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АНАЛІЗ ВПЛИВУ ПОПЕРЕДНЬОГО ВІДНОВЛЕННЯ ЗАШУМЛЕНИХ ЗОБРАЖЕНЬ 

АВТОЕНКОДЕРОМ НА ТОЧНІСТЬ КЛАСИФІКАЦІЇ CNN  

У роботі досліджено вплив попереднього відновлення зображень за допомогою денойзингового автоенкодера (DAE) на точність класифікації 
згортковою нейронною мережею (CNN) при різних типах шумів. Актуальність теми зумовлена тим, що в реальних умовах оптичні зображення 

часто містять спотворення, спричинені зміною освітлення, вібраціями, рухом камер та іншими факторами, що істотно ускладнює завдання 

розпізнавання об’єктів. Традиційні фільтри не завжди забезпечують достатню якість очищення та можуть призводити до втрати важливих 
структурних ознак. У зв’язку з цим використання глибоких нейронних мереж, зокрема автоенкодерів, постає перспективним напрямом 

підвищення стійкості алгоритмів комп’ютерного зору до шумів різної природи. У дослідженні використано датасет CIFAR-10 та реалізовано 

двокомпонентну модель: автоенкодер для попереднього очищення та CNN для класифікації. Навчений автоенкодер відновлює структуру 
зображення після впливу гауссівського, імпульсного, пуассонівського або спекл шумів. Було проведено три серії експериментів: класифікація 

чистих зображень, класифікація зашумлених даних без очищення та класифікація після попереднього відновлення автоенкодером. Результати 

показали, що на чистих даних CNN демонструє точність 70,37%, проте при внесенні шумів точність знижується до 30–59% залежно від типу 
спотворення. Після застосування автоенкодера точність класифікації зросла до 56–60% на всіх видах шумів, а найбільше покращення 

відзначено для гауссівського шуму з високою дисперсією. Отримані результати підтверджують, що використання автоенкодера як етапу 

попереднього відновлення є ефективним методом підвищення точності класифікації та зменшення вразливості CNN до шумів. Такий підхід 
забезпечує краще узагальнення та стабільність роботи системи, що особливо важливо для застосувань у реальному часі – зокрема в динамічних 

системах, робототехніці, автономному транспорті та навігаційних комплексах, де якість оптичних даних часто є нестабільною. 

Ключові слова: автоенкодер, згорткова нейронна мережа, шум, класифікація, комп’ютерний зір, інтелектуальний аналіз зображень.

Вступ. 

У сучасному світі цифрові зображення є невід’єм-

ною частиною практично всіх сфер людської діяльнос-

ті – від медицини й транспорту до промисловості, 

освіти та розваг. З розвитком технологій комп’ютер-

ного зору та машинного навчання зображення стали не 

лише засобом передачі інформації, але й ключовим 

джерелом даних для інтелектуальних систем. Завдяки 

нейронним мережам комп’ютерні системи сьогодні 

здатні ідентифікувати об’єкти, визначати їхні межі, 

розпізнавати сцени, виявляти аномалії та генерувати 

нові візуальні дані. 

Проте на практиці зображення часто містять 

спотворення: шум, артефакти, розмитість тощо. Опти-

чні зображення, отримані під час управління рухомими 

динамічними системами (дрони, роботизовані плат-

форми, автономні транспортні засоби), часто містять 

шум, спричинений рухом, коливанням камери, зміною 

освітлення та зовнішніми завадами, що ускладнює 

розпізнавання об’єктів у режимі реального часу. Ці 

спотворення можуть бути виявлені, наприклад, у про-

цесі зйомки, передавання або обробки фото та відео, 

через що вони зазнають спотворень. Однією з ключо-

вих проблем є шум, що ускладнює автоматичне розпіз-

навання об’єктів на цих зображеннях. Тому створення 

моделей, здатних ефективно працювати у зашумлених 

умовах, є важливою задачею сучасного машинного 

навчання. 

Завдання з обробки таких зображень має особливе 

значення у сфері машинного навчання, адже якість 

вхідних даних безпосередньо впливає на точність мо-

делі. Традиційні фільтри, такі як медіанний або гаус-

сівський, мають обмежену ефективність і часто призво-

дять до втрати важливих деталей. Саме тому сучасні 

дослідження зосереджуються на використанні глибо-

ких нейронних мереж, здатних самостійно навчатися 

виділяти ознаки й відновлювати структуру зображення 

навіть при значному рівні шуму. 

Отже, проблема покращення обробки зашумлених 

зображень є актуальною як з теоретичної, так і з прак-

тичної точки зору. Вона охоплює питання фільтрації, 

реконструкції, сегментації та класифікації даних у 

складних умовах   

Теоретичні основи та постановка задачі. 

До моделей розпізнавання зображень висувають-

ся вимоги не тільки виявити об’єкт, але й відокремити 

його від шуму. Умовно цю задачу можна розділити на 

два етапи: очищення зображення (denoising) та його 

класифікацію/сегментацію. 

У залежності від типу шуму можна визначити 

характер спотворення, а також складність подальшої 

обробки. Шуми розподіляються на: 

• гауссівський шум (gaussian noise) містить нор-

мальний розподіл та додає до кожного пікселя випад-

кове значення, через що зображення стає менш чітким. 

Він часто виникає через електронні перешкоди або 

слабке освітлення; 

• імпульсний шум (salt-and-pepper) проявляєть-

ся у вигляді поодиноких чорних і білих пікселів, зазви-
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чай спричинених втратою даних під час передавання 

або пошкодженням сенсорів; 

• спекл-шум (speckle) з’являється при роботі з 

когерентним випромінюванням (лазерна зйомка, ульт-

развукова, радарна) і має мультиплікативний характер, 

що ускладнює його видалення; 

• пуассонівський шум (poisson noise) характер-

ний для низького рівня освітленості або коротких 

експозицій, коли інтенсивність світла має стохастич-

ний розподіл [1–4]. 

У рухомих динамічних системах оптична інфор-

мація з камери надходить у реальному часі, що при-

зводить до появи шумів різної природи: гауссівський 

шуму від низького освітлення, імпульсного шуму через 

втрати кадрів, спекл-шуму під дією вібрацій та муль-

типлікативних впливів. Тому моделі обробки зобра-

жень, які забезпечують стійкість до шуму, є критично 

важливими для систем навігації, стабілізації, розпізна-

вання перешкод і цілей. 

Кожен із цих типів шумів потребує конкретного 

індивідуального підходу до обробки, а універсальні 

методи на основі глибоких нейронних мереж дозво-

ляють досягати стабільних результатів навіть без попе-

реднього знання природи шуму. 

Згорткові нейронні мережі (Convolutional Neural 

Network, CNN) – один з основних інструментів для 

класифікації та розпізнавання зображень, який працює 

завдяки механізму згорток і дозволяє виділяти локальні 

ознаки. CNN працюють на основі ієрархічного виділен-

ня ознак. Спочатку виявляються низькорівневі ознаки 

або характеристики, наприклад грані, потім, просува-

ючись глибше у мережу розпізнаються особливості ви-

щого рівня, такі як форми та об’єкти. Перевагою CNN 

є висока точність класифікації, особливо при роботі з 

великими наборами даних. Проте при значному рівні 

шуму моделі можуть плутати текстурні артефакти з 

ознаками об’єкта, що призводить до зниження точ-

ності. 

Таким чином, задача дослідження полягає у 

визначенні впливу попередньої обробки зображення, а 

саме очищення від шумів, на точність моделей класи-

фікації на основі згорткової нейронної мережі. 

Глибокі нейромережеві моделі для обробки 

зображень із шумом.  

Для боротьби з шумом часто використовують по-

передню фільтрацію або поєднання CNN з автоенко-

дерами, які виконують очищення вхідних даних [5]. 

Автоенкодер – це тип нейронної мережі, що 

навчається стискати вхідні дані у компактне пред-

ставлення (encoding) і потім відновлювати їх назад 

(decoding). Такий підхід дозволяє мережі вчитися витя-

гати найважливіші ознаки. Окремий тип – denoising 

autoencoder (автоенкодер для видалення шуму) – спе-

ціально навчається на парах “зашумлене – чисте” зоб-

раження, щоб відновлювати початкову структуру [6]. 

Перевага використання автоенкодерів полягає у 

здатності ефективно зменшувати вплив шуму без 

втрати дрібних деталей. Недоліком є те, що сам по собі 

автоенкодер не виконує класифікацію, тому часто 

використовується як попередній етап з CNN або 

іншими моделями. 

Мережі U-Net використовуються для сегментації 

зображень і можуть точно локалізувати об’єкти, навіть 

при наявності шуму. Завдяки симетричній структурі та 

механізмам збереження деталей (skip connections), U-

Net ефективно відновлює структуру об’єкта і чудово 

працює навіть на невеликих наборах даних і відзна-

чається високою точністю локалізації об’єктів. 

Варто відзначити, що завдяки здатності віднов-

лювати структуру навіть із пошкоджених зображень, 

U-Net часто використовується для сегментації та очи-

щення зашумлених медичних зображень, проте є пев-

ний недолік, а саме значна обчислювальна складність 

та потреба у великих ресурсах для навчання, особливо 

при роботі з великими зображеннями [7]. 

Архітектура моделі глибокого навчання Vision 

Transformer (ViT) переносить ідеї трансформерів, 

успішних в обробці текстів, у галузь комп’ютерного 

зору. Замість згорток, ViT використовує механізм 

самоуваги (self-attention), який дозволяє враховувати 

глобальні залежності між частинами зображення. Ця 

архітектура показує високу точність на великих набо-

рах даних, проте, так само як і для U-Net, для навчання 

потрібні значні ресурси. При обмежених даних ViT 

може поступатися CNN через недостатню локалізацію 

ознак [8]. 

Також не можна обійти стороною той факт, що 

протягом останніх років значного поширення набули 

моделі дифузії (Denoising Diffusion Models). Вони 

працюють за принципом поступового додавання шуму 

до зображення, а потім навчаються відновлювати його 

у зворотному напрямку. Цей процес дозволяє моделі 

“навчитися” очищати будь-які типи спотворень. Моде-

лі дифузії демонструють надзвичайно високу якість 

реконструкції та сьогодні використовуються не лише 

для очищення, а й для генерації нових зображень 

(наприклад, у системах Stable Diffusion), однак через 

високу обчислювальну складність може бути обмеже-

ною у використанні в реальному часі [9]. 

Реалізація процесу очищення та класифікації 

зображень. 

Для проведення дослідження була використана 

мова програмування Python [10] та бібліотеки для 

роботи з зображеннями і нейронними мережами: 

• TensorFlow – для побудови та навчання ней-

ронної мережі; 

• NumPy – для обробки даних; 

• Mathplotlib – для візуалізації результатів; 

• Scikit-image – для генерації шуму на зобра-

женнях [11, 12]. 

Для навчання і тестування моделей було вико-

ристано датасет CIFAR-10, який містить 60.000 зобра-

жень розміром 32х32 пікселі, розділених на 10 класів за 

типами об’єктів на зображеннях. 

Було побудовано двокомпонентну модель оброб-

ки зображень, яка складається з денойзингового авто-

енкодера (denoising autoencoder, DAE) для поперед-

нього очищення оптичних даних та згорткової нейрон-

ної мережі (CNN) для подальшої класифікації. 

Автоенкодер використовує оптимізатор Adam і 

функцію втрат MSE (через завдання реконструкції). 
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Його архітектура – симетрична згорткова структура, 

що складається з двох частин: енкодеру та декодеру. 

Енкодер перетворює вхідне зображення 32×32×3 у 

компактне представлення 8×8×64, щоб витягнути ком-

пактне та стійке до шуму латентне представлення. А 

декодер у свою чергу реконструює очищене зобра-

ження з латентного представлення. 

CNN використовується як класифікатор після очи-

щення зображень автоенкодером. Архітектура згортко-

вої нейронної мережі складається з двох згорткових 

блоків (Conv2D → MaxPooling), які формують багато-

рівневе представлення зображення, та двох повно-

зв’язних шарів для класифікації. Модель має 32 та 64 

фільтри в згорткових шарах відповідно, використовує 

функцію активації ReLU, а на завершальному етапі 

застосовує softmax для розподілу ймовірностей між 10 

класами. Додавання шару Dropout зі значенням 0.3 

дозволило суттєво зменшити ризик перенавчання. 

Експериментальні результати та їх аналіз. На 

першому етапі було проведено базове навчання згорт-

кової нейронної мережі без жодного шуму у вхідних 

даних. Мета цього етапу – визначити базову точність 

класифікації для подальшого порівняння з результа-

тами на зашумлених даних. 

Результати показали, що модель досягає точності 

0.7037 (70.37%) на тестовій вибірці без шуму. Це є 

типовим значенням для базової CNN, натренованої на 

CIFAR-10 без спеціальної оптимізації. Дане значення в 

рамках дослідження було вибране як еталонна точка 

для подальших експериментів. 

На другому етапі було проведено серію експери-

ментів для визначення, як різні типи шуму впливають 

на точність класифікації. Для цього до тестових 

зображень CIFAR-10 було штучно додано кілька типів 

шумів: 

• Gaussian noise – випадкові коливання яскра-

вості пікселів (σ = 0.1, 0.2); 

• Salt-and-Pepper noise – поодинокі чорні та білі 

пікселі; 

• Speckle noise – мультиплікативний шум, який 

додає зернистість; 

• Poisson noise – стохастичні флуктуації інтен-

сивності, характерні для слабкого освітлення. 

Після додавання шумів модель CNN тестувалася 

без жодного попереднього очищення. Отримані ре-

зультати наведено нижче в табл. 1: 

Таблиця 1 – Показники точності для різних типів шумів 

Тип шуму Точність 

Gaussian (σ=0.1) 0.5295 

Gaussian (σ=0.2) 0.2968 

Salt & Pepper 0.4993 

Speckle 0.5942 

Poisson 0.5890 

 

Як видно з табл. 1, усі типи шуму призвели до 

зниження точності, причому найбільший негативний 

вплив мав гауссівський шум із високою дисперсією 

(σ=0.2), де точність впала майже удвічі. Найменше 

погіршення відбулося при пуассонівському та спекл 

шумі, оскільки їхній вплив менш руйнівний для 

локальних контурів і текстур. 

Отримані результати свідчать про те, що згорткові 

мережі, незважаючи на здатність виділяти локальні 

ознаки, залишаються вразливими до спотворень даних, 

якщо попередньо не проводиться фільтрація або 

нормалізація вхідного зображення. 

На третьому етапі було проведено дослідження з 

використанням DAE – нейронної мережі, здатної 

навчатися відновлювати чисте зображення із зашумле-

ного. 

Автоенкодер було навчено на парах “зашумлене – 

чисте” зображення з гауссівським шумом (σ=0.1). 

Після навчання модель використовувалася для очи-

щення тестових зображень з різними типами шуму 

перед подачею їх до CNN, що залишалася незмінною. 

Результати тестування CNN показані на рис. 1. 

Порівняно з другим етапом дослідження, видно 

суттєве покращення точності у всіх випадках. 

Наприклад, для гауссівського шуму з σ=0.2 точність 

зросла з 0.2968 до 0.5635, тобто майже вдвічі. Це 

 

Рис. 1. Порівняння точності CNN після очищення для різних видів шумів 
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підтверджує, що попереднє використання автоенкоде-

ра може ефективно зменшувати вплив шуму, покращу-

ючи роботу згорткової мережі. 

Загалом результати після очищення стабілізу-

валися в межах 0.56–0.62, як показано на рис. 2. Це 

свідчить про зменшення розкиду точності між різними 

типами шумів і підвищення узагальнюючої здатності 

моделей. 

З огляду на отримані результати, інтеграція 

автокодувальника як етапу попередньої обробки є 

ефективною для побудови надійних систем класифі-

кації зображень, зокрема у реальних умовах, де якість 

даних не може бути гарантована. Такий підхід забез-

печує баланс між високою точністю (наближеною до 

чистої моделі) та необхідною стійкістю до різнома-

нітних шумів. 

Висновки. У дослідженні було проведено три 

експерименти, спрямовані на аналіз впливу попере-

днього відновлення зображень автоенкодером на 

точність класифікації згортковою нейронною мережею 

(CNN) при різних типах шумів. 

Перший експеримент визначив базову точність 

роботи CNN на чистих даних CIFAR-10, що становила 

70,37%. Це значення було використано як еталон для 

подальшого порівняння результатів на зашумлених 

зображеннях. 

Другий експеримент показав, що додавання шуму 

суттєво знижує точність класифікації: залежно від типу 

шуму вона коливалася у межах 30–68%. Таке падіння 

демонструє високу вразливість CNN до спотворень у 

візуальних даних та підтверджує необхідність підси-

лення стійкості моделей комп’ютерного зору в умовах 

деградованої інформації. 

У третьому експерименті зображення перед 

класифікацією проходили попереднє відновлення за 

допомогою денойзингового автоенкодера. Отримані 

результати показали суттєве підвищення точності – до 

56–60% на всіх типах шумів. Це свідчить про те, що 

автоенкодер здатен ефективно компенсувати негатив-

ний вплив спотворень та відновити частину початкової 

структури зображення, необхідної для коректної 

роботи CNN. Таким чином, проведений аналіз під-

тверджує, що попереднє відновлення зображень авто-

енкодером є дієвим механізмом підвищення точності 

класифікації в умовах шумів різної природи. 

Отримані результати показують, що комбінація 

автоенкодера та CNN може бути використана для 

підвищення стійкості систем комп’ютерного зору, які 

працюють у складі динамічних систем. Це дозволить 

покращити якість ідентифікації об’єктів у реальному 

часі навіть за умови значних спотворень оптичних 

сигналів, що є важливим для задач навігації, керування 

рухом, супроводу об’єктів та уникнення зіткнень. 
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ANALYSIS OF THE IMPACT OF PRELIMINARY NOISY IMAGE RESTORATION BY AUTOCODER ON 

THE ACCURACY OF CNN CLASSIFICATION 

The paper investigates the impact of preliminary image restoration using a denoising autoencoder (DAE) on the classification accuracy of a convolutional 

neural network (CNN) under various types of noise. The relevance of the topic is due to the fact that in real conditions, optical images often contain 
distortions caused by changes in lighting, vibrations, camera movement, and other factors, which significantly complicates the task of object recognition. 

Traditional filters do not always provide sufficient cleaning quality and can lead to the loss of important structural features. In this regard, the use of 
deep neural networks, in particular autoencoders, is a promising direction for improving the robustness of computer vision algorithms to noise of various 

nature. The study uses the CIFAR-10 dataset and implements a two-component model: an autoencoder for preliminary cleaning and a CNN for 

classification. The trained autoencoder restores the image structure after exposure to Gaussian, impulse, Poisson, and speckle noise. Three series of 
experiments were conducted: classification of clean images, classification of noisy data without cleaning, and classification after preliminary restoration 

by the autoencoder. The results showed that CNN demonstrates an accuracy of 70.37% on clean data, but when noise is introduced, the accuracy drops 

to 30–59% depending on the type of distortion. After applying the autoencoder, classification accuracy increased to 56–60% for all types of noise, with 
the greatest improvement observed for Gaussian noise with high dispersion. The results confirm that using an autoencoder as a preliminary restoration 

step is an effective method for improving classification accuracy and reducing CNN vulnerability to noise. This approach provides better generalization 

and stability of the system, which is especially important for real-time applications—in particular, in dynamic systems, robotics, autonomous transport, 
and navigation systems, where the quality of optical data is often unstable. The study demonstrates the promise of integrating restoration and classification 

models into a single structure to improve the performance of computer vision systems in challenging conditions. 

Keywords: autoencoder, convolutional neural network, noise, classification, computer vision, intelligent image analysis. 
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