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INTEGRATION OF HETEROGENEOUS DATA USING ARTIFICIAL INTELLIGENCE METHODS

Modern Al development and multimodal data analysis methods are gaining critical importance due to their ability to integrate information from diverse
sources, including text, audio, sensor signals, and images. Such integration enables systems to form a richer and more context-aware understanding of
complex environments, which is essential for domains such as healthcare diagnostics, adaptive education technologies, intelligent security systems,
autonomous robotics, and various forms of human-computer interaction. Multimodal approaches also enable Al models to compensate for the limitations
inherent in individual modalities, thereby enhancing robustness and resilience to noise or incomplete data. The study employs theoretical analysis of
scientific literature, comparative classification of multimodal architectures, systematization of fusion techniques, and formal generalization of model
design principles. Additionally, attention is given to evaluating emerging paradigms powered by large-scale foundation models and transformer-based
architectures. The primary methods and models for processing multimodal data are summarized, covering both classical and state-of-the-art approaches.
Architectures of early (feature-level), late (decision-level), and hybrid (intermediate) fusion are described and compared in terms of flexibility,
computational complexity, interpretability, and accuracy. Emerging solutions based on large multimodal transformer models, contrastive learning, and
unified embedding spaces are also analyzed. Special attention is paid to cross-modal attention mechanisms that enable dynamic weighting of modalities
depending on task context. The study determines that multimodal systems achieve significantly higher accuracy, stability, and semantic coherence in
classification, detection, and interpretation tasks when modalities are properly synchronized and fused using adaptive strategies. These findings
underscore the promise of further research toward scalable architectures capable of real-time multimodal reasoning, improved cross-modal transfer, and

context-aware attention mechanisms.

Keywords: multimodality, artificial intelligence, emotion classification, fusion architectures, audio-video-text processing, transformers, cross-

modal attention.

Introduction. In today's IT environment, there has
been a sharp increase in the volume of different types of
data—text messages, audio, and video streams—coming from
web services, sensors, and social media. Multimodal
approaches, inspired by the human ability to perceive
different channels of information simultaneously, allow us
to build models with a deeper understanding of context [1].
The fusion of information from multiple modalities. It
enables the creation of more robust and informative
systems: in particular, recent studies have demonstrated
that multimodal models significantly outperform single-
channel approaches in various tasks, ranging from question
answering to medical diagnosis [2]. For example, in the
field of cybersecurity and information reliability, it has
been demonstrated that fake news often incorporates
combined media elements to manipulate readers'
perceptions [3]. This fact underscores the need for tools that
can simultaneously analyze text descriptions and
accompanying visual/audio materials.

The availability of heterogeneous multimodal data
plays a key role in the development of IT and Al. On the
one hand, modern machine learning architectures can
flexibly process different data formats, and in theory, this
opens up new opportunities for intelligent applications. On
the other hand, this approach enables artificial intelligence
systems to approximate the human way of perceiving
reality—a person simultaneously analyzes visual images,
sound signals, and verbal information. As the researchers
emphasize, integrating information from multiple
modalities is sometimes the only way to solve the problem
of object recognition or semantic interpretation fully.

As researchers point out, integrating information from
multiple modalities is sometimes the only way to fully
solve the task of object recognition or semantic
interpretation of scenes [4, 5]. For example, when detecting
false information, matching the text content with the image
is critically important — discrepancies between modalities
alone can be a sign of manipulation [6]. Thus, the
processing and combination of text, sound, and images are
integral parts of modern Al research, significantly
improving the quality of analytical and diagnostic systems.

Current challenges and trends. Recent global events
have significantly increased the need for multimodal
solutions. First, the COVID-19 pandemic has accelerated
the transition to remote work and learning, with video
conferencing and online platforms becoming the primary
channels of communication. Interactive environments
require systems that can simultaneously process video,
audio, and text streams. As observers note, interaction in
distance learning is inextricably linked to multimodal
interfaces. Secondly, large-scale crises are accompanied by
an avalanche of information from social networks and the
media. In such conditions, disinformation is often spread
using synchronized multimedia content [7, 8]. On the other
hand, the development of autonomous systems—from
driverless cars to robots—involves combining different
types of sensor data (such as cameras, LIDAR, radar, and
microphones) to achieve a comprehensive understanding of
the environment. Reviews in the field of auto-recognition
emphasize that a multimodal sensor fusion system-the
merging of data from cameras, LIDAR, and radars-sig-
nificantly increases the reliability of detecting moving
objects [9].
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Traditional and modern multimodal processing
methods. We should not forget about the rapid growth of
multimedia content on social networks, where a combined
analysis of images, audio, and text plays a crucial role,
making multimodal technologies particularly in demand
across all areas of information technology. Degree of
research. Due to these requirements, numerous scientific
reviews have been devoted to multimodal machine learning
in recent years. For example, article [10] provides a
thorough overview of modern methods of multimodal
learning, their architectures, and key areas of application.
In the field of biomedicine [11], there is a growing interest
in combining visual images (such as CT and MRI) with
clinical information to enhance diagnostic systems [12, 13].
New multimodal fusion algorithms are being intensively
developed, particularly based on transformers with cross-
attention mechanisms—they exhibit high accuracy but face
scalability issues when combining more than two
modalities. Recognition and classification tasks are being
actively researched [14]: for example, detecting fake news
using multimodal methods and recognizing emotions from
facial images and speech intonations.

A review [15] shows a sharp increase in the number
of publications in the field of multimodal disinformation
since spring 2020. However, it also notes serious gaps,
including the lack of a single agreed-upon terminology and
methodology, as well as the absence of interdisciplinary
research and international communities working at the
intersection of computer science, linguistics, and political
science. Technical problems include the synchronization of
heterogeneous data and the high computational costs of
deep learning algorithms. In general, it can be stated that
the field of multimodal analysis is in a phase of active
growth: some areas, such as visual-text models and large
language-vision transformers, are currently in the spotlight,
while others, such as the simultaneous analysis of more
than three modalities and real-time processing of short
videos, still require new solutions.

Text Audio Video
features | | features features

[ Modality 1 ] [Modality 2] [ Modality 3 J
leJ:Zit?:n Unimodal Unimodal Unimodal
model model model

Fused
features

Prediction

Fig. 1. Diagram of early, late fusion

For a clearer understanding of the principles of
multimodal system construction, it is helpful to consider
typical diagrams of the two main approaches to data fusion:
early and late fusion. Above are structured illustrations of
each option for integrating features.

Fig. 1 presents the key architectural differences
between the approaches, including the point of feature

merging, the level of interaction between modalities, and
the location of decision-making. The choice of fusion
strategy determines both the accuracy of the model and its
resistance to the loss or distortion of individual modalities.

First, there is a fundamental difference in structure,
scale, and temporal nature between different types of data:
text, audio, and visual. This complicates the construction of
a unified representation that would preserve the significant
features of each modality without losing semantics.
Formally, the process of combining modalities can be
represented as a function;

h = f(Xtext' Xaudio’ Xvideo) (1)

where X, X X, — are the feature vectors of the

corresponding modalities, and f is the fusion function.

The choice of this function determines the system's
architecture, but there is currently no universal approach
suitable for all tasks.

Second, most modern models are limited to two
modalities, while real data is often more complex [16].
Merging more than two sources of information leads to an
exponential increase in computational costs, which creates
significant technical difficulties when deploying such
systems in practical conditions.

Third, the research community still lacks agreed-upon
standards for selecting test sets, evaluation methods, and
architectural design. This complicates the comparison of
results and hinders progress in the development of
generalized solutions [17]. The purpose of this article is to
systematize scientific results related to methods of
processing and integrating multimodal data using artificial
intelligence. Such a review enables us to identify key
architectural solutions, assess the effectiveness of
fundamental approaches, and suggest directions for future
research in this dynamic field.

The material is structured according to the principle
of gradual detailing: first, the basic methods of
representation and fusion of modalities are analyzed; then,
modern software frameworks and application systems are
considered; and finally, generalizations, limitations, and
prospects for the development of a multimodal approach
are formulated.

Main problems of multimodal systems:

e Noise and data interference. In real recordings,
individual modalities can be significantly noisy.
Background sounds, artifacts in images, and other factors
complicate the accurate integration of data.

e Lack of synchronization. Different modalities
often have their own time scales and frequencies, so their
temporal alignment is non-trivial.

e Incomplete data. In many cases, some modalities
are missing from the data, which worsens the results of
typical models.

e Heterogeneity and incompatibility of modalities.
Data from different sources have fundamentally different
formats and dimensions, which requires special integration
mechanisms.

e Scaling complexity. As the number of modalities
increases, the complexity of the model and the amount of

audio ! video
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necessary computations grow exponentially, complicating
training and inference.

e Lack of open datasets. There is a shortage of high-
quality multimodal datasets, particularly those containing
authentic emotional and medical data. This limits the
possibilities for researchers. As noted in the K-EmoPhone
study, there is still a lack of open datasets collected in real-
world conditions with labels for emotions and cognitive
states.

Shortcomings of current approaches. Reviews and
experimental  results indicate  several  systemic
shortcomings in current multimodal approaches. First, the
large number of modalities complicates the construction of
a generalized representation. As noted in the study [18],
multimodal systems present unique challenges due to the
heterogeneity of data sources and the interrelationships
between modalities.

Criteria for comparison. This results in a significant
increase in the number of model parameters and the training
data requirements.

Second, most modern models are difficult to adapt to
incomplete or missing modalities: in the absence of one of
the channels, performance suffers significantly.

Third, the results of multimodal models are often
difficult to interpret. As noted in article [19], the use of NLP
and ML enables the extraction of additional information
from different modalities. However, in real-world
conditions, the task remains far from trivial, requiring
significant data preprocessing, and the results should be
interpreted with caution.

Finally, due to the high complexity of multimodal
model systems, a vast number of training examples and
computing resources are required. As the same researchers
point out, further research is needed before these methods
can be implemented at scale, indicating a dependence on
large datasets and lengthy training.

Summary of disadvantages:

e Complexity of models in the presence of multiple
modalities. Exponential growth of parameters.

¢ Vulnerability to missing or noisy data.

e Decreased accuracy with incomplete modalities.

e Low interpretability of results. Opacity of
multimodal models.

e High demand for large training samples and
computing resources.

e Complexity of coordinating and synchronizing
heterogeneous data.

e Insufficiency of open multimodal
especially with real-world scenarios.

A typical pipeline for multimodal emotion analysis:

1. Data collection. Create or utilize existing
multimodal emotion datasets (audio, video, and text). For
example, the RAVDESS dataset contains simultaneous
audio and video recordings of actors expressing different
emotions.

Data can be collected in a studio equipped with
specialized equipment to ensure signal quality; for
example, sound is recorded in a soundproof booth with
background noise eliminated. Transcripts are usually

datasets,

obtained using automatic speech recognition (ASR) or
manually.

2. Modality-specific preprocessing. At this stage,
signals in each channel are cleaned up. Audio files are
noise-cancelled, and inactive sections are cut out; the
volume is then normalized.

Video frames are adjusted for lighting, face and/or
gesture detection is performed, and irrelevant areas are
cropped. The text is cleaned of punctuation, dialects, and
redundant stop words, and then tokenized. For example, the
RAVDESS dataset mentioned above was recorded in a
professional studio to minimize noise.

3. Feature extraction. Numerical vectors are
extracted from the prepared signals. For audio, these can
include spectral features such as MFCC and energy
coefficients in frequency bands.

For facial images, convolutional neural networks
(CNNs) are commonly used: each frame is passed through
a network (e.g., ResNet) and high-level output features are
extracted. Body gestures are described by sets of joint
coordinates, known as posture features. Text data is
converted into word vectors: contextual embeddings (e.g.,
BERT/GPT) are used, or features are extracted using
sequential models.

4. Alignment and synchronization. Since the
temporal structure of features is different, they need to be
aligned in terms of temporal context. Alignment methods
are used, for example, such as joint framing of audio and
video streams or aligning audio with text along lexical
boundaries.

As an example, in their research, the authors divide
the audio into segments based on the time of appearance of
each word and linguistic boundaries, resulting in an aligned
audio-text pair. This ensures that features from different
modalities correspond to the same semantic segment.

5. Fusion module. After synchronization, features
from all modalities are combined for further training. There
are two types of fusion: early (feature-level) and late
(decision-level). In early fusion, feature vectors are
concatenated into a single, common vector; however, direct
concatenation may not account for differences in size and
framing.

In late fusion, each channel is processed separately,
and then its predictions are combined. There are also hybrid
architectures, such as partial fusion at an intermediate stage
in deep networks.

6. Classifier. The fused features are fed into a
classifier, such as a multilayer perceptron with a softmax
shift at the output.

In training, the loss function is minimized, for
example, by reducing the cross-entropy between the
predicted and actual labels. Sometimes recurrent networks
(LSTM) or SVM/Random Forest are used for final
classification, depending on the approach.

7. Output. The final result is an emotion prediction.
This is usually either a categorical label (e.g., “happiness,”
“sadness,” “anger”) or a probability distribution across
several emotional categories (softmax state).

The final label is selected as the one with the
maximum probability.

Bicnux Hayionanvrnozo mexuiunoeo yHisepcumemy «XI1ly. Cepia: Cucmemnuii

92

ananiz, ynpaguinus ma ingopmayiini mexnoaoeii, Ne 2 (14) 2025



ISSN 2079-0023 (print), ISSN 2410-2857 (online)

Audio

©
! ! !

Video Text

Audio
Processing Processing Processing
7 - 7 % J

| |

Fusion Module

Classifier

Fig. 2. Typical block diagram of the architecture of a multimodal
emotion recognition system

Fig. 2 schematically illustrates a typical pipeline of a
multimodal system: three input modalities pass through
separate processing blocks, their features are then merged,
and finally, the classifier outputs an emotion prediction.

Practical implementation considerations. Emotio-
nal classification based on multimodal data involves integ-
rating information from different modalities—text, audio,
and video [20]. The proposed approaches differ in their
fusion strategies (early, late, or hybrid) and their ability to
process certain types of data.

Table 1 presents a comparative overview of leading
transformer-based multimodal models focused on emotion
analysis or related tasks. For each model, the modalities
involved, the type of feature fusion, the achieved accuracy
values (F1 or Accuracy based on available data), key
architectural features, and limitations are indicated.

Table 1 — Key features and performance of modern multimodal
models for emotional classification tasks

Model Name Modal Fusion Accuracy
Adapted Text + Audio / Hybrid 84.2 %
Multimod Video (Layer-

BERT (AMB) wise)
Flamingo Image / Video + | Hybrid 78.3 %
Text (attention)
SpeechT5 Text + Audio Hybrid 76.5 %
(encod) WER
MMBT Text + Image Early 924 %
Video BERT | Text + Video Mixed 52.1 %

The Accuracy column lists the Accuracy results
according to the best available data; Features and
Limitations describe the architectural approaches and
limitations of the models.

Analysis shows that hybrid architectures, which
combine modality-specific processing and joint training,
such as MultimodalBERT or SpeechT5, yield the most
balanced results in terms of accuracy and flexibility. In
contrast, high-accuracy models such as MMBT are less
versatile and require separate processing of input features.
This highlights the typical trade-off between efficiency,
scalability, and versatility in multimodal approaches.

To visually compare the effectiveness of different
multimodal architectures, an accuracy chart was const-
ructed based on publicly available model test results on
relevant tasks.

As shown in Fig. 3, the MMBT model, which employs
projective fusion of visual and textual features, achieves the
highest accuracy, yielding a result of 91.2 % on the meme
classification task. The AMB model with a Hybrid
architecture also demonstrates high performance in
multimodal emotion classification, achieving an accuracy
of 84.2 % on the CMU-MOSEI dataset.

100-
91.2%

84.2%

80~

60
52.1%

40
20-

0-

AMB Flamingo SpeechT5 MMBT VideoBERT

Fig. 3. Accuracy of different multimodal models on test tasks

In contrast, general-purpose architectures such as
VideoBERT, Flamingo, and SpeechT5 are less accurate,
partly because they are designed for general multimodal
tasks rather than specialized emotional scenarios. The
results obtained emphasize the importance of adapting
fusion mechanisms to the nature of the input data and the
target task.

Conclusions. This article provides a systematic
review of methods for processing and integrating audio,
video, and text data using artificial intelligence. It has been
established that multimodal systems demonstrate a
significant increase in the accuracy of classification and
information interpretation compared to single-channel
approaches, provided that the modalities are properly
synchronized and relevant features are identified.

The main integration architectures (early, late, and
hybrid fusion) are described, and a comparative analysis of
their properties is performed. The scientific novelty of the
work lies in its comprehensive systematization of archi-
tectures. It employs multimodal analysis, which considers
current trends in large-scale pre-trained transformer models
with cross-modal attention mechanisms. Conceptual
schemes for adaptive data fusion are proposed, which
highlight registers of modality-specific features and
combine them, taking into account cross-modal relevance.

The practical value lies in the formulation of
recommendations for designing robust multimodal systems
across various application domains, taking into account
their accuracy and adaptability.

The limitations of the current analysis include its
focus on three primary modalities (audio, video, and text),
as well as the requirement for substantial amounts of
annotated data and computational resources for model
training. The asynchrony and heterogeneity of input signals
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complicate the direct combination of features, requiring
specific preprocessing and synchronization methods.
Further research should focus on developing hybrid
multimodal models with dynamic adaptation of fusion
schemes and cross-modal attention mechanisms, as well as
on experimentally testing their effectiveness in real-world
tasks.
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KOMIIVIEKCYBAHHSA PI3BHOTHUIIOBUX JTAHUX 3ACOBAMM HITYYHOT' O IHTEJIEKTY

VY cyuacHiif po3poOIi ITYyIHOTO iHTEIEKTY METOOH MYJIETHMOJAIBHOTO aHali3y JaHUX HaOyBalOTh KPUTUYHOTO 3HA4YCHHS 3aBJSIKH CBOIH 31aTHOCTI
iHTerpyBaTH iH(pOpPMaLilo 3 Pi3HHUX JUKepelN, BKIIOYAIOYHM TEKCT, ay[io, CHTHAM JaT4HKiB Ta 300pakeHHs. Taka iHTerpamist TO3BOJSE CHCTEMaM
(hopMyBaTH OaraTiie Ta KOHTEKCTHO-3aJIEKHE PO3YMIHHS CKJIAAHUX CEPEAOBHILL, 1110 € BAXIMBUM JUIS TAKUX Ialy3ei, K {iarHOCTUKA OXOPOHH 3710POB 5,
aJIalTHBHI OCBITHI TEXHOJOT], IHTENEKTyalbHI CHCTEMH Oe3IeKH, aBTOHOMHA POOOTOTeXHiKa Ta pi3Hi (OpMH B3a€MOJIl JIOJUHH 3 KOMII IOTEPOM.
MynbTHMOZAIIBHI MIAX0H TAKOXK JO3BOJIIOTH MozersiM LI1I koMneHcyBaT 0OMEXEHHS, BITACTHBI OKPEMHM MOAAIBHOCTSIM, THUM CaMUM ITiABUITYIOYH
CTIHKICTD Ta CTIHKICTD [0 HIyMy a00 HEMOBHHX HaHHX. Y JOCHIIKEHHI BUKOPHCTOBYETHCS TEOPETHYHHIA aHAJI3 HAYKOBOI JiTepaTypH, HOPiBHLIbHA
KIacu(iKaIis MyIbTHMOJAIBHIX apXiTEeKTyp, CHCTEMATH3allis METOAIB 00’ €THaHHS Ta ()OpMasIbHE y3arajJbHEHHS IIPUHIMIIB IPOSKTYBaHHS MOJIEIICH.
KpiM Toro, yBara npuIisIsI€THCSI OL[HIII HOBHX ITapaJurM, o 0a3yIoThCs Ha BEIMKOMACIITAOHNX (DyHIaMEHTaJbHIX MOJEIIIX Ta apXiTEeKTypax Ha OCHOBI
TpaHc(hOpMaTOpiB. Y3araipHEHO OCHOBHI METOIH Ta MOAETi 0OPOOKH MyJIbTHMOJAIBHUX JaHHX, [IO0 OXOIUIIOIOTH K KIACH4Hi, Tak i HaWcydacHimmi
iIX0M. ApXIiTEeKTYpH paHHBOTO (Ha PiBHI 03HAK), Mi3HBOTO (HAa PiBHI pillleHb) Ta riOpHAHOrO (IPOMDKHOT0) 00’ € THAHHS OIMCaHI Ta MOPIBHSHI 3 TOUKH
30py THYYKOCTi, OOYMCIIIOBAJIbHOI CKJIAJHOCTI, IHTEpPIPETOBAHOCTI Ta TOYHOCTI. TakoX aHAN3yOThCS HOBI PILICHHS, 3aCHOBAaHI Ha BEIHMKHX
MYJIBTUMOIATEHHAX TPAHC(HOPMATOPHUX MOJIEIISIX, KOHTPACTHOMY HaBYaHHI Ta yHi(ikoBaHHX HpocTopax BOymoByBaHH:. OcobrBa yBara MpHIUISETHCS
MeXaHi3MaM KpOc-MOJAIBHOI yBaru, sIKi JO3BOJSIIOTH AWHAMIYHE 3BaXKyBaHHS MOJAIBHOCTEH 3aJieXKHO BiJ KOHTEKCTY 3aBHaHHS. JlocimimkeHHsS
BH3HAYAE, [0 MYJIbTHMOJANIbHI CHCTEMH JOCSTal0Th 3HAYHO BUIO] TOYHOCTI, CTaOIIBHOCTI Ta CEeMaHTHYHOI Y3TOKEHOCTI B 3aBIAaHHX Kiacuikarii,
BHSIBJICHHS Ta IHTEpIpeTallii, KOJIM MOJAJIbHOCTI HAJIEKHUM YHHOM CHHXPOHI30BaHi Ta 00’ €JHaHI 3a JOIOMOT 00 aIaliTUBHUX cTparerii. Lli pesynbraTtn
I IKPECITIOI0Th MEePCIEKTUBHICTh MOJANBIINX JOCITIIKCHb Y HANPSIMKY MacIITA0OBaHHUX apXiTEKTyp, 3[aTHHUX A0 MYJIbTUMOJAILHOTO MHCICHHS B
pearsHOMY Yaci, ITIOKPAIEHOT0 KPOC-MOIAIBHOTO TIEPEHECEHHS Ta KOHTEKCTHO-3aJISKHUX MEXaHI3MIB yBaru.

KurouoBi cioBa: MyJIbTUMOJANBHICTD, INTYYHHH IHTENEKT, eMoliliHa kiacudikaiis, ¢’rokH-apXiTeKTypH, oOpoOKa ayaio-BiZeo-TEKCTY,
TpaHchopMepH, Kpoc-MoJaIbHa yBara.
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