ISSN 2079-0023 (print), ISSN 2410-2857 (online)

DOI: 10.20998/2079-0023.2025.02.08
UDC 004.41

D. E. DVUKHHLAVOV, Candidate of Technical Sciences (PhD), Docent, Associate Professor at the Department of
Department of Software Engineering and Management Intelligent Technologies, National Technical University "Kharkiv
Polytechnic Institute”, Kharkiv, Ukraine; e mail: dmytro.dvukhhlavov@khpi.edu.ua; ORCID: https://orcid.org/0000-0002-3361-
3212

O. S. PELYPETS, Master Student, National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine; e-mail:
pelipets.olga.developer@gmail.com; ORCID: https://orcid.org/0009-0005-5974-9045

A. S. DVUKHHLAVOVA, Senior Lecturer at the Department of Software Engineering and Management Intelligent
Technologies, National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine;

e-mail: alona.dvukhhlavova@khpi.edu.ua; ORCID: https://orcid.org/0000-0002-0111-3010

ANDROID APPLICATION MODULARIZATION ESTIMATING MODEL

The relevance of the research, the results of which are presented, is determined by the fact that mobile applications have evolved into complex software
systems with growing code bases, which complicates development, testing and support. It is shown that improving the maintainability and scalability of
Android applications projects is possible by moving from a monolithic architecture to a modular architecture, based either on the list of functions that
the application should perform, or on the architectural features of creating the application. To select a modularization option, a classification of
approaches to modularization implementing is proposed. Regardless of which direction of modularization implementing is chosen, it is aimed at reducing
the impact of changes in one module on the need to make changes to others. Such a dependence between modules can be assessed by determining the
cohesion and coherence of the project and individual modules. To quantitatively assess the advantages of modularization, a mathematical model has
been developed that takes into account the balance between the cohesion of modules and the integrity of the project in whole. The model proposes to
take into account the number of modules into which the monolithic architecture will be divided, the level of interaction between the modules that will
be selected, as well as the level of their dependence on each other. Expressions are presented for automating calculations of division options into modules.
The results of the assessment of the modularization of the Android application project for e-commerce based on different approaches to modularization
implementing are presented. The obtained evaluation data allowed us to demonstrate the potential of modularization in reducing project assembly time,

minimizing conflicts, and increasing project flexibility, offering a scalable solution for modern mobile development.
Keywords: classification of approaches to Android application modularization implementing, modularization model, evaluation indicators for

Android application modularization options, project cohesion and coherence.

Introduction. Mobile applications perform the
majority of informational tasks required by people in
everyday life. Over the past decade, mobile development
has undergone significant evolution: from simple
applications with basic functions, such as calculators or
notepads, it has advanced to complex software systems,
such as social networks, governmental programs,
navigation systems, banking applications, and business
software. As the power and functionality of mobile devices
increase, so do user demands. Project sizes are
continuously expanding, and their complexity is rising
exponentially. Modern mobile applications often contain
hundreds of thousands of lines of code and numerous
integrations with external services, making their develop-
ment, testing, and maintenance increasingly challenging
tasks. The main typical problem faced by large projects is
the complex structure of the code, which makes it difficult
to detect errors. The complex structure of monolithic code
complicates both manual and automated testing, makes it
labor-intensive and resource-intensive, and flexibility,
scalability and ease of support suffer.

Purpose of the work. The briefly described features
of modern mobile application development determine the
relevance of research that considers the issue of structuring
the code of large-scale mobile applications, since
unstructured code can lead to development delays,
increased costs and reduced product quality. This article
presents the results of one of the studies in this scientific
and practical direction, the object of which is the process of
creating mobile applications for the Android platform with

a large amount of code. The subject of this study is
approaches to organizing development and principles of
code structuring to ensure maintainability and scalability of
the mobile application project.

The purpose of the research was to reduce the time for
testing and compiling a version of the mobile application.

The purpose of the article, which is presented at the
discretion of specialists, is to reveal the concept of modu-
larization of a mobile application project, present a clas-
sification of approaches to implementing modularization
and a model for assessing the effectiveness of modulari-
zation, as well as present the results of assessing the
effectiveness of modularization for different approaches
using the example of one of the projects of a specific
development company.

Research results.

1. Analysis of problem areas in the development of
large-scale mobile applications projects and known
approaches to solving them. Studying sources [1] and [2]
allows to create a vision of the mobile application
development process. The development process of a mobile
application often begins with a single-module "Hello
World!" project and continues by adding new code,
creating function after function.

Developers divide the code mobile application into
meaningful parts based on the app’s features. Popular
examples of such features are Authorization, Registration,
Onboarding, Home Screen, Search, Product Catalog,
Product Details Page, Account, Payment, Favorites, etc [3].

Developers in same time also attempt to divide the

© Dvukhhlavov D. E., Pelypets O. S., Dvukhhlavova A. S., 2025

"Bulletin of the National Technical University "KhPI" Series: System analysis, management and

Research Article: This article was published by the publishing house of NTU ""KhPI"" in the collection
information technologies.” This article is distributed under a Creative Common Creative Common OPEN 8ACCESS

Attribution (CC BY 4.0). Conflict of Interest: The author/s declared no conflict of interest.

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii

62

ananiz, ynpaguinus ma ingopmayiini mexronoeii, Ne 2 (14) 2025

mailto:pelipets.olga.developer@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

code according to the principles of Clean Architecture and
SOLID [4]. That’s why every project usually contains
separate packages with code for business logic (domain
layer), code for retrieving data from the network, files, or
database (data layer), and code for presenting the interface
(Ul layer). In all modern projects Dependency Injection [5]
frameworks are commonly used to create instances of
classes according to their scope.

Staying within a single module, classes have access to
all other classes because of their internal visibility. That’s
why they are often misused, contrary to the principles of
single responsibility, interface segregation, and the open-
closed principle. As result a team create typical single-
module monolithic giant projects.

A typical large project is developed and maintained
by a big developer team. This means that all developers
regularly encounter merge conflicts, the resolving of which
is a complex technical task. These conflicts can lead to new
bugs that are difficult to prevent.

Additionally, a large monolithic project on each
developer’s local machine has a certain compilation time.
Changing any line of code triggers a long, full rebuild of
the project, reducing work productivity.

Moreover, large projects use automated processes for
code testing, build assembly and distribution. Typically,
each merge request on a remote server is checked by lint
and ktlint; the code is compiled into some build variants,
and JUnit tests and integration tests are run. Also checks of
code quality, code security, codebase size, and content
unigueness may also be executed [6]. Depending on the
project size and the number of checks and tests, the entire
process for a single merge request can take from a couple
of minutes to an hour or more of expensive server machine
time. Also the productivity of developers decreases while
they wait for the remote verification to complete.

Over time any project grows and requires changes.
Each change can introduce errors into the existing code,
which either go unnoticed and turn into crashes in
production or are identified by costly manual or automated
regression testing.

Since the obvious cause of the listed problems is the
large size of programs, the evident solution is to divide
projects into smaller parts that can be developed, tested, and
compiled separately. A common approach is to extract parts
of the code into separate projects, which are then included
in the main project as pre-compiled JAR or AAR files or as
external dependencies of the code assembler that bring pre-
compiled code into the project [7]. This approach is
commonly used by companies that develop multiple
software products built on reusable internal libraries. The
main benefits of this approach are reduced code conflicts,
faster compilation times, and faster testing of the main
project. The effect is achieved because writing the code in
a separate, small repository eliminates merge conflicts and
improves code quality. Only public classes are visible
externally, while the internal logic remains encapsulated.
The code in such a library is covered by tests and checks
that are only run when the library itself changes.
Compilation occurs before the library is deployed, not in
the main program.

However, the approach also has disadvantages related

to architectural limitations. Not every fragment of code can
be isolated and reused for a long time without
modifications. If functionality undergoes frequent changes,
it must be updated, tested, and published before being used
in the main project. Additionally, if this functionality
depends on another internal library that also requires
changes, maintaining and developing such projects beco-
mes a complex technical challenge related to versioning.
Therefore, this approach is typically not applied to projects
that do not require code reuse, and therefore there is a need
to find other approaches to structuring the mobile appli-
cation code.

2. The essence of a modularization and
classification of approaches to implementing
modularization a mobile application project.

2.1. The essence of modularization and basic
assessment of the effectiveness of its implementation.
The concept of "modularization of a mobile application
project" should be understood as the distribution of project
code into files to ensure ease of development, flexibility to
changes in requirements, maintainability and scalability.
The term is compiled based on a similar term
in robotics [8].

Assuming that the compilation time of a monolith
project depends on the number of files n and the complexity
of dependencies between them O(f(n)):

Tooo = O(F(N)).

In @ modular approach, where the project is divided
into m independent modules, each containing n/m files, the
compilation time becomes:

Tmodular =0 (wj :

m

To build projects, the development company on which
the research was conducted uses Gradle, an Android
application build system that provides flexibility,
automation, and support for numerous plugins. It is the
standard in modern Android development due to its
adaptability and efficiency [9]. Dividing a project into
independent Gradle modules allows you to build and cache
them separately. Gradle supports parallel and incremental
builds.

Incremental building means that Gradle rebuilds only
the modified files, leaving the rest of the project untouched.
At the same time, separate parts are built simultaneously in
parallel processes, significantly speeding up the build. The
Gradle Build Cache configuration allows reuse of results
from previous builds, avoiding duplicated effort.

Time of incremental compilation:

Toia = O(f(AN)).

where An is the number of modified files.

In a monolith project An=n, whereas in a modular
project An~n/m.

Thus, even splitting a single-module project in half

into two modules can approximately halve the build time if
changes are made to only one module. This is highly

Dvukhhlavov D. E., Pelypets O. S., Dvukhhlavova A. S. Android application

modularization estimating model

63

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

beneficial for large projects, where every second of saved
time matters.

At the same time the number of merge conflicts
depends on the number of modified files F and number of
developers D:

Crore =O(F D).

If the code is divided into modules and developers
work independently then:

Cmono =0 [QJ .
m

This means that the more modules there are, the fewer
code conflicts occur.

In the course of further research, results were obtained
that allow implementing modularization and assessing the
feasibility of its use.

2.2. Formal model of modularization. The first step
was to create a formal model of the Android application.

Android application may be represented as a set of all
its components S (e.g., classes, functions, resources, etc.)
Then modularization may be considered as a division the
set S into subsets (modules) that meet certain criteria
(functionality, independence, reusability).

The set of all components of the application:

S ={c,.c,,....Cy }

Modularization M may be considered as a family of
subsets, where each module is subset of S:

M={M; . My,,..M, ..M} M, cS.

The union of all modules covers the entire application:
K
i=1

In the ideal case modules do not intersect, though in
reality, there may be weak dependencies:

Thus, modularization is the portioning of the set S into
non-overlaping (or minimally overlapping) subsets:

The division of a project into modules can be done in
various ways [10], which are discussed below.

2.3. Classification of approaches to implementing
modularization.

2.3.1. Horizontal Modularization. The horizontal
approach is based on dividing the code into layers in
accordance with the principles of Clean Architecture [11],
where the project is split into data, domain, and Ul layers:

M = {M data » M domain M ul }
Compilation time of monolith project is:

Tiono = Tdata + Taomain + Tut »

where Tyua s Taomain @Nd Ty, are compilation time of code

of appropriate parts.
For a modular approach where work is done in
parallel:

Thor,mudular = maX(Tdata ’Tdomain ’TUI)

It is recommended to begin the dividing by identifying
business entities (in the terminology of the Kotlin language,
used for Android development, these are data classes).
Business entities are managed by usecases, which provide
data for screen models. Usecases retrieve data from
repositories, which are hidden behind interfaces. Entities,
usecases and repository interfaces are extracted into a
separate domain module, which has no external depen-
dencies and does not depend on the type of software
product, as it defines only business logic.

Next, the implementation of repositories and all logic
for retrieving data from the network, files, and databases
are moved to a separate data module. The data module
operates with its own internal entities (data classes), which
are serialized for storage and transmission and deserialized
and transformed into domain entities for delivering data to
the domain. Thus, the data module depends on the domain
module and on external libraries for data handling (Retrofit,
Socket, Room, Preferences, Data Storage).

The remaining main module contains the code for the
Ul presentation, which depends on the domain module,
from where it retrieves data. The Dependency Injection
framework (Hilt, Dagger) creates entities, keeping the data
logic hidden from the Ul presentation (look at Fig. 1).

Fig. 1. Horizontal Modularization

Thus, any project can be divided into three parts, each
of which is compiled and tested separately.

2.3.2. Vertical Modularization. The strategy of
vertical module splitting is applicable when a project can
be divided into features that are independent of one another.
This, for example, works well for projects with a plain
client-server architecture, where each individual screen (or
a group of screens of the same feature) can be isolated. In
this approach, one base module is identified, which
manages navigation to the screens of other modules via
interfaces. For instance, in a typical E-commerce project,
these could be modules for product, cart, order, and user
profile (see Fig. 2). The feature modules do not depend on
each other and know nothing about one another, their logic
is encapsulated. Only the base module is aware of the
public interfaces of the other modules. In formal view
division may be presented as

M = {M base M product M order M profile }

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii

64

ananiz, ynpaguinus ma ingopmayiini mexronoeii, Ne 2 (14) 2025

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

The compilation time in the vertical approach is
K
Tvert.modular = zizlo(f (ni))’

where n; is the size of every feature module.

Fig. 2. Vertical Modularization

Thus, this approach resolves issues related to compi-
lation time, code conflicts and test execution.

2.3.3. Combined Modularization. In small to
medium-sized projects, applying only vertical or horizontal
modularization may suffice. However, in large enterprise
projects with distributed development teams, the effec-
tiveness of modularization may remain low if only one
approach is used.

In these situations, a combined approach is applied,
integrating both vertical and horizontal modulariza-
tion [12].

The code is split into modules both vertically and
horizontally. Each functionality is isolated into separate
data, domain, and Ul modules (see Fig. 3).

Fig. 3. Combined Modularization

Domain modules may depend only on each other.
Each data module depends only on its corresponding
domain module and remains hidden from other data and Ul
modules. The code for each feature screens is encapsulated
in separate Ul modules, which depend on their respective
domain modules and expose only navigation interfaces
externally. A single base module retrieves all entities from
Dependency Injection framework, launches the mobile
application and manages navigation.

In formal view division may be presented as

M datal: M domainl M uil
M =

M dataK ! M domainK M UIK

The total compilation time for a fully divided project:

T

comb.modular

= mia)(o(mj7

m

This approach minimizes merge conflicts and
significantly reduces the time required for building and
testing the project, as Gradle efficiently uses caching, and
tests are executed only for the modules that have been
modified. The number of tests remains minimal since only
small, isolated modules are tested.

A drawback of this approach is the complexity of
creating the modules. Therefore, while combined modula-
rization is the best solution for large-scale projects, deter-
mining the optimal number of modules remains an open
question. To address this, a mathematical model is required
to calculate the benefits of modularization.

3. Mathematical model of modularity estimating.
To assess the benefits of modularizing native Android
applications, a mathematical model is proposed that acco-
unts for the internal cohesion of modules and their external
dependencies.

The model is based on the following elements.

Let it created a set of modules M:

M={M;,M,...M}.

where M; is an individual module.
A directed graph of connections may be described as

G =(M,E),

where E < M xM represents dependencies between
modules (it is the set of directed edges that describe the
connections between modules).

For each edge e;; € E the communication cost bet-

ween modules M; and M can be defined as

Cij = f(L" Dij)v

ij?
where L;; is the connection latency and D; is the volume

of data transmitted.
The key idea lies in balancing two characteristics: the
cohesion of a module Coh(M;) and the coherence of the

system Cohes(M). Cohesion Coh(M;) measures the

internal consistency of a module (in conditional units from
0 to 100), while coherence Cohes(M) is defined as the

number of connections between different modules |E| .

The objective function for the benefit of multi-
modularity is given as follows:

V(M) =a'iCoh(Mi)—ﬂ~Cohes(M),

i=1

where « is the weight coefficient for cohesion, and g is the
weight coefficient for coherence.

To evaluating modularization more realistically, the
objective function have been extended by adding a
saturation term for the intrinsic benefit of modularization
and a fragmentation cost that grows with the number of
modules:

Dvukhhlavov D. E., Pelypets O. S., Dvukhhlavova A. S. Android application

modularization estimating model

65

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

N
V(M)=a-) Coh(M,)- B-Cohes,, +
i=1
+ By (1—e) =C N,

where Cohesg — the level project coherence between

modules (to distinguish it from per-module cohesion);
B,. -(l—e™") — the saturation benefit of having more

modules; B, — the maximum attainable bonus, k >0 is

the saturation rate; C_ N% — the fragmentation (coordi-

cpl
nation) cost that grows with the number of modules;

C., >0 — the amplitude of that cost; g is a dimensionless

scaling exponent that controls the nonlinearity of the
fragmentation cost.

In the subsequent calculations the following
empirically derived coefficient values was used: a=0.5,
B =035, By, =900, k=006, C,, =06, q=18.

The goal of the model is to maximize V (M), which

is achieved by increasing the internal consistency of
modules while minimizing their external dependencies.

4. Practical calculations. To demonstrate the
model’s functionality, let’s consider an example of an E-
Commerce application on Android, written in Kotlin, with
a total codebase of 200 000 lines. The application includes
eight functional areas: authorization, product pages,
product categories, search, bag, checkout, user profile
(payment details, shipping address), and order history. Is
was calculated V(M) for three architectural variants: a

single-module project, a multi-module project with 8
modules, and a multi-module project with 24 modules
based on Clean Architecture principles.

4.1. Single-Module Project. In the first variant, the
entire application code (200 000 lines) resides in a single
module M, , encompassing all functions — from authori-

zation to order history. The number of modules is N =1 and
the size |M;| =200 000 significantly exceeds S, , which

is permissible for this baseline case. Cohesion
Coh(M,) =50 as the mixing of eight diverse functions

(e.g., payment logic with category Ul) reduces internal
consistency. There are no external connections, so
Cohespg =0. Calculation:

V(M,)=05-50-0.35-0+
+900-(1-e%*"-0.6-1"° =76.81.

The value V (M,) =76.81 reflects low benefit due to

weak cohesion, although the absence of inter-module
dependencies eliminates any coherence penalty. This
approach is typical for monolithic applications, where
maintenance and scaling are challenging.

4.2. Multi-Module Project (8 Modules). In the
second variant, the application is divided into 8 feature-
modules, each responsible for a separate function.

The number of modules is n=8, and the code is
distributed as follows: authorization — 15000 lines;
categories — 30 000; search — 20 000; cart — 25 000;
payment — 30 000; profile — 25 000; history — 15 000.

Summa of lines in modules equals 200 000.
Module cohesion is high due to functional isolation:
e Coh(M,) =90 (authorization);

e Coh(M,) =85 (product pages);
e Coh(M,) =80 (categories);

e Coh(M,) =85 (search);

e Coh(M;)=80 (bag);

e Coh(M,) =85 (checkout);

e Coh(M,) =80 (profile);

e Coh(M;) =90 (order history).
Sum of cohesions:

8
> Coh(M,) =
i=1
=90+ 85+80+85+80+85+80+90 = 675.

Connections between modules include:
authorization — profile;

authorization — cart;

product pages — bag;

categories — product pages;

search — product pages;

bag — checkout; checkout — order history;
e profile — checkout;

e order history — product pages.

Total Cohespg =9.

Calculation:
V(M,)=05-675-0.35-9+
+900- (1-e°%®) -0.6-8"° =652.11.

The value V(M,)=652.11 demonstrates a signifi-

cant increase in benefit compared to the single-module
variant V(M,)=76.81 due to high cohesion (average

Coh(M;) =~ 84.4) and moderate coherence, confirming the

effectiveness of modularization for medium and large
applications.

4.3. Multi-Module Project with Clean Architecture
(24 Modules). In the third variant, each of the 8 feature-
modules is split into three layers according to Clean
Acrchitecture principles: data layer (data handling), domain
layer (business logic), and Ul layer (interface). This results
in N=8-3=24 modules. The code has been divided into
several parts, the description of which is presented below.

Feature Authorization: data 4 000 lines, domain
3000, Ul 8 000 lines of code (15 000).

Feature Product page: data 10 000, domain 8 000,
Ul 22 000 (40 000).

Feature Categories:
Ul 16 000 (30 000).

data 8 000, domain 6 000,

Feature Search: data 5000, domain 4 000,
Ul 11 000 (20 000).
Feature Bag: data 6000, domain 5000,

Ul 14 000 (25 000).
Feature Checkout:
Ul 16 000 (30 000).

data 8000, domain 6 000,

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii

66

ananiz, ynpaguinus ma ingopmayiini mexronoeii, Ne 2 (14) 2025

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Feature Profile: data 6 000, domain 5 000, Ul 14 000
(25 000).

Feature Order History: data 4 000, domain 3 000,
Ul 8 000 (15 000).

Total: 200 000 lines of code.

Layer cohesion is high due to strict isolation:
Coh(M,.) =90 (data logic); Coh(M)=95 (use
cases); Coh(M ;) =80 (because Ul depends on domain).

Calculation of cohesions: 8-90=720 (data);
8-95=760 (domain); 8-80 =640 (UI).
Sum of cohesions:

domaini

24
D" Coh(M,) =720+ 760+ 640 = 2120.

i=1

Calculation:
V(M,,)=05-2120-0.35-25+
+900-(1-e°%*) —0.6-24"® =1554.98.

The value V(M,)=1554.98 demonstrates

maximum benefit due to high cohesion (average
Coh(M,) =~ 88.3), despite the increase in coherence.

4.4. Variants 4, 12 and 50 modules. In the same way
calculations for 4 modules, 12 modules and 50 modules
project were done to expand data for diagram.

4-Module Variant (V(M,) =348.36) shows a signi-

ficant improvement over the single-module variant due to
better functional isolation, but its benefit is limited by lower
cohesion (broader feature groups) and moderate coherence.
It is a practical starting point for smaller projects or teams
transitioning from a monolithic architecture.

12-Module Variant (V(M,,) =901.06) offers a

higher benefit than the 8-module variant due to finer
granularity and higher cohesion, but it is penalized by
significantly higher coherence (38 edges vs. 9 in the 8-
module variant) due to the addition of utility modules. This
approach is suitable for medium-to-large projects where
shared utilities are beneficial but not yet requiring full
Clean Architecture.

50-Module Variant (V(M,,)=1427.27) shows a

lower benefit than the 24-module optimum, indicating a
smooth decline beyond the peak due to diminishing
cohesion gains and increasing fragmentation/coordination
costs from over-modularization.

Results are present below in table 1 and Fig. 4.

Table 1 — Results of calculation of modularity benefits

Variant n iCOh(Mi) Cohes,, V(M)
i=1

Single-Module | 1 50 76.81
Multi-Module 1 | 4 330 4 348.36
Multi-Module 2 | 8 675 652.11
Multi-Module 3 | 12 1010 38 901.06
Multi-Module 4 | 24 2120 25 1554.98
Multi-Module 5 | 50 2600 120 1427.23

1600
1400 x
1200

1000

1] 10 20 30 40 50 60
n

Fig. 4. Dependency of Modularization Benefit V(M)

on Number of Modules n

4.5. Analysis. Comparing the three variants reveals:
the single-module project (V(M,)=76.81) offers low

benefit due to weak cohesion; the 8-module variant
(V(M,) =652.11) improves the result through functional

isolation; the 24-module variant with Clean Architecture

(V(M,,) =1554.98) maximizes VM) due to strict layer

separation. For Android applications on Kaotlin, this
underscores the value of modularization, especially
Cohes(M) with tools like Hilt to minimize dependencies.

The increase in from 0 to 25 is offset by the rise in
D _Coh(M;) from 50 to 2120, making the 24-module

approach optimal for large projects.

Conclusions. Presented results of the study
demonstrates that modularization significantly enhances
the maintainability and scalability of Android applications,
addressing the limitations of monolithic architectures. By
applying horizontal, vertical, and combined modularization
strategies rooted in SOLID principles and Clean Archi-
tecture, developers can reduce merge conflicts, accelerate
build times, and streamline testing processes.

The proposed mathematical model provides a
guantitative framework to evaluate these benefits,
revealing that a 24-module structure, integrating feature
and layer-based separation, offers the greatest advantage
for large-scale projects (benefit score: 1554.98) compared
to single-module (76.81) or 8-module (652.11) designs.
While the complexity of managing numerous modules
poses challenges, tools like Gradle and Dependency
Injection frameworks (e.g., Hilt) mitigate these drawbacks.
Future research could refine the model by incorporating
dynamic factors such as team size, development velocity,
or real-world performance metrics, further optimizing
modularization strategies for enterprise mobile applications
across platforms.

References
1. Android Developers. Guide to App Modularization. URL:
https://developer.android.com/topic/modularization (accessed

11.11.2025).

2. Gorin M. Modular Architecture: The Key to Efficient Mobile App
Development. Medium. URL: https://maxim-
gorin.medium.com/modular-architecture-the-key-to-efficient-
mobile-app-development-8c0640edfff4 (accessed 11.11.2025).

3. ACA Group. The Benefits of a Modular Architecture in Mobile
Development. URL: https://acagroup.be/en/blog/the-benefits-of-a-

Dvukhhlavov D. E., Pelypets O. S., Dvukhhlavova A. S. Android application

modularization estimating model

67

https://developer.android.com/topic/modularization?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://acagroup.be/en/blog/the-benefits-of-a-modular-architecture-in-mobile-development/?utm_source=chatgpt.com

ISSN 2079-0023 (print), ISSN 2410-2857 (online)

modular-architecture-in-mobile-development/ (accessed 3. ACA Group. The Benefits of a Modular Architecture in Mobile

11.11.2025). Development. URL: https://acagroup.be/en/blog/the-benefits-of-a-
4. Martin R. C. Clean Architecture: A Craftsman’s Guide to Software modular-architecture-in-mobile-development/ (accessed

Structure and Design. Upper Saddle River, NJ: Prentice Hall, 2017. 11.11.2025).

432 p. 4. Martin R. C. Clean Architecture: A Craftsman’s Guide to Software
5. Android Developers. Dependency injection in Android. URL: Structure and Design. Upper Saddle River, NJ: Prentice Hall, 2017.

https://developer.android.com/training/dependency-injection 432 p.

(accessed 11.11.2025). 5. Android Developers. Dependency injection in Android. Available at:
6. Chow J. Software Architecture with Kotlin: Combine various https://developer.android.com/training/dependency-injection

architectural styles to create sustainable and scalable software (accessed 11.11.2025).

solutions. Packt Publishing, 2024. 462 p. 6. Chow J. Software Architecture with Kotlin: Combine various
7. Wangereka, H. (2024) Mastering Kotlin for Android 14: Build architectural styles to create sustainable and scalable software

powerful Android apps from scratch using Jetpack libraries and solutions. Packt Publishing, 2024. 462 p.

Jetpack Compose. Packt Publishing, 2024. 370 p. 7. Wangereka, H. (2024) Mastering Kotlin for Android 14: Build
8. ISO. (2021) ISO22166-1:2021 Robotics — Modularity for service powerful Android apps from scratch using Jetpack libraries and

robots — Part 1: General requirements. Edition1. Geneva: Jetpack Compose. Packt Publishing, 2024. 370 p.

International Organization for Standardization. 69 p. 8. ISO. (2021) ISO22166-1:2021 Rohotics — Modularity for service
9. Gradle. Build Tool. URL: https://gradle.org/ (accessed 11.11.2025). robots — Part 1: General requirements. Edition1. Geneva:
10. Pelypets O. S., Dvukhhlavov D. E. Strategies of Modularization for International Organization for Standardization. 6 pp.

Android Applications. Ingopmayiini mexnonozii: nayka, mexunika, 9. Gradle. Build Tool. Available at: https://gradle.org/ (accessed

mexHonozis, ocgima, 300pos’s. Tesu Oonogioel MidCHAPOOHOI 11.11.2025).

Haykoso-npaxmuunol kongepenyii MicroCAD-2025 (1417 mpaens 10. Pelypets O. S., Dvukhhlavov D. E. Strategies of Modularization for

2025 p., mXapris). Xapkis: HTY «XI1I», 2025. C. 1395. Android Applications. Informatsiini tekhnolohii: nauka, tekhnika,
11. Aigner S., Elizarov R., Isakova S., Jemerov D. Kotlin in Action, tekhnolohiia, osvita, zdorovia. Tezy dopovidei mizhnarodnoi

Second Edition. Manning Publications, 2024. 560 p. naukovo-praktychnoi konferentsii MicroCAD-2025 (14-17 travnia
12. Campos, E., Kulesza U., Coelho R., Bonifacio R., Mariano L. 2025 r., m.Kharkiv). [Information Technologies: Science,

Unveiling the Architecture and Design of Android Applications. Engineering, Technology, Education, Health: Proceedings of the

An Exploratory Study. Proceedings of the 17th International International Sci.-Pract. Conf. MicroCAD-2025 (14-17 May 2025)].

Conference on Enterprise Information Systems (ICEIS). P.201-211. Kharkiv: NTU “KhPI”, 2025, p.1395.

DOI: 10.5220/0005398902010211. 11. Aigner S., Elizarov R., Isakova S., Jemerov D. Kotlin in Action,

Second Edition. Manning Publications, 2024. 560 p.
References (transliterated) 12. Campos, E., Kulesza U., Coelho R., Bonifacio R., Mariano L.

Unveiling the Architecture and Design of Android Applications.

1. Android Developers. Guide to App Modularization. Available at: An Exploratory Study. Proceedings of the 17th International

https://developer.android.com/topic/modularization (accessed Conference on Enterprise Information Systems (ICEIS), pp. 201-211.
11.11.2025). _ iy _ DOI: 10.5220/0005398902010211.

2. Gorin M. Modular Architecture: The Key to Efficient Mobile App
Development. Medium. Available at: https://maxim- Received 18.11.2025

gorin.medium.com/modular-architecture-the-key-to-efficient-
mobile-app-development-8c0640edfff4 (accessed 11.11.2025).

YK 004.41

. E. IBYXTJIABOB, xaununar texuiunnx Hayk (PhD), nouenr, HaioHaabHA# TEXHIYHUN yHIBEpCHTET

«XapKiBCHKUH MOJITEXHIYHUN IHCTUTYTY», IOIEHT KadepH MporpaMHOl iHKEeHepii Ta iIHTeIeKTyaTbHUX TEXHOJIOTIH
ympasiiHHs, M. XapkiB, Ykpaina; e-mail: dmytro.dvukhhlavov@khpi.edu.ua; ORCID: https://orcid.org/0000-0002-3361-3212
O. C. IEJIHIIEI]b, HauionansHuii TeXHIYHUIA yHiBEpCHTET «XapKiBCHKHUIA MONTITEXHIYHUIA IHCTUTYTY», MariCTpaHTKa,

M. XapkiB, Ykpaina; e-mail: pelipets.olga.developer@gmail.com; ORCID: https://orcid.org/0009-0005-5974-9045

A. C. IBYXIJIABOBA, HauionanpHuii TEXHIYHUN YHIBEpCHTET «XapKiBChKHUIA TTOMITEXHIUHUI IHCTUTYTY,

CTapIla BUKJIaJadka MPOrpaMHoi iHKeHepil Ta IHTeNeKTYaTbHUX TEXHOJIOTIN yIpaBIiHHs, M. XapKiB, YKpaina;

e-mail: alona.dvukhhlavova@khpi.edu.ua; ORCID: https://orcid.org/0000-0002-0111-3010

MO/IEJIb OIITHIOBAHHS MOIYJISIPU3AILIIl ANDROID-3ACTOCYHKIB

AKTYaJIbHICTB JIOCIIJKEHHS, PE3YJIbTaTH SKOTO MPEICTABIICH], BU3HAYAETHCA THM, 110 MOOUIBHI 3aCTOCYHKH €BOJIOIIOHYBAIM B CKJIAIHI IPOrpamHi
CHCTEMH 3i 3pOCTAIOUUMHU KOJJOBUMHU 0a3zaMH, 110 YCKIAJHIOE PO3POOKY, TECTyBaHHS Ta MIATPUMKY. [loka3aHo, 1110 MOKPAIIEHHS CYIPOBOKYBAHOCTI
Ta MacITaboBaHOCTI MPoekTiB Android-3acTOCYHKIB MOXIMBE MIIIXOM NEPEX0/LY BiJl MOHOJTITHOT apXiTEKTypH 0 MOIYJIbHOI apXiTeKTYpH, BUXOITIH
a0 3 meperniky (yHKIH, sIKi Ma€ BUKOHYBAaTH 3aCTOCYHOK, a00 3 apXiTEeKTypHHX OCOOJMBOCTEH CTBOpPEHHsS 3aCTOCYHKY. Jlist BHOOpy BapiaHTa
MOJyJIsIpU3allii 3aIporoHOBaHO Kiacu(ikalilo miaxoniB o Moxyisipusanii. HesanexHo Bij TOTo, KUl HapsIMOK peajizawii Moxynspusanii oopaHo,
BiH CIIPSIMOBAaHM Ha 3MEHIICHHS BIUIMBY 3MiH B OJJHOMY MOJYJIi Ha HEOOXi/THICTh BHECEHHS 3MiH JI0 iHmMX. TaKy 3a1eXHiCTh MiXK MOTYJISIMH MOXHA
OI[IHUTH, BU3HAYMBIIM 3B’SI3HICTH Ta Y3TOJDKEHICTh TPOEKTY Ta OKPeMHX MOJyIiB. J{is KiNbKiCHOI OLIHKHM TepeBar MOJYIBHOCTI PO3poOIIeHO
MaTeMaTHYHy MOJEINb, SKa BPaxoBye OallaHC MK 3B’S3HICTIO MOJIYJIIB Ta LUTICHICTIO IPOEKTY B LiIoMy. MoJeiab NPONOHYE BPaXOBYBATH KUIBKICTh
MOJIYJIiB, Ha sIKi Oy/ie po3/ijieHa MOHOJIITHA apXiTeKTypa, piBeHb B3aeMOJIi M’k MOIYJISIMH, 110 OYIyTh 00paHi, a TAKOXK PiBEHb 1X 3aJIe)KHOCTI OJIUH Bij
oxHoro. IIpencraBieHo Bupasm 11 aBTOMaTH3alil po3paxyHKiB BapiaHTiB moairy Ha Moxyii. IIpencraBieHo pe3ynbTaTH OILIHKH MOJYISpU3AIii
npoekty Android-3acTOCyHKy Ul €IEeKTPOHHOI KOMepIii Ha OCHOBI PI3HMX MiAXOAIB 10 peamizaiii Moxynspusamii. OTpiUMaHi OIIHKK JO3BOJIMIN
TIPOJIEMOHCTPYBATH TOTEHIIIa]l MOYJISIpH3allii y CKOPOYEHHI Yacy 30MpaHHs NMPOEKTY, MiHiMi3amil KOH(IIKTIB Ta MiJBUIIEHHI THYYKOCTI TPOEKTY,
TIPOTIOHYOYH MacIITaboBaHe PIllIeHHs JUIs Cy4acHOT MOOITBHOT PO3POOKH.

Karouosi ciaoBa: kmacubikariis miaxomiB g0 pearizamii mMomymspusarii Android-3acTocyHKiB, MOIETh MOMYISPU3AIi, MOKA3HUKH OIIHKA
BapiaHTiB Moymsipu3anii Android-monaTkiB, 38’sI3HICTh Ta Y3rOMKEHICTb IPOCKTY.

Toeni imena asmopis / Author's full names

Asrtop 1/ Author 1: Isyxriasos [Imutpo Enyapmosuy / Dvukhhlavov Dmytro Eduardovych
Asrtop 2 / Author 2: Tleauneus Onbra Cepriieua / Pelypets Olha Serhiivna
Asrtop 3 / Author 3: JIsyxrnasoBa Ansona Cepriisaa / Dvukhhlavova Alona Serhiivna

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii
68 ananiz, ynpaguinus ma ingopmayiini mexronoeii, Ne 2 (14) 2025

https://acagroup.be/en/blog/the-benefits-of-a-modular-architecture-in-mobile-development/?utm_source=chatgpt.com
https://developer.android.com/training/dependency-injection?utm_source=chatgpt.com
https://gradle.org/?utm_source=chatgpt.com
https://developer.android.com/topic/modularization?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://maxim-gorin.medium.com/modular-architecture-the-key-to-efficient-mobile-app-development-8c0640edfff4?utm_source=chatgpt.com
https://acagroup.be/en/blog/the-benefits-of-a-modular-architecture-in-mobile-development/?utm_source=chatgpt.com
https://acagroup.be/en/blog/the-benefits-of-a-modular-architecture-in-mobile-development/?utm_source=chatgpt.com
https://developer.android.com/training/dependency-injection?utm_source=chatgpt.com
https://gradle.org/?utm_source=chatgpt.com
mailto:pelipets.olga.developer@gmail.com

