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INTEGRATION OF HETEROGENEOUS DATA USING ARTIFICIAL INTELLIGENCE METHODS 

Modern AI development and multimodal data analysis methods are gaining critical importance due to their ability to integrate information from diverse 

sources, including text, audio, sensor signals, and images. Such integration enables systems to form a richer and more context-aware understanding of 
complex environments, which is essential for domains such as healthcare diagnostics, adaptive education technologies, intelligent security systems, 

autonomous robotics, and various forms of human-computer interaction. Multimodal approaches also enable AI models to compensate for the limitations 
inherent in individual modalities, thereby enhancing robustness and resilience to noise or incomplete data. The study employs theoretical analysis of 

scientific literature, comparative classification of multimodal architectures, systematization of fusion techniques, and formal generalization of model 

design principles. Additionally, attention is given to evaluating emerging paradigms powered by large-scale foundation models and transformer-based 

architectures. The primary methods and models for processing multimodal data are summarized, covering both classical and state-of-the-art approaches. 

Architectures of early (feature-level), late (decision-level), and hybrid (intermediate) fusion are described and compared in terms of flexibility, 

computational complexity, interpretability, and accuracy. Emerging solutions based on large multimodal transformer models, contrastive learning, and 
unified embedding spaces are also analyzed. Special attention is paid to cross-modal attention mechanisms that enable dynamic weighting of modalities 

depending on task context. The study determines that multimodal systems achieve significantly higher accuracy, stability, and semantic coherence in 

classification, detection, and interpretation tasks when modalities are properly synchronized and fused using adaptive strategies. These findings 
underscore the promise of further research toward scalable architectures capable of real-time multimodal reasoning, improved cross-modal transfer, and 

context-aware attention mechanisms. 

Keywords: multimodality, artificial intelligence, emotion classification, fusion architectures, audio-video-text processing, transformers, cross-

modal attention. 

Introduction. In today's IT environment, there has 

been a sharp increase in the volume of different types of 

data–text messages, audio, and video streams–coming from 

web services, sensors, and social media. Multimodal 

approaches, inspired by the human ability to perceive 

different channels of information simultaneously, allow us 

to build models with a deeper understanding of context [1]. 

The fusion of information from multiple modalities. It 

enables the creation of more robust and informative 

systems: in particular, recent studies have demonstrated 

that multimodal models significantly outperform single-

channel approaches in various tasks, ranging from question 

answering to medical diagnosis [2]. For example, in the 

field of cybersecurity and information reliability, it has 

been demonstrated that fake news often incorporates 

combined media elements to manipulate readers' 

perceptions [3]. This fact underscores the need for tools that 

can simultaneously analyze text descriptions and 

accompanying visual/audio materials.  

The availability of heterogeneous multimodal data 

plays a key role in the development of IT and AI. On the 

one hand, modern machine learning architectures can 

flexibly process different data formats, and in theory, this 

opens up new opportunities for intelligent applications. On 

the other hand, this approach enables artificial intelligence 

systems to approximate the human way of perceiving 

reality–a person simultaneously analyzes visual images, 

sound signals, and verbal information. As the researchers 

emphasize, integrating information from multiple 

modalities is sometimes the only way to solve the problem 

of object recognition or semantic interpretation fully.  

As researchers point out, integrating information from 

multiple modalities is sometimes the only way to fully 

solve the task of object recognition or semantic 

interpretation of scenes [4, 5]. For example, when detecting 

false information, matching the text content with the image 

is critically important – discrepancies between modalities 

alone can be a sign of manipulation [6]. Thus, the 

processing and combination of text, sound, and images are 

integral parts of modern AI research, significantly 

improving the quality of analytical and diagnostic systems.  

Current challenges and trends. Recent global events 

have significantly increased the need for multimodal 

solutions. First, the COVID-19 pandemic has accelerated 

the transition to remote work and learning, with video 

conferencing and online platforms becoming the primary 

channels of communication. Interactive environments 

require systems that can simultaneously process video, 

audio, and text streams. As observers note, interaction in 

distance learning is inextricably linked to multimodal 

interfaces. Secondly, large-scale crises are accompanied by 

an avalanche of information from social networks and the 

media. In such conditions, disinformation is often spread 

using synchronized multimedia content [7, 8]. On the other 

hand, the development of autonomous systems–from 

driverless cars to robots–involves combining different 

types of sensor data (such as cameras, LiDAR, radar, and 

microphones) to achieve a comprehensive understanding of 

the environment. Reviews in the field of auto-recognition 

emphasize that a multimodal sensor fusion system–the 

merging of data from cameras, LiDAR, and radars–sig-

nificantly increases the reliability of detecting moving 

objects [9].  
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Traditional and modern multimodal processing 

methods. We should not forget about the rapid growth of 

multimedia content on social networks, where a combined 

analysis of images, audio, and text plays a crucial role, 

making multimodal technologies particularly in demand 

across all areas of information technology. Degree of 

research. Due to these requirements, numerous scientific 

reviews have been devoted to multimodal machine learning 

in recent years. For example, article [10] provides a 

thorough overview of modern methods of multimodal 

learning, their architectures, and key areas of application. 

In the field of biomedicine [11], there is a growing interest 

in combining visual images (such as CT and MRI) with 

clinical information to enhance diagnostic systems [12, 13]. 

New multimodal fusion algorithms are being intensively 

developed, particularly based on transformers with cross-

attention mechanisms–they exhibit high accuracy but face 

scalability issues when combining more than two 

modalities. Recognition and classification tasks are being 

actively researched [14]: for example, detecting fake news 

using multimodal methods and recognizing emotions from 

facial images and speech intonations.  

A review [15] shows a sharp increase in the number 

of publications in the field of multimodal disinformation 

since spring 2020. However, it also notes serious gaps, 

including the lack of a single agreed-upon terminology and 

methodology, as well as the absence of interdisciplinary 

research and international communities working at the 

intersection of computer science, linguistics, and political 

science. Technical problems include the synchronization of 

heterogeneous data and the high computational costs of 

deep learning algorithms. In general, it can be stated that 

the field of multimodal analysis is in a phase of active 

growth: some areas, such as visual-text models and large 

language-vision transformers, are currently in the spotlight, 

while others, such as the simultaneous analysis of more 

than three modalities and real-time processing of short 

videos, still require new solutions. 

 

Fig. 1. Diagram of early, late fusion 

For a clearer understanding of the principles of 

multimodal system construction, it is helpful to consider 

typical diagrams of the two main approaches to data fusion: 

early and late fusion. Above are structured illustrations of 

each option for integrating features.  

Fig. 1 presents the key architectural differences 

between the approaches, including the point of feature 

merging, the level of interaction between modalities, and 

the location of decision-making. The choice of fusion 

strategy determines both the accuracy of the model and its 

resistance to the loss or distortion of individual modalities.  

First, there is a fundamental difference in structure, 

scale, and temporal nature between different types of data: 

text, audio, and visual. This complicates the construction of 

a unified representation that would preserve the significant 

features of each modality without losing semantics. 

Formally, the process of combining modalities can be 

represented as a function:  

 text audio video  ( ,  ,  )=h f x x x  (1) 

where textx , audiox , videox  – are the feature vectors of the 

corresponding modalities, and f is the fusion function.  

The choice of this function determines the system's 

architecture, but there is currently no universal approach 

suitable for all tasks.  

Second, most modern models are limited to two 

modalities, while real data is often more complex [16]. 

Merging more than two sources of information leads to an 

exponential increase in computational costs, which creates 

significant technical difficulties when deploying such 

systems in practical conditions.  

Third, the research community still lacks agreed-upon 

standards for selecting test sets, evaluation methods, and 

architectural design. This complicates the comparison of 

results and hinders progress in the development of 

generalized solutions [17]. The purpose of this article is to 

systematize scientific results related to methods of 

processing and integrating multimodal data using artificial 

intelligence. Such a review enables us to identify key 

architectural solutions, assess the effectiveness of 

fundamental approaches, and suggest directions for future 

research in this dynamic field.  

The material is structured according to the principle 

of gradual detailing: first, the basic methods of 

representation and fusion of modalities are analyzed; then, 

modern software frameworks and application systems are 

considered; and finally, generalizations, limitations, and 

prospects for the development of a multimodal approach 

are formulated. 

Main problems of multimodal systems: 

• Noise and data interference. In real recordings, 

individual modalities can be significantly noisy. 

Background sounds, artifacts in images, and other factors 

complicate the accurate integration of data.  

• Lack of synchronization. Different modalities 

often have their own time scales and frequencies, so their 

temporal alignment is non-trivial. 

• Incomplete data. In many cases, some modalities 

are missing from the data, which worsens the results of 

typical models. 

• Heterogeneity and incompatibility of modalities. 

Data from different sources have fundamentally different 

formats and dimensions, which requires special integration 

mechanisms. 

• Scaling complexity. As the number of modalities 

increases, the complexity of the model and the amount of 
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necessary computations grow exponentially, complicating 

training and inference. 

• Lack of open datasets. There is a shortage of high-

quality multimodal datasets, particularly those containing 

authentic emotional and medical data. This limits the 

possibilities for researchers. As noted in the K-EmoPhone 

study, there is still a lack of open datasets collected in real-

world conditions with labels for emotions and cognitive 

states. 

Shortcomings of current approaches. Reviews and 

experimental results indicate several systemic 

shortcomings in current multimodal approaches. First, the 

large number of modalities complicates the construction of 

a generalized representation. As noted in the study [18], 

multimodal systems present unique challenges due to the 

heterogeneity of data sources and the interrelationships 

between modalities.  

Criteria for comparison. This results in a significant 

increase in the number of model parameters and the training 

data requirements.  

Second, most modern models are difficult to adapt to 

incomplete or missing modalities: in the absence of one of 

the channels, performance suffers significantly.  

Third, the results of multimodal models are often 

difficult to interpret. As noted in article [19], the use of NLP 

and ML enables the extraction of additional information 

from different modalities. However, in real-world 

conditions, the task remains far from trivial, requiring 

significant data preprocessing, and the results should be 

interpreted with caution.  

Finally, due to the high complexity of multimodal 

model systems, a vast number of training examples and 

computing resources are required. As the same researchers 

point out, further research is needed before these methods 

can be implemented at scale, indicating a dependence on 

large datasets and lengthy training.  

Summary of disadvantages:  

• Complexity of models in the presence of multiple 

modalities. Exponential growth of parameters.  

• Vulnerability to missing or noisy data.  

• Decreased accuracy with incomplete modalities.  

• Low interpretability of results. Opacity of 

multimodal models.  

• High demand for large training samples and 

computing resources.  

• Complexity of coordinating and synchronizing 

heterogeneous data.  

• Insufficiency of open multimodal datasets, 

especially with real-world scenarios.  

A typical pipeline for multimodal emotion analysis: 

1. Data collection. Create or utilize existing 

multimodal emotion datasets (audio, video, and text). For 

example, the RAVDESS dataset contains simultaneous 

audio and video recordings of actors expressing different 

emotions.  

Data can be collected in a studio equipped with 

specialized equipment to ensure signal quality; for 

example, sound is recorded in a soundproof booth with 

background noise eliminated. Transcripts are usually 

obtained using automatic speech recognition (ASR) or 

manually. 

2. Modality-specific preprocessing. At this stage, 

signals in each channel are cleaned up. Audio files are 

noise-cancelled, and inactive sections are cut out; the 

volume is then normalized.  

Video frames are adjusted for lighting, face and/or 

gesture detection is performed, and irrelevant areas are 

cropped. The text is cleaned of punctuation, dialects, and 

redundant stop words, and then tokenized. For example, the 

RAVDESS dataset mentioned above was recorded in a 

professional studio to minimize noise. 

3. Feature extraction. Numerical vectors are 

extracted from the prepared signals. For audio, these can 

include spectral features such as MFCC and energy 

coefficients in frequency bands.  

For facial images, convolutional neural networks 

(CNNs) are commonly used: each frame is passed through 

a network (e.g., ResNet) and high-level output features are 

extracted. Body gestures are described by sets of joint 

coordinates, known as posture features. Text data is 

converted into word vectors: contextual embeddings (e.g., 

BERT/GPT) are used, or features are extracted using 

sequential models. 

4. Alignment and synchronization. Since the 

temporal structure of features is different, they need to be 

aligned in terms of temporal context. Alignment methods 

are used, for example, such as joint framing of audio and 

video streams or aligning audio with text along lexical 

boundaries.  

As an example, in their research, the authors divide 

the audio into segments based on the time of appearance of 

each word and linguistic boundaries, resulting in an aligned 

audio-text pair. This ensures that features from different 

modalities correspond to the same semantic segment. 

5. Fusion module. After synchronization, features 

from all modalities are combined for further training. There 

are two types of fusion: early (feature-level) and late 

(decision-level). In early fusion, feature vectors are 

concatenated into a single, common vector; however, direct 

concatenation may not account for differences in size and 

framing.  

In late fusion, each channel is processed separately, 

and then its predictions are combined. There are also hybrid 

architectures, such as partial fusion at an intermediate stage 

in deep networks. 

6. Classifier. The fused features are fed into a 

classifier, such as a multilayer perceptron with a softmax 

shift at the output.  

In training, the loss function is minimized, for 

example, by reducing the cross-entropy between the 

predicted and actual labels. Sometimes recurrent networks 

(LSTM) or SVM/Random Forest are used for final 

classification, depending on the approach. 

7. Output. The final result is an emotion prediction. 

This is usually either a categorical label (e.g., “happiness,” 

“sadness,” “anger”) or a probability distribution across 

several emotional categories (softmax state).  

The final label is selected as the one with the 

maximum probability. 
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Fig. 2. Typical block diagram of the architecture of a multimodal 

emotion recognition system  

Fig. 2 schematically illustrates a typical pipeline of a 

multimodal system: three input modalities pass through 

separate processing blocks, their features are then merged, 

and finally, the classifier outputs an emotion prediction.  

Practical implementation considerations. Emotio-

nal classification based on multimodal data involves integ-

rating information from different modalities–text, audio, 

and video [20]. The proposed approaches differ in their 

fusion strategies (early, late, or hybrid) and their ability to 

process certain types of data.  

Table 1 presents a comparative overview of leading 

transformer-based multimodal models focused on emotion 

analysis or related tasks. For each model, the modalities 

involved, the type of feature fusion, the achieved accuracy 

values (F1 or Accuracy based on available data), key 

architectural features, and limitations are indicated.  

Table 1 – Key features and performance of modern multimodal 

models for emotional classification tasks 

Model Name Modal Fusion Accuracy 

Adapted 

Multimod 

BERT (AMB) 

Text + Audio / 

Video 

Hybrid 

(Layer-

wise) 

84.2 % 

Flamingo Image / Video + 

Text 

Hybrid 

(attention) 

78.3 % 

SpeechT5 Text + Audio Hybrid 

(encod) 

76.5 % 

WER 

MMBT Text + Image Early 92.4 % 

Video BERT Text + Video Mixed 52.1 % 

 

The Accuracy column lists the Accuracy results 

according to the best available data; Features and 

Limitations describe the architectural approaches and 

limitations of the models.  

Analysis shows that hybrid architectures, which 

combine modality-specific processing and joint training, 

such as MultimodalBERT or SpeechT5, yield the most 

balanced results in terms of accuracy and flexibility. In 

contrast, high-accuracy models such as MMBT are less 

versatile and require separate processing of input features. 

This highlights the typical trade-off between efficiency, 

scalability, and versatility in multimodal approaches.  

To visually compare the effectiveness of different 

multimodal architectures, an accuracy chart was const-

ructed based on publicly available model test results on 

relevant tasks. 

As shown in Fig. 3, the MMBT model, which employs 

projective fusion of visual and textual features, achieves the 

highest accuracy, yielding a result of 91.2 % on the meme 

classification task. The AMB model with a Hybrid 

architecture also demonstrates high performance in 

multimodal emotion classification, achieving an accuracy 

of 84.2 % on the CMU-MOSEI dataset.  

 

 

Fig. 3. Accuracy of different multimodal models on test tasks 

In contrast, general-purpose architectures such as 

VideoBERT, Flamingo, and SpeechT5 are less accurate, 

partly because they are designed for general multimodal 

tasks rather than specialized emotional scenarios. The 

results obtained emphasize the importance of adapting 

fusion mechanisms to the nature of the input data and the 

target task. 

Conclusions. This article provides a systematic 

review of methods for processing and integrating audio, 

video, and text data using artificial intelligence. It has been 

established that multimodal systems demonstrate a 

significant increase in the accuracy of classification and 

information interpretation compared to single-channel 

approaches, provided that the modalities are properly 

synchronized and relevant features are identified.  

The main integration architectures (early, late, and 

hybrid fusion) are described, and a comparative analysis of 

their properties is performed. The scientific novelty of the 

work lies in its comprehensive systematization of archi-

tectures. It employs multimodal analysis, which considers 

current trends in large-scale pre-trained transformer models 

with cross-modal attention mechanisms. Conceptual 

schemes for adaptive data fusion are proposed, which 

highlight registers of modality-specific features and 

combine them, taking into account cross-modal relevance.  

The practical value lies in the formulation of 

recommendations for designing robust multimodal systems 

across various application domains, taking into account 

their accuracy and adaptability.  

The limitations of the current analysis include its 

focus on three primary modalities (audio, video, and text), 

as well as the requirement for substantial amounts of 

annotated data and computational resources for model 

training. The asynchrony and heterogeneity of input signals 
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complicate the direct combination of features, requiring 

specific preprocessing and synchronization methods. 

Further research should focus on developing hybrid 

multimodal models with dynamic adaptation of fusion 

schemes and cross-modal attention mechanisms, as well as 

on experimentally testing their effectiveness in real-world 

tasks. 
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КОМПЛЕКСУВАННЯ РІЗНОТИПОВИХ ДАНИХ ЗАСОБАМИ ШТУЧНОГО ІНТЕЛЕКТУ 

У сучасній розробці штучного інтелекту методи мультимодального аналізу даних набувають критичного значення завдяки своїй здатності 
інтегрувати інформацію з різних джерел, включаючи текст, аудіо, сигнали датчиків та зображення. Така інтеграція дозволяє системам 

формувати багатше та контекстно-залежне розуміння складних середовищ, що є важливим для таких галузей, як діагностика охорони здоров’я, 

адаптивні освітні технології, інтелектуальні системи безпеки, автономна робототехніка та різні форми взаємодії людини з комп’ютером. 
Мультимодальні підходи також дозволяють моделям ШІ компенсувати обмеження, властиві окремим модальностям, тим самим підвищуючи 

стійкість та стійкість до шуму або неповних даних. У дослідженні використовується теоретичний аналіз наукової літератури, порівняльна 

класифікація мультимодальних архітектур, систематизація методів об’єднання та формальне узагальнення принципів проектування моделей. 
Крім того, увага приділяється оцінці нових парадигм, що базуються на великомасштабних фундаментальних моделях та архітектурах на основі 

трансформаторів. Узагальнено основні методи та моделі обробки мультимодальних даних, що охоплюють як класичні, так і найсучасніші 

підходи. Архітектури раннього (на рівні ознак), пізнього (на рівні рішень) та гібридного (проміжного) об’єднання описані та порівняні з точки 
зору гнучкості, обчислювальної складності, інтерпретованості та точності. Також аналізуються нові рішення, засновані на великих 

мультимодальних трансформаторних моделях, контрастному навчанні та уніфікованих просторах вбудовування. Особлива увага приділяється 

механізмам крос-модальної уваги, які дозволяють динамічне зважування модальностей залежно від контексту завдання. Дослідження 
визначає, що мультимодальні системи досягають значно вищої точності, стабільності та семантичної узгодженості в завданнях класифікації, 

виявлення та інтерпретації, коли модальності належним чином синхронізовані та об’єднані за допомогою адаптивних стратегій. Ці результати 
підкреслюють перспективність подальших досліджень у напрямку масштабованих архітектур, здатних до мультимодального мислення в 

реальному часі, покращеного крос-модального перенесення та контекстно-залежних механізмів уваги.  

Ключові слова: мультимодальність, штучний інтелект, емоційна класифікація, ф’южн-архітектури, обробка аудіо-відео-тексту, 

трансформери, крос-модальна увага. 
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