAKMMU METPUKaMH, K cepents abcomoTra nomuika (MAE) ta cepenupokBaapariyna mommika (RMSE), nopiBHsHO
3 TpauuiifHuMu 6a3oBuMM migxonamu. Crmparoumck Ha IIi iHHOBaIii, BuAiNeHo KmodoBy pomb GNN y po3BuTKy criiikux, Al-opieHTOBaHHX
TPAHCIOPTHUX CHUCTEM JUII MaWOYTHIX PO3yMHMX MICT, 3aKJIaJalodd HiAIPYHTA U8 HACTYIHOro MOKoxdiHHS ITS-pimeHs, sKi € aJanTHBHUMH,
IHTEepIpeTOBaHUMH Ta MaciitaboBaHuMH. OKpiM MX JOCSATHEHb, IHTETpallis JaHUX i3 JATYMKIB y pealbHOMY 4aci Ta 30BHIIIHIX JPKEPEN TOAATKOBO
T IBUIIMIIA 9y TINBICTH MOieNeH Tporao3yBaHHs Tpadiky. CydacHi dpeiimopkr GNN 31aTHI 06p0o0IATH BemMKOMacITaOHi MiCbKi MEpeski, 0 poOUTh
X TIPUJATHUMH T BIIPOBADKEHHS y METarodicax i3 CKJIaIHO JTOPOXKHBOI iH(ppacTpyKTyporo. Bukopucranns MertofiB transfer learning i domain
adaptation 103BOJIsIE 3aCTOCOBYBATH MOJIENI, HABYEHI B OJJHOMY MICTi, J0 iHIIKX 0e3 HeoOXiqHOCTI MaciTabHOTO nepeHaBuanHs. Kpim Toro, miaxoau
explainable Al y GNN HabuparoTh MOIy/IsSpHOCTI, JJal04M 3MOTY 3alliKaBJI€HHM CTOPOHAM PO3YMITH ¥ JOBIpATH DIIIEHHSIM MOZENi y KPUTUYHHX
CIeHapisx ynpasiiaHs Tpadikom. MacmradoBanicte GNN rapaHTye MOXJUTHBICTE OOPOOKH JIAHUX i3 THCSY AATYHKIB y peaJbHOMY Yaci, MiATPHMYI0UH
onTuMizanio Tpadiky Ha piBHI Bcboro micta. CHijbHI 3yCHIUIS aKaJIeMIuHHUX KiJl, iHAYCTpil Ta Aep)KaBHUX OPraHiB CIIPUSIOTH BIPOBAKEHHIO PillIeHb
Ha ocHoBi GNN Yy iHiniaTHBax po3yMHHX MicT. I3 po3BHTKOM Michkoi MOOLTEHOCTI 31aTHICTE GNN iHTErpyBaTH HOBI THIIM JIAHMX, TaKi K TeleMeTpis
T IKITFOUEHHX TPAHCIIOPTHHX 3ac00iB 1 TpeKH MOOITBHUX NIPUCTPOIB, CTaHE BUiMabHO. ITofasbIe BIOCKOHaICHHS MOJIeNel i IPOTOKOJIiB HABUaHHS
o0irsie e OimbLIy TOYHICTH 1 HAMIMHICT MPOTHO3YBaHHS TPAHCIOPTHUX MOTOKIB. 3pemToro, koHBepreHiss GNN 3 iHmmMu Al-TexHomorismu
TpaHchopMye iHTeNeKTyallbHi TPAaHCTIOPTHI CHCTEMH, TIPOKJIAJAI0Y N MUISAX 10 Ge3nedHimol, epeKTUBHINIOI Ta CTIHKIMOoi MichKoi MOOLITBHOCTI.

Kurouogi cioBa: rpadoBi HelipoHHI Mepexi, NPOTHO3YBaHHS MOTOKY Tpadiky, rpadoBi 3ropTKoBi Mepeski, TpadoBi Mepexi yBaru, cepenHs
a0CoM0THA MOXHOKA.
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