
 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

62 аналіз, управління та інформаційні технології, № 2 (14) 2025

DOI: 10.20998/2079-0023.2025.02.08

UDC 004.41

D. E. DVUKHHLAVOV, Candidate of Technical Sciences (PhD), Docent, Associate Professor at the Department of

Department of Software Engineering and Management Intelligent Technologies, National Technical University "Kharkiv

Polytechnic Institute", Kharkiv, Ukraine; e mail: dmytro.dvukhhlavov@khpi.edu.ua; ORCID: https://orcid.org/0000-0002-3361-

3212

O. S. PELYPETS, Master Student, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine; e-mail:

pelipets.olga.developer@gmail.com; ORCID: https://orcid.org/0009-0005-5974-9045

A. S. DVUKHHLAVOVA, Senior Lecturer at the Department of Software Engineering and Management Intelligent

Technologies, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: alona.dvukhhlavova@khpi.edu.ua; ORCID: https://orcid.org/0000-0002-0111-3010

ANDROID APPLICATION MODULARIZATION ESTIMATING MODEL

The relevance of the research, the results of which are presented, is determined by the fact that mobile applications have evolved into complex software

systems with growing code bases, which complicates development, testing and support. It is shown that improving the maintainability and scalability of

Android applications projects is possible by moving from a monolithic architecture to a modular architecture, based either on the list of functions that
the application should perform, or on the architectural features of creating the application. To select a modularization option, a classification of

approaches to modularization implementing is proposed. Regardless of which direction of modularization implementing is chosen, it is aimed at reducing

the impact of changes in one module on the need to make changes to others. Such a dependence between modules can be assessed by determining the
cohesion and coherence of the project and individual modules. To quantitatively assess the advantages of modularization, a mathematical model has

been developed that takes into account the balance between the cohesion of modules and the integrity of the project in whole. The model proposes to

take into account the number of modules into which the monolithic architecture will be divided, the level of interaction between the modules that will
be selected, as well as the level of their dependence on each other. Expressions are presented for automating calculations of division options into modules.

The results of the assessment of the modularization of the Android application project for e-commerce based on different approaches to modularization

implementing are presented. The obtained evaluation data allowed us to demonstrate the potential of modularization in reducing project assembly time,
minimizing conflicts, and increasing project flexibility, offering a scalable solution for modern mobile development.

Keywords: classification of approaches to Android application modularization implementing, modularization model, evaluation indicators for

Android application modularization options, project cohesion and coherence.

Introduction. Mobile applications perform the

majority of informational tasks required by people in

everyday life. Over the past decade, mobile development

has undergone significant evolution: from simple

applications with basic functions, such as calculators or

notepads, it has advanced to complex software systems,

such as social networks, governmental programs,

navigation systems, banking applications, and business

software. As the power and functionality of mobile devices

increase, so do user demands. Project sizes are

continuously expanding, and their complexity is rising

exponentially. Modern mobile applications often contain

hundreds of thousands of lines of code and numerous

integrations with external services, making their develop-

ment, testing, and maintenance increasingly challenging

tasks. The main typical problem faced by large projects is

the complex structure of the code, which makes it difficult

to detect errors. The complex structure of monolithic code

complicates both manual and automated testing, makes it

labor-intensive and resource-intensive, and flexibility,

scalability and ease of support suffer.

Purpose of the work. The briefly described features

of modern mobile application development determine the

relevance of research that considers the issue of structuring

the code of large-scale mobile applications, since

unstructured code can lead to development delays,

increased costs and reduced product quality. This article

presents the results of one of the studies in this scientific

and practical direction, the object of which is the process of

creating mobile applications for the Android platform with

a large amount of code. The subject of this study is

approaches to organizing development and principles of

code structuring to ensure maintainability and scalability of

the mobile application project.

The purpose of the research was to reduce the time for

testing and compiling a version of the mobile application.

The purpose of the article, which is presented at the

discretion of specialists, is to reveal the concept of modu-

larization of a mobile application project, present a clas-

sification of approaches to implementing modularization

and a model for assessing the effectiveness of modulari-

zation, as well as present the results of assessing the

effectiveness of modularization for different approaches

using the example of one of the projects of a specific

development company.

Research results.

1. Analysis of problem areas in the development of

large-scale mobile applications projects and known

approaches to solving them. Studying sources [1] and [2]

allows to create a vision of the mobile application

development process. The development process of a mobile

application often begins with a single-module "Hello

World!" project and continues by adding new code,

creating function after function.

Developers divide the code mobile application into

meaningful parts based on the app’s features. Popular

examples of such features are Authorization, Registration,

Onboarding, Home Screen, Search, Product Catalog,

Product Details Page, Account, Payment, Favorites, etc [3].

Developers in same time also attempt to divide the

Research Article: This article was published by the publishing house of NTU "KhPI" in the collection

"Bulletin of the National Technical University "KhPI" Series: System analysis, management and
information technologies." This article is distributed under a Creative Common Creative Common

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

© Dvukhhlavov D. E., Pelypets O. S., Dvukhhlavova A. S., 2025

mailto:pelipets.olga.developer@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Dvukhhlavov D. E., Pelypets O. S., Dvukhhlavova A. S. Android application

modularization estimating model 63

code according to the principles of Clean Architecture and

SOLID [4]. That’s why every project usually contains

separate packages with code for business logic (domain

layer), code for retrieving data from the network, files, or

database (data layer), and code for presenting the interface

(UI layer). In all modern projects Dependency Injection [5]

frameworks are commonly used to create instances of

classes according to their scope.

Staying within a single module, classes have access to

all other classes because of their internal visibility. That’s

why they are often misused, contrary to the principles of

single responsibility, interface segregation, and the open-

closed principle. As result a team create typical single-

module monolithic giant projects.

A typical large project is developed and maintained

by a big developer team. This means that all developers

regularly encounter merge conflicts, the resolving of which

is a complex technical task. These conflicts can lead to new

bugs that are difficult to prevent.

Additionally, a large monolithic project on each

developer’s local machine has a certain compilation time.

Changing any line of code triggers a long, full rebuild of

the project, reducing work productivity.

Moreover, large projects use automated processes for

code testing, build assembly and distribution. Typically,

each merge request on a remote server is checked by lint

and ktlint; the code is compiled into some build variants,

and JUnit tests and integration tests are run. Also checks of

code quality, code security, codebase size, and content

uniqueness may also be executed [6]. Depending on the

project size and the number of checks and tests, the entire

process for a single merge request can take from a couple

of minutes to an hour or more of expensive server machine

time. Also the productivity of developers decreases while

they wait for the remote verification to complete.

Over time any project grows and requires changes.

Each change can introduce errors into the existing code,

which either go unnoticed and turn into crashes in

production or are identified by costly manual or automated

regression testing.

Since the obvious cause of the listed problems is the

large size of programs, the evident solution is to divide

projects into smaller parts that can be developed, tested, and

compiled separately. A common approach is to extract parts

of the code into separate projects, which are then included

in the main project as pre-compiled JAR or AAR files or as

external dependencies of the code assembler that bring pre-

compiled code into the project [7]. This approach is

commonly used by companies that develop multiple

software products built on reusable internal libraries. The

main benefits of this approach are reduced code conflicts,

faster compilation times, and faster testing of the main

project. The effect is achieved because writing the code in

a separate, small repository eliminates merge conflicts and

improves code quality. Only public classes are visible

externally, while the internal logic remains encapsulated.

The code in such a library is covered by tests and checks

that are only run when the library itself changes.

Compilation occurs before the library is deployed, not in

the main program.

However, the approach also has disadvantages related

to architectural limitations. Not every fragment of code can

be isolated and reused for a long time without

modifications. If functionality undergoes frequent changes,

it must be updated, tested, and published before being used

in the main project. Additionally, if this functionality

depends on another internal library that also requires

changes, maintaining and developing such projects beco-

mes a complex technical challenge related to versioning.

Therefore, this approach is typically not applied to projects

that do not require code reuse, and therefore there is a need

to find other approaches to structuring the mobile appli-

cation code.

2. The essence of a modularization and

classification of approaches to implementing

modularization a mobile application project.

2.1. The essence of modularization and basic

assessment of the effectiveness of its implementation.

The concept of "modularization of a mobile application

project" should be understood as the distribution of project

code into files to ensure ease of development, flexibility to

changes in requirements, maintainability and scalability.

The term is compiled based on a similar term

in robotics [8].

Assuming that the compilation time of a monolith

project depends on the number of files n and the complexity

of dependencies between them ()() f n :

 ()mono () .= T f n

In a modular approach, where the project is divided

into m independent modules, each containing n/m files, the

compilation time becomes:

 modular

()
.

 
=  

 

f n
T

m

To build projects, the development company on which

the research was conducted uses Gradle, an Android

application build system that provides flexibility,

automation, and support for numerous plugins. It is the

standard in modern Android development due to its

adaptability and efficiency [9]. Dividing a project into

independent Gradle modules allows you to build and cache

them separately. Gradle supports parallel and incremental

builds.

Incremental building means that Gradle rebuilds only

the modified files, leaving the rest of the project untouched.

At the same time, separate parts are built simultaneously in

parallel processes, significantly speeding up the build. The

Gradle Build Cache configuration allows reuse of results

from previous builds, avoiding duplicated effort.

Time of incremental compilation:

 ()build () .=  T f n

where n is the number of modified files.

In a monolith project nn  , whereas in a modular

project mnn  .

Thus, even splitting a single-module project in half

into two modules can approximately halve the build time if

changes are made to only one module. This is highly

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

64 аналіз, управління та інформаційні технології, № 2 (14) 2025

beneficial for large projects, where every second of saved

time matters.

At the same time the number of merge conflicts

depends on the number of modified files F and number of

developers D:

 ()mono .=  C F D

If the code is divided into modules and developers

work independently then:

mono .

 
=  

 

F D
C

m

This means that the more modules there are, the fewer

code conflicts occur.

In the course of further research, results were obtained

that allow implementing modularization and assessing the

feasibility of its use.

2.2. Formal model of modularization. The first step

was to create a formal model of the Android application.

Android application may be represented as a set of all

its components S (e.g., classes, functions, resources, etc.)

Then modularization may be considered as a division the

set S into subsets (modules) that meet certain criteria

(functionality, independence, reusability).

The set of all components of the application:

 1 2{ , ,..., }.= Nc c cS

Modularization M may be considered as a family of

subsets, where each module is subset of S:

 .,...,,...,, iKi SMMMMMM = },{ 21

The union of all modules covers the entire application:

 .
K

i i SM =
= 1

In the ideal case modules do not intersect, though in

reality, there may be weak dependencies:

 .ji,ii =MM 

Thus, modularization is the portioning of the set S into

non-overlaping (or minimally overlapping) subsets:

.ji,

...

ji

k

=

=

MM

MMMS



 ;21

The division of a project into modules can be done in

various ways [10], which are discussed below.

2.3. Classification of approaches to implementing

modularization.

2.3.1. Horizontal Modularization. The horizontal

approach is based on dividing the code into layers in

accordance with the principles of Clean Architecture [11],

where the project is split into data, domain, and UI layers:

 .,, }{ UIdomaindata MMMM =

Compilation time of monolith project is:

 ,TTTT UIdomaindatamono ++=

where dataT , domainT and UIT are compilation time of code

of appropriate parts.

For a modular approach where work is done in

parallel:

 hor.modular data domain UImax(, ,).=T T T T

It is recommended to begin the dividing by identifying

business entities (in the terminology of the Kotlin language,

used for Android development, these are data classes).

Business entities are managed by usecases, which provide

data for screen models. Usecases retrieve data from

repositories, which are hidden behind interfaces. Entities,

usecases and repository interfaces are extracted into a

separate domain module, which has no external depen-

dencies and does not depend on the type of software

product, as it defines only business logic.

Next, the implementation of repositories and all logic

for retrieving data from the network, files, and databases

are moved to a separate data module. The data module

operates with its own internal entities (data classes), which

are serialized for storage and transmission and deserialized

and transformed into domain entities for delivering data to

the domain. Thus, the data module depends on the domain

module and on external libraries for data handling (Retrofit,

Socket, Room, Preferences, Data Storage).

The remaining main module contains the code for the

UI presentation, which depends on the domain module,

from where it retrieves data. The Dependency Injection

framework (Hilt, Dagger) creates entities, keeping the data

logic hidden from the UI presentation (look at Fig. 1).

Fig. 1. Horizontal Modularization

Thus, any project can be divided into three parts, each

of which is compiled and tested separately.

2.3.2. Vertical Modularization. The strategy of

vertical module splitting is applicable when a project can

be divided into features that are independent of one another.

This, for example, works well for projects with a plain

client-server architecture, where each individual screen (or

a group of screens of the same feature) can be isolated. In

this approach, one base module is identified, which

manages navigation to the screens of other modules via

interfaces. For instance, in a typical E-commerce project,

these could be modules for product, cart, order, and user

profile (see Fig. 2). The feature modules do not depend on

each other and know nothing about one another, their logic

is encapsulated. Only the base module is aware of the

public interfaces of the other modules. In formal view

division may be presented as

 .,, },...,{ profileorderproductbase MMMMM =

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Dvukhhlavov D. E., Pelypets O. S., Dvukhhlavova A. S. Android application

modularization estimating model 65

The compilation time in the vertical approach is

 ()vert.modular 1
() ,

=
= 

K

ii
T f n

where in is the size of every feature module.

Fig. 2. Vertical Modularization

Thus, this approach resolves issues related to compi-

lation time, code conflicts and test execution.

2.3.3. Combined Modularization. In small to

medium-sized projects, applying only vertical or horizontal

modularization may suffice. However, in large enterprise

projects with distributed development teams, the effec-

tiveness of modularization may remain low if only one

approach is used.

In these situations, a combined approach is applied,

integrating both vertical and horizontal modulariza-

tion [12].

The code is split into modules both vertically and

horizontally. Each functionality is isolated into separate

data, domain, and UI modules (see Fig. 3).

Fig. 3. Combined Modularization

Domain modules may depend only on each other.

Each data module depends only on its corresponding

domain module and remains hidden from other data and UI

modules. The code for each feature screens is encapsulated

in separate UI modules, which depend on their respective

domain modules and expose only navigation interfaces

externally. A single base module retrieves all entities from

Dependency Injection framework, launches the mobile

application and manages navigation.

In formal view division may be presented as

 .

,,

...

,,

















=

UIKdomainKdataK

UI1domain1data1

MMM

MMM

M

The total compilation time for a fully divided project:

comb.modular

()
max ,

 
=  

 

i

i

f n
T

m

This approach minimizes merge conflicts and

significantly reduces the time required for building and

testing the project, as Gradle efficiently uses caching, and

tests are executed only for the modules that have been

modified. The number of tests remains minimal since only

small, isolated modules are tested.

A drawback of this approach is the complexity of

creating the modules. Therefore, while combined modula-

rization is the best solution for large-scale projects, deter-

mining the optimal number of modules remains an open

question. To address this, a mathematical model is required

to calculate the benefits of modularization.

3. Mathematical model of modularity estimating.

To assess the benefits of modularizing native Android

applications, a mathematical model is proposed that acco-

unts for the internal cohesion of modules and their external

dependencies.

The model is based on the following elements.

Let it created a set of modules M:

 .,...,, K }{ 21 MMMM =

where iM is an individual module.

A directed graph of connections may be described as

 (,),=G M E

where MME  represents dependencies between

modules (it is the set of directed edges that describe the

connections between modules).

For each edge Eije the communication cost bet-

ween modules iM and jM can be defined as

 (,),=ij ij ijC f L D

where ijL is the connection latency and ijD is the volume

of data transmitted.

The key idea lies in balancing two characteristics: the

cohesion of a module Coh()iM and the coherence of the

system Cohes()M . Cohesion Coh()iM measures the

internal consistency of a module (in conditional units from

0 to 100), while coherence Cohes()M is defined as the

number of connections between different modules E .

The objective function for the benefit of multi-

modularity is given as follows:

1

() Coh() Cohes(),
=

=  − 
N

i

i

V M M M 

where α is the weight coefficient for cohesion, and β is the

weight coefficient for coherence.

To evaluating modularization more realistically, the

objective function have been extended by adding a

saturation term for the intrinsic benefit of modularization

and a fragmentation cost that grows with the number of

modules:

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

66 аналіз, управління та інформаційні технології, № 2 (14) 2025

PR

1

max cpl

() Coh() Cohes

(1) ,

=

−

=  −  +

+  − −


N

i

i

kN q

V

B e C N

M M 

where PRCohes – the level project coherence between

modules (to distinguish it from per-module cohesion);

max (1)− − kNB e – the saturation benefit of having more

modules; maxB – the maximum attainable bonus, 0k is

the saturation rate; cpl

qC N – the fragmentation (coordi-

nation) cost that grows with the number of modules;

cpl 0C – the amplitude of that cost; q is a dimensionless

scaling exponent that controls the nonlinearity of the

fragmentation cost.

In the subsequent calculations the following

empirically derived coefficient values was used: 50.= ,

350.= , 900max =B , 060.k = ,
cpl 0.6=C , 81.q = .

The goal of the model is to maximize ()V M , which

is achieved by increasing the internal consistency of

modules while minimizing their external dependencies.

4. Practical calculations. To demonstrate the

model’s functionality, let’s consider an example of an E-

Commerce application on Android, written in Kotlin, with

a total codebase of 200 000 lines. The application includes

eight functional areas: authorization, product pages,

product categories, search, bag, checkout, user profile

(payment details, shipping address), and order history. Is

was calculated ()V M for three architectural variants: a

single-module project, a multi-module project with 8

modules, and a multi-module project with 24 modules

based on Clean Architecture principles.

4.1. Single-Module Project. In the first variant, the

entire application code (200 000 lines) resides in a single

module 1M , encompassing all functions – from authori-

zation to order history. The number of modules is 1=n and

the size 0002001 =M significantly exceeds maxS , which

is permissible for this baseline case. Cohesion

1Coh() 50=M as the mixing of eight diverse functions

(e.g., payment logic with category UI) reduces internal

consistency. There are no external connections, so

0Cohes PR = . Calculation:

1

0.06 1 1.8

() 0.5 50 0.35 0

900 (1) 0.6 1 76.81.− 

=  −  +

+  − −  =

V

e

M

The value 1() 76.81=V M reflects low benefit due to

weak cohesion, although the absence of inter-module

dependencies eliminates any coherence penalty. This

approach is typical for monolithic applications, where

maintenance and scaling are challenging.

4.2. Multi-Module Project (8 Modules). In the

second variant, the application is divided into 8 feature-

modules, each responsible for a separate function.
The number of modules is n=8, and the code is

distributed as follows: authorization – 15 000 lines;
categories – 30 000; search – 20 000; cart – 25 000;
payment – 30 000; profile – 25 000; history – 15 000.

Summa of lines in modules equals 200 000.

Module cohesion is high due to functional isolation:

• 1Coh() 90=M (authorization);

• 2Coh() 85=M (product pages);

• 3Coh() 80=M (categories);

• 4Coh() 85=M (search);

• 5Coh() 80=M (bag);

• 6Coh() 85=M (checkout);

• 7Coh() 80=M (profile);

• 8Coh() 90=M (order history).

Sum of cohesions:

8

1

Coh()

90 85 80 85 80 85 80 90 675.

=

=

= + + + + + + + =

 i

i

M

Connections between modules include:

• authorization → profile;

• authorization → cart;

• product pages → bag;

• categories → product pages;

• search → product pages;

• bag → checkout; checkout → order history;

• profile → checkout;

• order history → product pages.

Total 9Cohes PR = .

Calculation:

8

0.06 8 1.8

() 0.5 675 0.35 9

900 (1) 0.6 8 652.11.− 

=  −  +

+  − −  =

V

e

M

The value 8() 652.11=V M demonstrates a signifi-

cant increase in benefit compared to the single-module

variant 1() 76.81=V M due to high cohesion (average

iCoh() 84.4M) and moderate coherence, confirming the

effectiveness of modularization for medium and large

applications.

4.3. Multi-Module Project with Clean Architecture

(24 Modules). In the third variant, each of the 8 feature-

modules is split into three layers according to Clean

Architecture principles: data layer (data handling), domain

layer (business logic), and UI layer (interface). This results

in 8 3 24=  =n modules. The code has been divided into

several parts, the description of which is presented below.

Feature Authorization: data 4 000 lines, domain

3 000, UI 8 000 lines of code (15 000).

Feature Product page: data 10 000, domain 8 000,

UI 22 000 (40 000).

Feature Categories: data 8 000, domain 6 000,

UI 16 000 (30 000).

Feature Search: data 5 000, domain 4 000,

UI 11 000 (20 000).

Feature Bag: data 6 000, domain 5 000,

UI 14 000 (25 000).

Feature Checkout: data 8 000, domain 6 000,

UI 16 000 (30 000).

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Dvukhhlavov D. E., Pelypets O. S., Dvukhhlavova A. S. Android application

modularization estimating model 67

Feature Profile: data 6 000, domain 5 000, UI 14 000

(25 000).

Feature Order History: data 4 000, domain 3 000,

UI 8 000 (15 000).

Total: 200 000 lines of code.

Layer cohesion is high due to strict isolation:

dataCoh() 90=iM (data logic); domainCoh() 95=iM (use

cases); UICoh() 80=iM (because UI depends on domain).

Calculation of cohesions: 8 90 720 = (data);

8 95 760 = (domain); 8 80 640 = (UI).

Sum of cohesions:

24

1

Coh() 720 760 640 2120.
=

= + + = i

i

M

Calculation:

24

0.06 24 1.8

() 0.5 2120 0.35 25

900 (1) 0.6 24 1554.98.− 

=  −  +

+  − −  =

V

e

M

The value 24() 1554.98=V M demonstrates

maximum benefit due to high cohesion (average

Coh() 88.3iM), despite the increase in coherence.

4.4. Variants 4, 12 and 50 modules. In the same way

calculations for 4 modules, 12 modules and 50 modules

project were done to expand data for diagram.

4-Module Variant (4() 348.36=V M) shows a signi-

ficant improvement over the single-module variant due to

better functional isolation, but its benefit is limited by lower

cohesion (broader feature groups) and moderate coherence.

It is a practical starting point for smaller projects or teams

transitioning from a monolithic architecture.

12-Module Variant (12() 901.06=V M) offers a

higher benefit than the 8-module variant due to finer

granularity and higher cohesion, but it is penalized by

significantly higher coherence (38 edges vs. 9 in the 8-

module variant) due to the addition of utility modules. This

approach is suitable for medium-to-large projects where

shared utilities are beneficial but not yet requiring full

Clean Architecture.

50-Module Variant (50() 1427.27=V M) shows a

lower benefit than the 24-module optimum, indicating a

smooth decline beyond the peak due to diminishing

cohesion gains and increasing fragmentation/coordination

costs from over-modularization.

Results are present below in table 1 and Fig. 4.

Table 1 – Results of calculation of modularity benefits

Variant n
1

Coh()
=


N

i

i

M PRCohes ()V M

Single-Module 1 50 0 76.81

Multi-Module 1 4 330 4 348.36

Multi-Module 2 8 675 9 652.11

Multi-Module 3 12 1010 38 901.06

Multi-Module 4 24 2120 25 1554.98

Multi-Module 5 50 2600 120 1427.23

Fig. 4. Dependency of Modularization Benefit
()V M

 on Number of Modules n

4.5. Analysis. Comparing the three variants reveals:

the single-module project (1() 76.81=V M) offers low

benefit due to weak cohesion; the 8-module variant

(8() 652.11=V M) improves the result through functional

isolation; the 24-module variant with Clean Architecture

24(() 1554.98)=V M maximizes
()V M

 due to strict layer

separation. For Android applications on Kotlin, this

underscores the value of modularization, especially

)Cohes(M with tools like Hilt to minimize dependencies.

The increase in from 0 to 25 is offset by the rise in

Coh() iM from 50 to 2120, making the 24-module

approach optimal for large projects.

Conclusions. Presented results of the study

demonstrates that modularization significantly enhances

the maintainability and scalability of Android applications,

addressing the limitations of monolithic architectures. By

applying horizontal, vertical, and combined modularization

strategies rooted in SOLID principles and Clean Archi-

tecture, developers can reduce merge conflicts, accelerate

build times, and streamline testing processes.

The proposed mathematical model provides a

quantitative framework to evaluate these benefits,

revealing that a 24-module structure, integrating feature

and layer-based separation, offers the greatest advantage

for large-scale projects (benefit score: 1554.98) compared

to single-module (76.81) or 8-module (652.11) designs.

While the complexity of managing numerous modules

poses challenges, tools like Gradle and Dependency

Injection frameworks (e.g., Hilt) mitigate these drawbacks.

Future research could refine the model by incorporating

dynamic factors such as team size, development velocity,

or real-world performance metrics, further optimizing

modularization strategies for enterprise mobile applications

across platforms.

References

1. Android Developers. Guide to App Modularization. URL:

https://developer.android.com/topic/modularization (accessed

11.11.2025).
2. Gorin M. Modular Architecture: The Key to Efficient Mobile App

Development. Medium. URL: https://maxim-

gorin.medium.com/modular-architecture-the-key-to-efficient-

mobile-app-development-8c0640edfff4 (accessed 11.11.2025).

3. ACA Group. The Benefits of a Modular Architecture in Mobile

Development. URL: https://acagroup.be/en/blog/the-benefits-of-a-

https://developer.android.com/topic/modularization?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://acagroup.be/en/blog/the-benefits-of-a-modular-architecture-in-mobile-development/?utm_source=chatgpt.com

 ISSN 2079-0023 (print), ISSN 2410-2857 (online)

 Вісник Національного технічного університету «ХПІ». Серія: Системний

68 аналіз, управління та інформаційні технології, № 2 (14) 2025

modular-architecture-in-mobile-development/ (accessed

11.11.2025).
4. Martin R. C. Clean Architecture: A Craftsman’s Guide to Software

Structure and Design. Upper Saddle River, NJ: Prentice Hall, 2017.

432 p.
5. Android Developers. Dependency injection in Android. URL:

https://developer.android.com/training/dependency-injection

(accessed 11.11.2025).
6. Chow J. Software Architecture with Kotlin: Combine various

architectural styles to create sustainable and scalable software

solutions. Packt Publishing, 2024. 462 p.
7. Wangereka, H. (2024) Mastering Kotlin for Android 14: Build

powerful Android apps from scratch using Jetpack libraries and

Jetpack Compose. Packt Publishing, 2024. 370 p.
8. ISO. (2021) ISO 22166-1:2021 Robotics – Modularity for service

robots – Part 1: General requirements. Edition 1. Geneva:

International Organization for Standardization. 69 p.
9. Gradle. Build Tool. URL: https://gradle.org/ (accessed 11.11.2025).

10. Pelypets O. S., Dvukhhlavov D. E. Strategies of Modularization for

Android Applications. Інформаційні технології: наука, техніка,
технологія, освіта, здоров’я. Тези доповідей міжнародної

науково-практичної конференції MicroCAD-2025 (14–17 травня

2025 р., м.Харків). Харків: НТУ «ХПІ», 2025. C. 1395.
11. Aigner S., Elizarov R., Isakova S., Jemerov D. Kotlin in Action,

Second Edition. Manning Publications, 2024. 560 p.
12. Campos, E., Kulesza U., Coelho R., Bonifácio R., Mariano L.

Unveiling the Architecture and Design of Android Applications.

An Exploratory Study. Proceedings of the 17th International
Conference on Enterprise Information Systems (ICEIS). P. 201–211.

DOI: 10.5220/0005398902010211.

References (transliterated)

1. Android Developers. Guide to App Modularization. Available at:

https://developer.android.com/topic/modularization (accessed

11.11.2025).
2. Gorin M. Modular Architecture: The Key to Efficient Mobile App

Development. Medium. Available at: https://maxim-

gorin.medium.com/modular-architecture-the-key-to-efficient-
mobile-app-development-8c0640edfff4 (accessed 11.11.2025).

3. ACA Group. The Benefits of a Modular Architecture in Mobile

Development. URL: https://acagroup.be/en/blog/the-benefits-of-a-
modular-architecture-in-mobile-development/ (accessed

11.11.2025).

4. Martin R. C. Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. Upper Saddle River, NJ: Prentice Hall, 2017.

432 p.

5. Android Developers. Dependency injection in Android. Available at:
https://developer.android.com/training/dependency-injection

(accessed 11.11.2025).

6. Chow J. Software Architecture with Kotlin: Combine various
architectural styles to create sustainable and scalable software

solutions. Packt Publishing, 2024. 462 p.

7. Wangereka, H. (2024) Mastering Kotlin for Android 14: Build
powerful Android apps from scratch using Jetpack libraries and

Jetpack Compose. Packt Publishing, 2024. 370 p.

8. ISO. (2021) ISO 22166-1:2021 Robotics – Modularity for service
robots – Part 1: General requirements. Edition 1. Geneva:

International Organization for Standardization. 6 pp.

9. Gradle. Build Tool. Available at: https://gradle.org/ (accessed
11.11.2025).

10. Pelypets O. S., Dvukhhlavov D. E. Strategies of Modularization for

Android Applications. Informatsiini tekhnolohii: nauka, tekhnika,
tekhnolohiia, osvita, zdorovia. Tezy dopovidei mizhnarodnoi

naukovo-praktychnoi konferentsii MicroCAD-2025 (14–17 travnia
2025 r., m.Kharkiv). [Information Technologies: Science,

Engineering, Technology, Education, Health: Proceedings of the

International Sci.-Pract. Conf. MicroCAD-2025 (14–17 May 2025)].
Kharkiv: NTU “KhPI”, 2025, p.1395.

11. Aigner S., Elizarov R., Isakova S., Jemerov D. Kotlin in Action,

Second Edition. Manning Publications, 2024. 560 p.
12. Campos, E., Kulesza U., Coelho R., Bonifácio R., Mariano L.

Unveiling the Architecture and Design of Android Applications.

An Exploratory Study. Proceedings of the 17th International
Conference on Enterprise Information Systems (ICEIS), pp. 201–211.

DOI: 10.5220/0005398902010211.

Received 18.11.2025

УДК 004.41

Д. Е. ДВУХГЛАВОВ, кандидат технічних наук (PhD), доцент, Національний технічний університет

«Харківський політехнічний інститут», доцент кафедри програмної інженерії та інтелектуальних технологій

управління, м. Харків, Україна; e-mail: dmytro.dvukhhlavov@khpi.edu.ua; ORCID: https://orcid.org/0000-0002-3361-3212

О. С. ПЕЛИПЕЦЬ, Національний технічний університет «Харківський політехнічний інститут», магістрантка,

м. Харків, Україна; e-mail: pelipets.olga.developer@gmail.com; ORCID: https://orcid.org/0009-0005-5974-9045

А. С. ДВУХГЛАВОВА, Національний технічний університет «Харківський політехнічний інститут»,

старша викладачка програмної інженерії та інтелектуальних технологій управління, м. Харків, Україна;

e-mail: alona.dvukhhlavova@khpi.edu.ua; ORCID: https://orcid.org/0000-0002-0111-3010

МОДЕЛЬ ОЦІНЮВАННЯ МОДУЛЯРИЗАЦІЇ ANDROID-ЗАСТОСУНКІВ

Актуальність дослідження, результати якого представлені, визначається тим, що мобільні застосунки еволюціонували в складні програмні

системи зі зростаючими кодовими базами, що ускладнює розробку, тестування та підтримку. Показано, що покращення супроводжуваності

та масштабованості проєктів Android-застосунків можливе шляхом переходу від монолітної архітектури до модульної архітектури, виходячи
або з переліку функцій, які має виконувати застосунок, або з архітектурних особливостей створення застосунку. Для вибору варіанта

модуляризації запропоновано класифікацію підходів до модуляризації. Незалежно від того, який напрямок реалізації модуляризації обрано,

він спрямований на зменшення впливу змін в одному модулі на необхідність внесення змін до інших. Таку залежність між модулями можна
оцінити, визначивши зв’язність та узгодженість проекту та окремих модулів. Для кількісної оцінки переваг модульності розроблено

математичну модель, яка враховує баланс між зв’язністю модулів та цілісністю проєкту в цілому. Модель пропонує враховувати кількість

модулів, на які буде розділена монолітна архітектура, рівень взаємодії між модулями, що будуть обрані, а також рівень їх залежності один від
одного. Представлено вирази для автоматизації розрахунків варіантів поділу на модулі. Представлено результати оцінки модуляризації

проекту Android-застосунку для електронної комерції на основі різних підходів до реалізації модуляризації. Отримані оцінки дозволили

продемонструвати потенціал модуляризації у скороченні часу збирання проекту, мінімізації конфліктів та підвищенні гнучкості проекту,
пропонуючи масштабоване рішення для сучасної мобільної розробки.

Ключові слова: класифікація підходів до реалізації модуляризації Android-застосунків, модель модуляризації, показники оцінки

варіантів модуляризації Android-додатків, зв’язність та узгодженість проекту.

Повні імена авторів / Author's full names

Автор 1 / Author 1: Двухглавов Дмитро Едуардович / Dvukhhlavov Dmytro Eduardovych

Автор 2 / Author 2: Пелипець Ольга Сергіївна / Pelypets Olha Serhiivna

Автор 3 / Author 3: Двухглавова Альона Сергіївна / Dvukhhlavova Alona Serhiivna

https://acagroup.be/en/blog/the-benefits-of-a-modular-architecture-in-mobile-development/?utm_source=chatgpt.com
https://developer.android.com/training/dependency-injection?utm_source=chatgpt.com
https://gradle.org/?utm_source=chatgpt.com
https://developer.android.com/topic/modularization?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://acagroup.be/en/blog/the-benefits-of-a-modular-architecture-in-mobile-development/?utm_source=chatgpt.com
https://acagroup.be/en/blog/the-benefits-of-a-modular-architecture-in-mobile-development/?utm_source=chatgpt.com
https://developer.android.com/training/dependency-injection?utm_source=chatgpt.com
https://gradle.org/?utm_source=chatgpt.com
mailto:pelipets.olga.developer@gmail.com

