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МЕТОД АДАПТИВНОГО ВИБОРУ ІНТЕРВАЛІВ ЧАСУ ДЛЯ ПОБУДОВИ ГРАФІВ ТЕМПОРАЛЬНИХ 

ГРАФОВИХ НЕЙРОННИХ МЕРЕЖ  

Предметом дослідження є процес формування графових структур для темпоральних графових нейронних мереж з адаптивним вибором рівня 

деталізації часових інтервалів. Мета роботи полягає у розробці підходу до формування графових структур з адаптивною деталізацією для 
темпоральних графових нейронних мереж. Задачі дослідження включають: структуризацію підходів до вибору рівня деталізації часових 

інтервалів при формуванні графів темпоральних графових нейронних мереж з урахуванням змін структури цих графів; розробку методу 

адаптивного вибору інтервалів часу на основі метрик редагування графів і спектрального аналізу структури графа. Розроблений метод включає 

пʼять етапів: формування графа на основі частоти спільної появи сутностей; обчислення швидкості редагування між послідовними графами; 

спектральне вбудовування графів через нормалізований симетричний Лапласіан; розрахунок дивергенції Кульбака – Лейблера між 

спектральними щільностями для виявлення структурного дрейфу; адаптивне коригування тривалості часового інтервалу з урахуванням 
критеріїв швидкості редагування та величини дивергенції. Метод комбінує локальну метрику редагування графа та глобальні метрики 

спектральної щільності, дивергенції Кульбака – Лейблера для виявлення не лише кількості змін у графі, а й їхнього впливу на топологію графа. 

Це дозволяє відділити шум від суттєвих змін структури графу. Метод забезпечує автоматизований вибір деталізації часу без використання 
експертних знань про порогові значення щодо зміни структури графу; зниження обчислювальних витрат на формування графів у періоди 

стабільності структури; задану точність виявлення часових залежностей у періоди різких змін структури графа. Практична значущість 
отриманих результатів полягає можливості представлення та подальшого аналізу динамічних процесів у інтелектуальних системах, які 

оперативно адаптуються до змін у структурі взаємозвʼязків, для задач побудови пояснень, рекомендацій, моніторингу, аналізу та 

прогнозування в системах електронної комерції, соціальних мережах, фінансовому аналізі, транспортному моніторингу. 
Ключові слова: темпоральні графи, адаптивна деталізація часу, спектральний аналіз, структурний дрейф, динамічні графи, графові 

нейронні мережи, власні значення Лапласіана, темпоральні залежності. 

Вступ. Темпоральні графові нейронні мережі мо-

делюють обʼєкти і процеси як у просторі, так і у часі, 

використовуючи послідовність графів, що описують 

звʼязки між сутностями предметної області на визначе-

них інтервалах часу [1], [2]. Завдяки такій властивості 

вони знаходять широке застосування в інтелектуаль-

них системах підтримки прийняття рішень для аналізу 

змінних взаємозвʼязків між сутностями, включаючи 

прогнозування продажів в системах електронної 

комерції, виявлення аномалій у фінансових транзак-

ціях, зміни звʼязків у соціальних мережах, при побудові 

пояснень тощо [3]. Формування графових структур при 

вирішенні цих задач виконується циклічно і передбачає 

розбиття періоду часу, що аналізується, на послідов-

ність інтервалів та подальшу побудову окремого графа 

для кожного з виділених інтервалів. Така циклічна по-

будова дає можливість оперативно адаптувати граф до 

змін у структурі взаємозвʼязків між сутностями пред-

метної області, що є актуальним у рекомендаційних си-

стемах, системах моніторингу, інформаційних управ-

ляючих системах, при побудові темпоральних баз 

знань тощо [4]. Багаторазове формування графів для 

темпоральної графової нейронної мережі орієнтовано 

на досягнення заданого рівня точності виявлення часо-

вих залежностей при обмеженнях на обчислювальні ре-

сурси. Вимоги до обчислювальних ресурсів повʼязані із 

кількістю графів, що формуються на заданому часо-

вому проміжку. Формування графів для нейронної ме-

режі зазвичай виконується на основі фіксованої 

деталізації часового інтервалу для даних, що вико-

ристовуються при побудові цих графів. Такий підхід 

призводить до надмірних обчислювальних витрат у 

періоди, коли граф має незмінну структуру, або недос-

татньої деталізації у періоди різких змін структури 

(структурного дрейфу). Тому реалізація багаторазо-

вого формування графу в умовах динамічних змін його 

структури потребує додаткового вирішення задачі 

виявлення структурного дрейфу й уточнення деталі-

зації часу відповідно до швидкості зміни структури 

графу. Остання може бути визначена з використанням 

метрики відстані редагування. Адаптація деталізації 

часу дозволяє знизити обчислювальні витрати при 

збереженні точності виявлення темпоральних залеж-

ностей за умов складного розподілу структурних змін 

у часі.  

Таким чином, задача формування графів для гра-

фових нейронних мереж потребує розробки підходу до 

адаптивної деталізації темпоральних інтервалів з 

урахуванням зміни у даних з часом, що свідчить про 

актуальність теми даного дослідження.  

Аналіз останніх досліджень і публікацій. 

Методи глибокого навчання на динамічних гра-

фах, розроблені у [1], призначені для ефективного 

моделювання темпоральних залежностей, що дає мож-

ливість оперативно реагувати на зміни у структурі вза-

ємозвʼязків між сутностями. 

Основи графових нейронних мереж (ГНН) пред-

ставлені у [2], де проаналізовано архітектури ГНН для 
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графів різних типів. На основі цього аналізу розро-

блено евристичні та адаптивні підходи до формування 

графів для темпоральних мереж [5, 6]. Динамічні 

графи, що еволюціонують з часом, потребують 

адаптивного підходу до деталізації часу, оскільки 

використання фіксованих інтервалів часу призводить 

до надмірних обчислювальних витрат у періоди 

незмінності вхідних даних та недостатньої точності у 

періоди різких змін цих даних [7]. Методи порівняння 

графів з використанням відстані редагування викорис-

товуються для оцінки структурних змін [8]. Форму-

вання графів для темпоральних графових нейронних 

мереж потребує врахування концепції постійної зміни 

графової структури, тобто структурного дрейфу. Огляд 

методів адаптації до дрейфу, в тому числі з вико-

ристанням індуктивного навчання, представлено в ро-

ботах [9], [10].  

Проте при адаптації структури графів потрібно 

враховувати обчислювальну складність методів 

аналізу даних [11]. Виявлення структурного дрейфу у 

графах базується на використанні методів спектраль-

ного аналізу [12], [13]. Для моделювання залежностей 

між вершинами та їх змін з часом з високою точністю 

використовується механізм уваги [14]. Можливості 

представлення темпоральних знань з урахуванням 

порядку подій у часі представлено у [4], [15]. Таке 

представлення у поєднанні з графовими нейронними 

мережами дає можливість побудувати моделі процесів 

обробки даних на основі записів у журналах подій. 

Можливості використання темпоральних знань для 

побудови пояснень представлено у [3], [16], [17]. Поєд-

нання графових нейронних мереж із запропонованими 

в цих роботах методами забезпечить інтеграцію тем-

порального й каузального аспектів пояснення. 

Актуальний підхід до досліджень щодо побудови 

графів для темпоральних графових нейронних мереж 

повʼязаний аналізом власних значень матриці Лапла-

сіана для знаходження моментів часу, коли відбулись 

суттєві зміни у структурі графа [18]. Даний підхід де-

монструє високу чутливість до структурного дрейфу та 

відділяє шуми у даних. 

Таким чином, сучасні підходи до формування гра-

фових структур для темпоральних ГНН викорис-

товують відстань редагування або спектральний аналіз 

для виявлення структурного дрейфу і подальшої 

адаптації графу на новому інтервалі часу. Проте 

розробці підходу, який би виконував комплексний 

вибір інтервалу часу для побудови адаптованого графа 

не приділяється достатньо уваги. Проте такий підхід 

дає можливість врахувати актуальні зміни у вхідних 

даних ГНН, знизити обчислювальні витрати для не-

змінних даних та оперативно врахувати дані, що змі-

нюються з часом.  

Мета та задачі дослідження. 

Метою роботи є розробка підходу до формування 

графових структур з адаптивною деталізацією для тем-

поральних графових нейронних мереж.  

Використання адаптивної деталізації створює 

умови для зниження обчислювальних витрат на 

побудову ГНН при збереженні точності опису темпо-

ральних залежностей за умов структурного дрейфу. 

Для досягнення мети дослідження вирішуються 

задачі: структуризація підходів до вибору рівня деталі-

зації інтервалів часу при формуванні графів темпораль-

них графових нейронних мереж з урахуванням змін їх 

структури з часом; розробка методу адаптивного ви-

бору інтервалів часу для побудови графів темпораль-

них графових нейронних мереж. 

Структуризація підходів до деталізації часу 

при формуванні графів темпоральних графових 

нейронних мереж. 

Даний підрозділ присвячено обґрунтуванню ви-

бору підходу до побудови графових нейронних мереж 

зі змінною деталізацією часу з урахуванням темпораль-

них змін їх структури. Запропонована структуризація 

підходів до формування графів базується на порівнянні 

можливостей побудови графових мереж з використан-

ням фіксованих інтервалів часу, евристичних правил 

динамічного вибору деталізації часу та адаптивного 

підходу на основі швидкості редагування графа. 

Перший підхід передбачає розбиття періоду часу, 

для якого виконується аналіз, на однакові інтервали . 

Для кожного інтервалу формується окремий граф. Та-

кий підхід забезпечує незалежність отриманих графів 

від історії змін вхідних даних, є простим в реалізації та 

створює умови для паралельної обробки інтервалів 

часу. Обчислювальні витрати в даному випадку не за-

лежать від властивостей вхідних даних. 

Однак даний підхід не враховує динаміку вхідних 

даних. Тому формується надлишкова кількість графів 

для інтервалів часу, коли вхідні дані не змінюються. 

Альтернативно, можуть бути пропущені важливі стру-

ктурні зміни графу у періоди структурного дрейфу. 

Відповідно, підхід з фіксованими інтервалами часу 

приводить до надлишкових обчислювальних витрат у 

періоди, коли структура графа змінюється повільно, та 

до пропусків в обробці даних у періоди різких змін 

графу внаслідок структурного дрейфу. 

Другий підхід використовує евристичні правила 

«якщо – то» для вибору рівня деталізації часу [6]. Ці 

правила базуються на експертних знаннях щодо поро-

гових значень змін у структурі графу. В рамках даного 

підходу послідовно виконується моніторинг структур-

них змін графу та подальше уточнення довжини темпо-

ральних інтервалів. На етапі моніторингу виконується 

порівняння структури поточного та попереднього гра-

фів та оцінка змін структури графа з урахуванням від-

мінностей щодо кількості дуг, середньої ваги дуг та кі-

лькості вершин. На етапі уточнення інтервалів часу ви-

конується порівняння отриманих оцінок змін у графі із 

експертно визначеними порогами, після чого деталіза-

ція інтервалів часу змінюється.  

Помилкові спрацювання правил адаптації внаслі-

док шуму у даних усуваються шляхом використання 

ковзного середнього для декількох інтервалів щодо 

отриманих на етапі моніторингу оцінок зміни струк-

тури. Проте евристичні правила базуються на ретро-

спективному аналізі попередніх інтервалів, що обме-

жує повноцінне застосування даного підходу при вини-

кненні структурного дрейфу. 

Запропонований адаптивний підхід до побудови 

темпоральних інтервалів на основі визначення швидко-
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сті редагування графа зі спектральним вбудовуванням 

використовує порівняння графів з використанням відс-

тані Левенштейна, запропоноване в [14]. При реалізації 

даного методу замість традиційного порівняння відс-

тані редагування графів виконується перетворення гра-

фів у рядки з подальшим застосуванням відстані реда-

гування для рядків (відстані Левенштейна). Відстані 

редагування графів та рядків визначаються як мініма-

льна кількість операцій редагування з перетворення од-

ного графа (відповідно, одного рядка) в інший. Тобто 

дана відстань відображає кількісну оцінку відміннос-

тей між двома графами або двома рядками. Удоскона-

лення методу виконується на основі результатів дослі-

дження [18], в яких запропоновано виявляти моменти 

суттєвих змін структури графу за допомогою власних 

значень матриці Лапласіана графа. Останні є фундаме-

нтальними характеристиками графа, які відображають 

його геометричні й топологічні властивості. Напри-

клад, для графа соціальної мережі ці значення можуть 

відображати швидкість поширення інформації між ву-

злами мережі, для графа електромережі – сумарну еле-

ктричну провідність між кластерами мережі. Тобто 

власні значення матриці Лапласіана відображають такі 

характеристики графа, як кількість звʼязних компо-

нент, звʼязність, наявність вузьких місць тощо. 

Метод адаптивного вибору інтервалів часу для 

побудови графів для темпоральних графових ней-

ронних мереж. 

На основі розглянутого адаптивного підходу роз-

роблено метод побудови темпоральних інтервалів. Ме-

тод включає наступні етапи.  

Етап 1. Формування графу ( , , )l l l lG V E W= , що мі-

стить вершини lV , дуги lE  та ваги дуг lW  для інтервалу 

1[ , ]l l lI t t +=  на основі частоти спільної появи опису сут-

ностей у вхідних даних. 

Сутності у вхідних даних відображають обʼєкти 

предметної області, з якими оперує інтелектуальна си-

стема, наприклад, товари в системі електронної комер-

ції, користувачі в соціальній мережі тощо. При реаліза-

ції даного етапу розглядаються сутності, що фіксу-

ються у вхідних даних на інтервалі часу lI . Умовою 

спільної появи сутностей a  та b  є їх одночасна прису-

тність у межах однієї транзакції. Наприклад, якщо 

покупка товарів a  та b  зафіксована в одному чеку. 

Частота спільної появи ( , , )lfr a b I  обчислюється як 

кількість транзакцій з обома сутностями a  та b  на 

інтервалі lI  . 

Вершини lV  графа lG  містять унікальні сутності 

із вхідних даних на інтервалі lI . Дуги lE  графа звʼязу-

ють вершини, для яких ( , , )lfr a b I  перевищу мінімаль-

ний поріг  . Наприклад, значення порогу 2 =  озна-

чає, що дуга додається лише в тому випадку, якщо 
обидві представлені вершинами графу сутності зʼявля-
ються спільно щонайменше у двох транзакціях. Вага 

,

,

a b

l kw  k − дуги в матриці ваг lW  визначається через нор-

малізовану частоту спільної появи відповідних сутнос-

тей ( , )k ka b  для цієї дуги на інтервалі lI : 

 ,

,

( , , )
.

( , , )
=


a b k k l

l k

k k l

k

fr a b I
w

fr a b I
 (1) 

Згідно (1), сила звʼязку між сутностями визнача-

ється частотою їх спільної появи у даних.  

Етап 2. Обчислення швидкості редагування на ін-

тервалі lI  для графу lG  поточного інтервалу lI  і графу 

1lG −  з попереднього інтервалу 1lI − .  

Швидкість редагування lGV  обчислюється як від-

ношення відстані редагування 1( , )l l lGE G G −  між гра-

фами lG  та 1lG −  до найбільшої кількості вершин графа 

1, )max( l lVV −
: 

 1

1

.
( , )

, )max(

l l l

l

l l

GE G G
G

V
V

V

−

−

=  (2) 

Відстань редагування 1( , )l l lGE G G −  визначається 

як мінімальна кількість операцій редагування, необхід-

них для перетворення першого графа у другий. Ці опе-

рації включають: додавання, видалення й заміну вер-

шин, а також додавання, видалення й редагування дуг. 

Заміна вершини передбачає заміну атрибутів сутності. 

Редагування дуг включає зміну ваг. Значення 

1, )max( l lVV −
 використовується для нормалізації, що 

дає можливість порівнювати графи з різною кількістю 

вершин. 

Проте слід зазначити, що висока швидкість реда-

гування у виразі (2) не завжди відображає суттєві стру-

ктурні зміни графа. Так, велика кількість локальних 

змін, наприклад, повʼязаних із додаванням дуг між іс-

нуючими вершинами, може не впливати суттєво на 

глобальну топологію графа. Альтернативно, мала кіль-

кість суттєвих змін, наприклад додавання лише однієї 

дуги, що звʼязує два раніше ізольовані кластери, може 

призводити до суттєвої реорганізації структури графа. 

Для вирішення цієї проблеми на подальших етапах ви-

користовується спектральний аналіз структури графа. 

Спектральний аналіз дає можливість виділити глоба-

льні структурні характеристики графа та виявити стру-

ктурний дрейф шляхом порівняння спектральних щіль-

ностей графів для двох послідовних інтервалів часу. 

Етап 3. Спектральне вбудовування графів lG  та 

1lG − . 

Вбудовування виконується традиційно, шляхом 
обчислення власних значень нормалізованого симетри-
чного Лапласіана: 

 
1/2 1/2 ,l l l

− −= −ΙL D A D  (3) 

де lA  – матриця суміжності графа; lD  – діагональна 

матриця ступенів вершин; Ι  – одинична матриця роз-

міру | |lV . 

Матриця суміжності відображає топологічну 
структуру графа. Ненульові елементи матриці вказу-
ють на наявність ребер між вершинами графа. Значення 
(ваги) цих елементів відображають силу звʼязків.  
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Діагональна матриця ступенів містить на головній 

діагоналі суми ваг дуг, інцидентних кожній вершині 

графа. Тобто ця матриця відображає «популярність» 

вершини у графі. Високий ступінь вершини означає, 

що сутність має багато звʼязків з іншими сутностями 

(наприклад, певний товар достатньо часто продається 

разом з іншими товарами). Нормалізація через 
1/2

lD−
 

знижує вплив звʼязків між вершинами з високими сту-

пенями на спектр порівняно з незваженим Лапласіаном 

і тому використовується для графів, де розмір та розпо-

діл степенів можуть змінюватися у часі. Без нормаліза-

ції спектральні характеристики графа будуть залежати 

не лише від його структури, а й від абсолютних значень 

ступенів, що не дає можливість порівняти графи для рі-

зних інтервалів часу. 

Спектральне розкладання нормалізованого Лап-

ласіана дає набір власних значень k  та відповідних 

власних векторів, які кодують структуру графа, напри-

клад відображають звʼязність графа, наявність «вузь-

ких місць» у його структурі. Тому спектр Лапласіана 

можна використати для виявлення структурних змін 

між графами 1lG −  та lG . Зміни у розподілі власних зна-

чень свідчать про реорганізацію топології графа, на-

приклад про появу нових кластерів, зміну звʼязності 

для існуючих кластерів, зміни у структурі.  

Етап 4. Розрахунок дивергенції Кульбака – 

Лейблера ( )KL P Q  між спектральною щільністю по-

точного графа lG  та попереднього графа 1lG − . 

Спектральна щільність інваріантна щодо переста-

новки вершин графа, тобто не залежить від способу ну-

мерації вершин. Тому дана характеристика може бути 

використана для порівняння графів lG  та 1lG −  без ви-

значення відповідності між їх вершинами. Розподіл 

спектральної щільності містить інформацію про струк-

турні властивості графа – високу звʼязність, кластерну 

структуру тощо. Зміщення або поява нових піків щіль-

ності свідчать про трансформацію структури графа. 

Значення дивергенції Кульбака – Лейблера дає можли-

вість порівняти поточний та очікуваний розподіл спек-

тральної щільності. Суттєві відмінності між поточною 

та очікуваною щільностями свідчать про суттєві зміни 

в структурі графа. У випадку стабільної структури 

графа дивергенція Кульбака – Лейблера є нульовою. 

Етап 5. Уточнення інтервалу часу для формування 

графу темпоральної графової нейронної мережі. 

У випадку зменшення швидкості редагування 

lGV  та зменшення дивергенції інтервал 1Δ lt +  збільшу-

ється у два рази за умови не перевищення максималь-

ного можливої протяжності інтервалу maxΔt : 

 ( )1 1 maxΔ min 2 ,Δ .l l lt t t t+ + −=  (4) 

Якщо збільшується швидкість редагування або 

збільшується дивергенція, то відбувається зменшення 

інтервалу в 2 рази за умови, що ще не досягнуто міні-

мальне значення довжини інтервалу minΔt : 

 ( )1 1 minΔ min 0,5 ,Δ .l l lt t t t+ + −=  (5) 

Наприклад, в сфері електронної комерції деталіза-

ція інтервалів дає можливість відображати детальні 

зміни в структурі графа при проведенні рекламних ак-

цій, під час свят, продажів нових категорій товарів.  

Реалізація метода формування графових стру-

ктур з адаптивною деталізацією. 

Розглянемо приклад реалізації метода для системи 

електронної комерції. Фрагмент вхідних даних наве-

дено в табл. 1.  

Таблиця 1 – Фрагмент вхідних даних 

ID 

транзакції 
Дата Товари (сутності) 

T1 15.03 Ноутбук, Миша, Клавіатура 

T2 16.03 Ноутбук, SSD-диск 

T3 17.03 Миша, Килимок для миші 

T4 18.03 Ноутбук, Миша, SSD-диск, RAM 

T5 19.03 Клавіатура, Килимок для миші 

T6 20.03 Ноутбук, RAM 

 

Ця таблиця містить такий набір сутностей (вер-
шин графа): {Ноутбук, Миша, Клавіатура, SSD-диск, RAM, 
Килимок для миші}.Аналіз транзакцій показує, що сутності 
Ноутбук та Миша зʼявляються разом у двох транзакціях 
(T1, T4). Тому за умов одиничного порогового зна-
чення граф включає 10 дуг: 
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 

lE

Ноутбук Миша

Ноутбук Клавіатура
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Миша Клавіатура Миша

SSD RAM

SSD

RAM

SSD RAM

Миша Миша Килимок

Клавіатура Килимок

 (6) 

Результуючий граф має 6 вершин та 10 дуг. 
Загальна кількість спільних появ сутностей стано-

вить 14. Вагові коефіцієнти мають наступні значення: 

,

,

2
0,143

14
= =l kwНоутбук Миша

, 
,

,

2
0,143

14
= =l kw SНоутб Dук S

, 

,

,

1
0,071

14
= =l kwКлавіатура Килимок

. 

Граф за минулий тиждень має наступні вершини:  

 
1

,  ,  ,  
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.−

 
=  
 

lV
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S
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 (7) 

Дуги графа 1lE −  мають вигляд: 
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 (8) 

Відповідно, для переходу від графа 1lG −  до графа 

lG  необхідно додати вершину Килимок та 5 дуг:  

 
( ) ( ) ( )
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тобто 1( , ) 6.l l lGE G G − =   

Оскільки 
1,max ) 6( − =l lVV , то без урахування 

вартості операцій редагування графа 1.lGV =

Запропонований метод дає можливість врахувати вагу 

дуг та вершин при розрахунку lGE . З урахуванням ваг 

вершин та дуг для системи електронної комерції 

1( , ) 3,6,l l lGE G G − =  0,6.lGV =  

Результатами етапу 3 є власні значення для lG : 

1 0 =  (звʼязний граф), 2 0,39 =  (ступінь звʼязності), 

3 271, = , 4 851, = . Для графу 1lG −  на попередньому 

інтервалі отримано такі значення: 1 0 = , 2 0,52 = , 

3 151, = , 4 831, = .  

Зменшення 2  означає зменшення звʼязності 

графу, зазвичай внаслідок появи нових груп товарів, а 

зростання 3  – збільшення кластерів товарів. 

За результатами етапу 4 ( )KL P Q  становить 

0,45, що свідчить про значний структурний дрейф і не-

обхідність зменшити інтервал часу згідно (5).  

Висновки. 

Виконано структуризацію підходів до рівня дета-

лізації часу при формуванні графів темпоральних гра-

фових нейронних мереж. Обґрунтовано використання 

адаптивного підходу на основі аналізу швидкості реда-

гування графів та спектральне вбудовування. 

Запропоновано метод вибору інтервалу часу для 

побудови графів графових нейронних мереж. Метод 

містить етапи початкового формування графів з базо-

вою деталізацією, обчислення швидкості редагування 

графа між послідовними у часі графами, виявлення 

структурного дрейфу через спектральне вбудовування 

та автоматичної адаптації інтервалу часу в залежності 

від швидкості змін структури графу. 

У практичному аспекті розроблений метод дає мо-

жливість знизити обчислювальні витрати на форму-

вання графів в графових нейронних мережах шляхом 

адаптивної деталізації часу, забезпечуючи розширен-

ню інтервалів часу для побудови графу в періоди несут-

тєвих змін у вхідних даних.  
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METHOD FOR ADAPTIVE SELECTION OF TIME INTERVALS FOR CONSTRUCTING GRAPHS OF 

TEMPORAL GRAPH NEURAL NETWORKS  

The subject of research is the process of forming graph structures for temporal graph neural networks with adaptive selection of time interval granularity 

level. The aim of the work is to develop an approach to forming graph structures with adaptive granularity for temporal graph neural networks. Research 
tasks include: structuring approaches to selecting the granularity level of time intervals when forming graphs of temporal graph neural networks 

considering changes in the structure of these graphs; developing a method for adaptive selection of time intervals based on graph editing metrics and 

spectral analysis of graph structure. The developed method includes five stages: graph formation based on co-occurrence frequency of entities; calculation 
of editing rate between sequential graphs; spectral embedding of graphs through normalized symmetric Laplacian; computation of Kullback – Leibler 

divergence between spectral densities to detect structural drift; adaptive adjustment of time interval duration considering editing rate criteria and 

divergence magnitude. The method combines local graph editing metric and global metrics of spectral density, Kullback – Leibler divergence to detect 
not only the quantity of changes in the graph but also their impact on graph topology. This allows distinguishing noise from significant structural changes 

in the graph. The method provides automated selection of time granularity without using expert knowledge about threshold values for graph structure 

changes; reduction of computational costs for graph formation during periods of structure stability; specified accuracy of temporal dependency detection 

during periods of sharp graph structure changes. The practical significance of the obtained results lies in the possibility of representation and further 

analysis of dynamic processes in intelligent systems that operationally adapt to changes in relationship structure, for tasks of building explanations, 

recommendations, monitoring, analysis and forecasting in e-commerce systems, social networks, financial analysis, transportation monitoring. 
Keywords: temporal graphs, adaptive time granularity, spectral analysis, structural drift, dynamic graphs, graph neural networks, edit metric, 

Laplacian eigenvalues, temporal dependencies. 
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