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АЛГОРИТМ АВТОМАТИЧНОГО СТВОРЕННЯ МАСКИ СЕГМЕНТАЦІЇ ДЛЯ ВИЯВЛЕННЯ 

БІОЛОГІЧНИХ ОБ’ЄКТІВ 

У статті представлено метод автоматичного створення масок сегментації для біомедичних зображень, що забезпечує значне зменшення 
трудомісткості ручної анотації та підвищення відтворюваності підготовки даних. Запропонований підхід поєднує адаптивну порогову обробку 

з коефіцієнтами матриці Гаусса, морфологічні операції та геометричну фільтрацію контурів за площею та коефіцієнтом округлості. Така 

комбінація дозволяє ефективно виділяти клітинні структури за умов нерівномірного освітлення, шуму та низького контрасту, що є типовими 
проблемами мікроскопічних зображень. Метод протестовано на наборі даних BBBC030v1, який містить 60 зображень клітин яєчників 

китайського хом’яка. Для кожного зображення автоматично створена маска порівнювалась із наданою ground truth-анотацією за допомогою 

коефіцієнта Дайса. Отримано середнє значення 0,8954, медіану 0,9013 та стандартне відхилення 0,0254, що свідчить про високу точність та 
стабільність методу. Вузький міжквартильний розмах (IQR = 0,0215) підтверджує рівномірність роботи алгоритму на більшості зразків, тоді 

як поодинокі викиди (0,80–0,85) пов’язані з нетиповими або низькоконтрастними зображеннями. Загальний результат демонструє, що 

класичний підхід сегментації без використання нейронних мереж може досягати якості, співставної з ручною розміткою експерта. Для 
перевірки практичної придатності згенерованих масок вони були використані для навчання нейронної мережі U-Net для задачі сегментації. 

Порівняння з тренуванням на реальних масках показало майже однакові результати (0,9036 проти 0,9037), що підтверджує можливість повної 

або часткової заміни ручної анотації автоматичним підходом. Розроблений метод може бути застосований для прискорення підготовки 
великих біомедичних наборів даних та інтеграції у системи підтримки прийняття рішень у цитології, гістології та інших галузях біомедицини. 

Ключові слова: сегментація зображень, обробка зображень, адаптивне порогування, коефіцієнт Дайса, штучні нейронні мережі, 

автоматична розмітка, комп’ютерний зір, інформаційна технологія. 

Вступ. У сучасній біомедицині та біоінформатиці 

стрімко зростає обсяг цифрових зображень, отриманих 

за допомогою мікроскопів різних видів. Аналіз таких 

даних є необхідним для виявлення, класифікації та 

кількісної оцінки клітинних і тканинних структур. 

Ключовим етапом цього процесу є сегментація зобра-

жень, тобто побудова масок біологічних об’єктів, які 

точно окреслюють межі клітин або інших морфоло-

гічних утворень. 

Ручне створення масок є надзвичайно трудоміст-

ким, потребує високої кваліфікації фахівців і значних 

часових витрат. Крім того, результати ручної розмітки 

часто є суб’єктивними й можуть відрізнятися залежно 

від виконавця, що знижує відтворюваність досліджень. 

У зв’язку з цим виникає потреба у розробці авто-

матизованих методів сегментації, які б забезпечували 

високу точність, стабільність та швидкість обробки 

біологічних зображень [1]. 

Автоматичне створення масок має критичне 

значення для вирішення широкого спектра наукових і 

прикладних задач – від підрахунку клітин у культурах 

до виявлення патологічних змін у тканинах. Зокрема, 

точна сегментація є основою для побудови систем 

автоматичного аналізу зображень у цитології, гісто-

логії, онкології, генетичних дослідженнях та фарма-

кології. Завдяки цьому дослідники отримують мож-

ливість обробляти великі обсяги даних без втрати 

точності та з мінімальним втручанням людини. 
Таким чином, автоматичне створення масок є 

важливою задачею, адже дозволяє прискорити підго-
товку великих датасетів; забезпечити уніфікованість 
розмітки; зменшити витрати часу та людських ресу-

рсів; підвищити якість подальшого навчання нейрон-
них мереж. 

Стан проблеми. Методи, що застосовуються для 

сегментації можна розділити на декілька груп.  

Класичні алгоритми [2, 3], наприклад порогуван-

ня Отсу, адаптивне порогування, кластеризація ме-

тодом k -середніх, алгоритм watershed та морфологічні 

операції широко застосовуються для попередньої сег-

ментації [4]. Методи порогування базуються на аналізі 

гістограми зображення та дозволяють відокремлювати 

об’єкти від фону за інтенсивністю. Алгоритм 

Watershed, в свою чергу, є ефективним для виявлення 

об’єктів, що перекриваються, але є чутливим до шуму. 

Енергетичні моделі, такі як активні контури, 

формулюють сегментацію як мінімізацію енергетичної 

функції, що намагається збалансувати гладкість гра-

ниці та подібність пікселів до об’єкта/фону. Вони за-

безпечують високоточну сегментацію, але вимагають 

хороших початкових умов і часто є обчислювально 

складними [5–8]. 
Глибокі нейронні мережі, що представлені моде-

лями U-Net, Mask R-CNN та DeepLab, наразі стали 
стандартом сегментації у біомедичних задачах. Проте 
якість їх навчання значною мірою залежить від наяв-
ності точних анотованих масок [9–10]. 

Останні досягнення в галузі глибокого навчання 
суттєво підвищили ефективність методів автоматичної 
сегментації. Архітектури нейронних мереж, такі як U-
Net, Mask R-CNN, DeepLab або універсальні моделі на 
основі Segment Anything Model (SAM), демонструють 
здатність точно відтворювати контури біологічних 
структур навіть у складних умовах – за наявності 
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шумів, перекриттів або варіацій освітлення [11]. Це 
відкриває можливість створення універсальних систем 
для автоматизованого аналізу біологічних зображень, 
придатних до інтеграції у діагностичні та дослідницькі 
комплекси.  

Постановка задачі. Таким чином, задача авто-

матичного створення масок для знімків біологічних 

об’єктів є актуальною як у теоретичному, так і в 

прикладному аспектах. Її розв’язання сприятиме під-

вищенню точності, об’єктивності та швидкості аналізу 

біомедичних даних, що, у свою чергу, створює перед-

умови для розвитку нових підходів до діагностики, 

моніторингу стану клітин і автоматизації лабораторних 

процесів. 

Постановку задачі сегментації можна формалізу-

вати наступним чином: 

Нехай задано набір біомедичних зображень в 

градаціях сірого: 

   2

1 2, ,..., , :=  n kX I I I I . (1) 

Потрібно побудувати відповідний набір масок: 

    1 2, ,..., , 0,1n kY M M M M=  , (2) 

де ( ) 1M x =  – піксель належить об’єкту; 

( ) 0M x =  – піксель належить фону. 

Задача автоматичної сегментації формулюється як 

знаходження функції : k kf I M , яка для будь-якого 

вхідного зображення генерує відповідну маску. 

Основна частина. На основі підходу, запропо-

нованого в [1, 2] розроблено алгоритм автоматичного 

створення масок сегментації з використанням комбі-

нації класичних підходів комп’ютерного зору та 

евристичних критеріїв фільтрації контурів (рис. 1). 

Алгоритм забезпечує виділення цільових структур на 

вхідних зображеннях та формування бінарної маски, 

придатної для подальшого використання як у моделях 

глибокого навчання, так і в класичних процедурах ана-

лізу зображень. 

Для забезпечення стійкості алгоритму до шумів, 

неоднорідного освітлення та локальних контрастних 

артефактів, вхідне зображення спочатку переводиться 

у градації сірого.  

Після цього застосовується Гауссове розмиття, що 

зменшує високочастотний шум та покращує якість 

подальшої сегментації.  

Для виділення потенційних об’єктів викорис-

товується адаптивний метод бінаризації, який враховує 

локальні зміни яскравості. Це дозволяє уникнути проб-

лем класичної глобальної бінаризації, особливо у 

випадках нерівномірного освітлення та слабкого конт-

расту, адже застосування глобального порогу (напри-

клад, методу Отсу) часто виявляється недостатньо 

ефективним у випадках нерівномірного освітлення, 

локального контрасту або присутності тіней (рис. 2). 

Адаптивна порогова обробка ділить зображення 

на малі області (підвікна) заданого розміру (blockSize). 

Для кожного пікселя вікно формується навколо нього, 

після чого обчислюється локальна статистика інтен-

сивності. На основі цієї статистики формується локаль-

ний поріг, який застосовується для класифікації піксе-

ля як «об’єкт» або «фон». 

 

Рис. 1. Алгоритм автоматичного створення масок об’єктів 

 

 

Рис. 2. Незадовільні результати використання глобальних 

фільтрів 

Локальний поріг обчислюється як вагова сума 

пікселів у локальному вікні, де ваги задаються 

Гауссовим ядром: 

 ( )
( , )

, ( , ) ( , )
i j W

T x y w i j I i j C


=  − , (3) 

де ( , )T x y  – локальний поріг у точці ( , )x y , 

W  – вікно околу розміром blockSize blockSize ; 

( , )w i j  – коефіцієнти матриці Гаусас; 

( , )I i j  – значення яскравості пікселя;  

C  – коригувальна константа, що віднімається від 

локального порогу.  
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При більшому значенні C  маска стає жорст-

кішою, при меншому значенні фільтр виявляє більше 

деталей і шуму. 

Таким чином, вікна з різним освітленням отри-

мують різні пороги і алгоритм залишається стабільним 

на складних текстурах та слабоконтрастних областях. 

Також, так як у більшості мікроскопічних зобра-

жень об’єкти є темнішими за фон, то більш зручна 

маска буде отримана із застосуванням інверсної біна-

ризації, де об’єкт стає білим. Інверсна бінаризація може 

бути визначена наступним чином: 

• якщо ( , ) ( , )I x y T x y , то значення пікселя 

буде дорівнювати 0 (є фоном); 

• якщо ( , ) ( , )I x y T x y , то значення пікселя 

буде дорівнювати 255 (є об’єктом). 

Розмір локального вікна є параметром, що 

підлягає налаштуванню і залежить від розміру об’єктів, 

що виявляються: 

• якщо вікно занадто мале, то адаптивний 

фільтр буде чутливим до шуму,  

• якщо вікно занадто велике, то фільтр буде 

розмивати дрібні структури. 

Отримана бінарна карта проходить операцію 

морфологічного закриття (dilation + erosion), що 

дозволяє усунути локальні розриви контурів об’єктів та 

зменшити кількість шумових компонентів.  

На морфологічно обробленому зображенні здійс-

нюється пошук контурів. Кожний контур розгляда-

ється як потенційний об’єкт сегментації. Для кожного 

контуру обчислюються його основні геометричні ха-

рактеристики (периметр та площа). 

Для усунення хибних спрацьовувань (артефактів, 

шумів, дуже дрібних або надто великих структур) 

використовується фільтрація за площею. Контури, 

площа яких не належить до інтервалу 

[min_area, max_area], відкидаються. Це забезпечує 

адаптивність алгоритму до конкретного типу об’єктів. 

Також для відокремлення цільових об’єктів від 

структур з довільною формою застосуємо коефіцієнт 

округлості Circ , що може бути отримано із ізопери-

метричної нерівності: 

 
2

4 A
Circ

P

 
= , (4) 

де A  – площа контуру; 

P  – його периметр. 

Значення Circ  близьке до 1 свідчить про майже 

круглу форму; значення менше 0,3 характерне для 

видовжених або нерегулярних об’єктів.  

Для контурів, що задовольнили умови за площею 

та округлістю, на вихідну маску наноситься запов-

нений білим кольором силует об’єкта. Таким чином 

формується бінарна маска, де пікселі об’єкта мають 

значення 255, а фона – 0. 

Робота алгоритму на різних кроках представлена 

на рис. 3. 

Цей алгоритм було протестовано на наборі 

BBBC030v1 із Broad Bioimage Benchmark 

Collection [12], що складається із 60 зображень дифе-

ренціального інтерференційного контрасту клітин 

яєчників китайського хом’яка за ліцензією Creative 

Commons Attribution 3.0 license (CC BY 3.0). Всі 

зображення мають 3 колірні канали та розмір 

(1032, 1376). Для кожного зображення є збережені 

контури клітин, що було створено вручну.  
 
 

 

Рис. 3. Етапи автоматичного створення масок біооб’єктів 
 

В якості параметрів, що потребують налашту-

вання було обрано значення, які наведені в табл. 1: 
 

 

Таблиця 1 – Налаштування параметрів 
 
 

 

Параметр Значення 

C  3 

blockSize  15 

Circ  0,3 

 

Застосуємо описаний вище алгоритм для всіх 

зображень і обчислимо значення. В якості метрики 

оцінки використаємо коефіцієнт Дайса, що порівнює 

прогнозовану маску (mask_pred) з реальною 

(mask_true): 

 

ˆ2

ˆ
=

+

M M
Dice

M M
, (5) 

де M̂  – це прогнозована маска (Predicted Mask), тобто 

всі пікселі, що було визначено як об’єкт; 
 

M  – реальна маска (Ground Truth Mask), або 

пікселі, які дійсно належать об’єкту; 
 

M̂  – кількість білих пікселів у прогнозованій 

масці; 
 

M  – кількість білих пікселів у реальній масці; 

ˆM M  – це перетин двох множин білих пікселів, 
 

або ж кількість пікселів, де маски збігаються, тобто 

модель правильно передбачила об’єкт.  

Чим ближче коефіцієнт Дайса до 1, тим краще 

модель виявляє об’єкти на зображенні. Для 60 наявних 

зображень було отримано маски характеристиками 

наведеними в табл. 2. 

Для аналізу отриманих результатів є доцільним 

побудувати boxplot, який відображає розподіл значень 

Dice-коефіцієнта для набору зображень (рис. 4). 
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Таблиця 2 – Результати автоматичного створення масок 

Параметр Значення 

Середнє значення 0,8954 

Медіана 0,9013 

Стандартне відхилення 0,0254 

Мінімальне значення 0,8028 

Максимальне значення 0,9319 

Q1 0,8909 

Q3 0,9124 

IQR 0,0215 

 
З цього графіка маємо таку інформацію: 
1) Медіана ≈ 0,90 свідчить про високу якість 

сегментації. 
2) Вузький міжквартильний розмах (IQR) ≈ 0,02 

вказують на невелике варіювання отриманих значень і, 
відповідно, стабільну сегментацію. 

3) Є декілька викидів, де алгоритм спрацював 
гірше, але їх небагато, то ж алгоритм є стійким. 

 

Рис. 4. Розподіл значень коефіцієнта Дайса 

Застосуємо отримані маски для навчання мережі 
U-Net з гіперпараметрами:  

• оптимізатор – adam; 

• функція втрат – комбінована: 

 (1 ) =  +  −Loss BCE Dice , (6) 

де BCE  – функція бінарної кросентропії; 

Dice  – функція Дайса; 

  і   – коефіцієнти для балансу вкладу кожної 

компоненти, 1 + = . 

При навчанні моделі найкращий показник було 

отримано з 0.4 = , 0.6 = . 

• розмір батча – 8; 

• кількість епох – 100. 

Для оцінки якості навчання було використано 
середній коефіцієнт Дайса, значення якого наведено в 
табл. 3: 

 
1

1

=

= 
N

mean i

i

Dice Dice
N

, (7) 

де Dice  – коефіцієнт Дайса, що визначається за 

формулою (7). 

Таблиця 3 – Середній коефіцієнт Дайса на тренувальному 

наборі 

Вид навчання Значення 

Навчання з використанням реальних масок 0,9037 

Навчання за автоматично створеними 

масками 

0,9036 

 

Аналізуючи зміну коефіцієнта Дайса для 

тренувального та валідаційного наборів протягом 100 

епох навчання моделі сегментації кривих навчання та 

валідації (рис. 5), можна зробити висновок, що у перші 

10–15 епох значення метрики залишаються низькими, 

що є очікуваним етапом, коли модель лише починає 

формувати базові уявлення про структуру об’єктів на 

зображеннях. Починаючи приблизно з 15–20 епохи 

спостерігається різкий приріст значення як трену-

вального, так і валідаційного коефіцієнта, що свідчить 

про перехід моделі до ефективного навчання та 

здатності відтворювати коректні маски. 

Після 25-ї епохи обидві криві виходять на фазу 

стабільного зростання та поступово наближаються до 

плато. Коефіцієнт Дайса на тренувальному наборі 

досягає значень близько 0,92, тоді як на валідаційному 

– стабілізується на рівні приблизно 0,89. Невелика 

різниця між кривими (приблизно 0,02–0,03) свідчить 

про відсутність суттєвого перенавчання та добру 

здатність моделі узагальнювати інформацію на нових 

даних. 

 

Рис. 5. Динаміка коефіцієнта Дайса під час навчання 

Експеримент. У роботі досліджено актуальну 

проблему автоматизації процесу створення масок 

сегментації для цифрових біомедичних зображень, 

отриманих методами мікроскопії різних модальностей. 

Ручна розмітка біологічних об’єктів є надзвичайно 

трудомістким процесом, що вимагає високої квалі-

фікації фахівців, значних часових витрат та характе-
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ризується суб’єктивністю результатів, що знижує від-

творюваність наукових досліджень. 

Для вирішення цієї проблеми запропоновано 

комплексний метод автоматичної сегментації, який 

інтегрує декілька класичних підходів комп’ютерного 

зору. В основі методу лежить адаптивна порогова 

обробка із застосуванням Гауссових вагових коефі-

цієнтів, що дозволяє ефективно враховувати локальні 

зміни яскравості та забезпечує стійкість до нерівно-

мірного освітлення. Для усунення шумових артефактів 

та заповнення розривів у контурах об’єктів викорис-

товуються морфологічні операції закриття. Додатково 

реалізовано інтелектуальну систему фільтрації виявле-

них контурів на основі геометричних критеріїв: площі 

об’єкта та коефіцієнта округлості, розрахованого з 

використанням ізопериметричної нерівності. Це дозво-

ляє відокремити цільові біологічні структури від фоно-

вих артефактів та нерелевантних об’єктів. 

Експериментальна перевірка розробленого алго-

ритму проведена на стандартизованому наборі даних 

BBBC030v1 з колекції Broad Bioimage Benchmark 

Collection, який містить 60 зображень диференціаль-

ного інтерференційного контрасту клітин яєчників 

китайського хом’яка розміром 1376×1032 пікселів з 

трьома кольоровими каналами. Кожне зображення 

супроводжується вручну створеними експертними 

анотаціями контурів клітин, що дозволило провести 

об’єктивну оцінку якості автоматичної сегментації. 

Висновки. За результатами проведеного дослі-

дження можна зробити наступні висновки: 

Розроблений алгоритм автоматичного створення 

масок демонструє високу ефективність для сегментації 

біомедичних зображень. Середнє значення коефіцієнта 

Дайса 0,8954 та медіана 0,9013 свідчать про точність 

методу, порівнянну з результатами ручної розмітки 

експертами. 

Стабільність та відтворюваність результатів 

підтверджується низьким стандартним відхиленням 

(0,0254) та вузьким міжквартильним розмахом 

(0,0215). Це вказує на надійність алгоритму при обро-

бці різних зображень з набору даних. 

Комбінація адаптивного порогування з геомет-

ричною фільтрацією виявилася ефективною для виді-

лення цільових об’єктів у складних умовах нерівно-

мірного освітлення та низького контрасту, де глобальні 

методи показують незадовільні результати. 

Практична придатність автоматично створених 

масок підтверджена результатами навчання нейронної 

мережі U-Net: різниця між навчанням на автоматичних 

(0,9036) та реальних масках (0,9037) є статистично 

незначущою, що свідчить про можливість повної замі-

ни ручної розмітки. 

Наявність викидів у діапазоні 0,80–0,85 вказує на 

необхідність подальшого вдосконалення алгоритму 

для випадків екстремально низького контрасту, знач-

ного шуму або атипових форм об’єктів. 

Запропонований метод суттєво знижує трудомі-

сткість підготовки датасетів для навчання моделей 

глибокого навчання, забезпечуючи уніфікованість роз-

мітки та економію часу дослідників. 

Процес навчання моделі U-Net на автоматично 

створених масках демонструє стабільну динаміку без 

ознак перенавчання, що підтверджує якість згенеро-

ваних анотацій та коректність вибору гіперпараметрів. 

Таким чином, розроблений метод автоматичного 

створення масок є ефективним інструментом для авто-

матизації сегментації біомедичних зображень і може 

бути рекомендований для практичного застосування в 

цитології, гістології та інших галузях біомедичних 

досліджень, де необхідна обробка великих обсягів 

мікроскопічних даних. 
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ALGORITHM FOR AUTOMATIC CREATION OF SEGMENTATION MASK FOR DETECTION OF 

BIOLOGICAL OBJECTS 

The article presents a method for automatically creating segmentation masks for biomedical images, which significantly reduces the laboriousness of 

manual annotation and increases the reproducibility of data preparation. The proposed approach combines adaptive thresholding with Gaussian matrix 

coefficients, morphological operations, and geometric filtering of contours by area and roundness coefficient. This combination allows for effective 

separation of cellular structures under conditions of uneven illumination, noise, and low contrast, which are typical problems of microscopic images. 

The method was tested on the BBBC030v1 dataset, which contains 60 images of Chinese hamster ovary cells. For each image, the automatically created 

mask was compared with the provided ground truth annotation using the Dice coefficient. The average value was 0.8954, the median was 0.9013, and 
the standard deviation was 0.0254, which indicates high accuracy and stability of the method. The narrow interquartile range (IQR = 0.0215) confirms 

the uniformity of the algorithm's performance on most samples, while single outliers (0.80–0.85) are associated with atypical or low-contrast images. 

The overall result demonstrates that the classical segmentation approach without the use of neural networks can achieve quality comparable to manual 
expert labeling. To verify the practical suitability of the generated masks, they were used to train the U-Net neural network for the segmentation task. 

Comparison with training on real masks showed almost identical results (0.9036 vs. 0.9037), which confirms the possibility of full or partial replacement 

of manual annotation by an automatic approach. The developed method can be applied to accelerate the preparation of large biomedical datasets and 
integration into decision support systems in cytology, histology and other fields of biomedicine. 

Keywords: image segmentation, image processing, adaptive thresholding, Dice coefficient, artificial neural networks, automatic labeling, 

computer vision, information technology. 

Повні імена авторів / Author's full names 

Автор 1 / Author 1: Коваленко Антон Сергійович / Kovalenko Anton Serhiyovych 

Автор 2 / Author 2: Северин Валерій Петрович / Severyn Valerii Petrovych 

  

mailto:valerii.severyn@khpi.edu.ua

