
ISSN 2079-0023 (print)  

ISSN 2410-2857 (online) Системний аналіз, управління та інформаційні технології  

УДК 004.921+004.8 

M. I. BEZMENOV, Y. O. POTAPENKO, K. O. DVORNIK 

A UNITY 3D ENGINE PLUGIN FOR CREATING STATIC ECOSYSTEM IN GAME 

APPLICATIONS 

Here we report on the researches and development of the static ecosystem plugin to Unity 3D game 

development platform, also the creation of neural network has been described. It allows for the 

designer-driven automatic generation of computer game assets based on the two vastly different 

approaches: procedural and artificial-neural-network-based; with user-defined object to be cloned, 

area to be populated and placement rules. Both methods have been applied to the problem of 

photorealistic distribution of stones on the hillside (including demonstration of the common 

placements mistakes). All the approaches were then evaluated by the panel of the computer gamers. 

Opinion of some participants of the experiment with the corresponding results were summarized. 

Keywords: Unity 3D, game environment, artificial neural networks, procedural generation, 

computer graphics, 3D modeling, landscape.  

Introduction. Game industry exists a lot of 

years, but its popularity is only growing. One of 

the most important aspects of the modern game 

development is creating an in-game 

environment. Game environment it is something 

like field, forest or town and all the objects 

around you in this location (if compare it to the 

real world). For location looks like real, it is 

necessary to put environment objects in similar 

positions, and mount as on the existing location. 

So, in-game environment consists of a set of a 

3D objects placed in certain points of space 

according to some objective or subjective rules. 

There are two major approaches to the in-game 

environment development: procedural and 

manual [1]. The former is a fully automated 

process that distributes objects in space 

according to the well defined rules. The main 

advantage of this method is practically 

instantaneous environment generation, e.g. 

millions of objects could be scattered for less 

than a second using modern computer hardware. 

However procedural approach is typically 

considered to be “unattractive” to the 

prospective audience of the game due to the 

relative low variance of the object distributions 

this methods offers. It is essentially limited by 

the amount of rules programmers could 

implement in software on feasible timescales. 

Consequently, level designers spend 

considerable amount of time to generate 

reasonably vibrant in-game environment using 

trial and error approach on the number of 

parameters the procedural generator has. The 

manual approach is obviously even more time 

consuming since every object (most likely out of 

thousands) should be placed, rotated and scaled 

by hand. However as this method fully relies on 

the artistic impression and skills of the level 

designer, it might lead to creation of truly 

unique in-game environments. So the most 

optimal approach is to use procedural and 

manual methods together: automatically 

generate an in-game environment and then 

refine it manually until it fits the quality 

criterion of the given computer game project. 

Here we demonstrate how the artificial neural 

networks [2] could be used to allow level 

designers to create their own, unique, set of rules 

for procedural generators. Such rules then could 

be trained even further by other designers 

allowing for vibrant and unique in-game 

environments to be generated automatically. 

The aim of this work is to develop a plugin 

for Unity 3D engine that uses artificial neural 

networks to combine the procedural and manual 

methods of in-game environment creation. 

Problem definition. The plugin should 

allow one to access the landscape system of the 

Unity 3D engine. So any particular 

environmental object could be selected to be 

instanced and distributed in space according to 

the custom-defined rules with a set of 

parameters exposed to the level designer. To 
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account for domain-like structure of the real 

world the plugin should also allow for the 

distribution area to be user-defined.  

The distribution rules set for the given 

object and (or) its existing placement we would 

call an ecosystem. For the reference we would 

rely on the ecosystem created using VUE eON 

software, which is a state-of-the-art tool widely 

used in film and CG industries to create and 

visualize large-scale artificial worlds. We would 

restrict its procedural generator parameters to 

the certain ranges of elevation, tilting, rotation 

and scaling of the objects. 

Finally, we empirically chose a particular 

type of artificial neural network and then 

estimate the required amount of neurons and 

synapses. The amount of inputs of the network 

is kept the same to what we used in Vue eON 

software, with the input parameters normalized 

to the respective ranges [2]. The tilt and 

elevation of the object is estimated from the 

topology of the landscape using the 8-neighbors 

method [3]. We employ an open-source 

NeuralDotNet library that allows one to create, 

train and apply deep artificial neural networks 

with backpropagation and dynamically 

adjustable amount of neurons.  

Literature review. Any procedural 

generation of in-game assets includes natural 

and artificial objects as emphasized in 

bestselling Bill Fleming's “3D Photorealism 

Toolkit”. He intentionally splits his book into 

two parts: creation of city and natural 

environments; each with vastly different 

approaches and specific rules that significantly 

contribute to the realism of the result [4]. Let us 

consider procedural generation of city 

landscape. The design of artificial objects 

typically obeys high degree of symmetry. For 

instance cities typically expose straight, 

rectangular and systematically placed objects 

with minimum of entropy. However, it is not 

necessarily mean that it is vanishing, e.g. 

buildings have different heights and there are 

certain amounts of waste and traffic on the 

streets. Therefore, procedural generation of city 

landscapes should combine both chaos-driven 

and systematic rules. An example of 

automatically created city environment is shown 

in Fig. 1. 

 

Fig. 1 – A city landscape generated by the 

 procedural approach 

To create a photorealistic virtual city with 

VUE 3D one needs to use a set of different types 

of buildings. In the VUE ecosystem this could 

be finely adjusted by pressing the Add Layers, 

adding objects to populate. In contrast, the 

rotations should be restricted to multiples of π/2. 

Such restrictions on the parameters are not 

supported by the ecosystem, but should be set 

manually prior to instancing. The random shift 

of the object should be confined to some small 

in-plane values as buildings are relatively 

aligned with respect to each other and, 

obviously, cannot be elevated above the ground 

surface. The local surface normal should not be 

used in procedural generation of virtual cities as 

buildings are typically made strictly vertical. 

This set of rules could be extrapolated to any 

artificial objects, e.g. western gravestones, belts, 

power grids, etc. A vastly different set of rules 

should be applied to natural environments. In 

case the chaos dominates over uniformity. 

Moreover, the natural object are typically placed 

along the local normal of the ground surface and 

there is no need to constrain the rotation. 

Anyway some empirical placement rules could 

still be identified. For instance, there is always 

more vegetation around the large stones, since 

they are able to keep more moisture; small 

stones are typically seen in steppes where they 

are largely affected by the weathering. It is 

virtually impossible to account for all such rules, 

but over the years game designers identified the 

most important of them that lead to the 

satisfactory level of photorealism. The 

population of chaotically (without any particular 

rules applied) placed stones is shown in Fig. 2. 
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Fig. 2 – A population of stones generated  

 by the procedural approach 

Visually the given environment is rather 

unrealistic. However if a simple rule of 

proportional to the object size distribution is 

applied the photorealism of the environment 

subjectively increases multifold as shown in 

Fig.3. This particular method relies on golden 

ratio principle, i.e. the so-called „rule of five”. In 

particular it postulates that the ratio between the 

nearest neighbor objects in parameter space 

should be ⅕, e.g. the amount of middle-size 

stones should be 5 times larger than the large 

ones. In the reported ecosystem this method is 

provided by the „Make Nice‟ function that 

provides photorealistic distribution of the given 

objects by the 3-pass instancing, each with 

corresponding downscaling of the objects and 

increasing its amount by a factor of 5. The same 

technique works equally well for vegetation. 

 

Fig. 3 – Photorealistic distribution of the stones 

The proposed solution. In the given work 

the artificial neural network is used as black box 

that maps object distribution rules developed by 

the level designer to the input parameters space. 

 Hereafter we rely on the backpropagation 

method to train the artificial neural network [5]. 

A supervisor is then creates a training set with 

the aim to place the objects in the certain way. 

Let us assume that one wants to distribute cubes, 

so that their size increase with the altitude. If the 

linear dependence is sufficient, then the training 

set is simply a set of two cubes: one small and 

one large cube at low and high altitudes, 

respectively. The input parameters should 

include altitude of the ground surface at the 

object site and the corresponding 8 nearest-

neighbour heights to account for the rules 

related to the direction of the local normal to the 

surface. There should be at least 6 outputs of the 

artificial neural networks to account for 3D 

scaling and rotation of the given object. The 

schematic representation of the described 

artificial neural network is shown in Fig. 4.  

The ih  is the altitude of the neighbor vertex 

of the ground surface and i = 1, 2..8. (sX, sY, sZ) 

and (rX, rY, rZ) are the scaling and rotation 

vectors, respectively. The inputs of the network 

are normalized independently using the 

corresponding minimax values across the whole 

training set. 

 

Fig. 4 – Schematic representation of the artificial  

neural network used to distribute the objects  

with linear scaling of their size vs altitude 

The routine. At first, one needs to put our 

plugin to the „Editor‟ directory of the given 

game project. Then the plugin should be 

activated from within the Unity 3D Editor by 
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invoking the „Terrain->Ecosystem‟ menu. In the 

corresponding window the user should specify 

the object (by sending it to the „prefab control‟) 

and then the area it should be distributed to. 

 Multiple objects could be cloned at once. In 

addition, the is a possibility to adjust the 

parameters of the ecosystem: rotation, scale and 

shift ranges, tilt rules with respect to the global 

and local normals of the ground surface. Once 

changes are made the instancing could be 

performed immediately. To train the artificial 

neural network, one can chose an arbitrary 

number of (manually distributed) objects in the 

scene and proceed. Finally the existing 

population of the objects could be selected and 

then re-distributed using different artificial 

neural network. 

Implementation of the artificial neural 

network. If the given multi-layer artificial 

neural network relies on linear activation 

functions, then due to the associativity of the 

matrix product it could always be reduced to the 

single layer topology. At the same time if the 

nonlinear activation function is used then it 

could be demonstrated that the two-layer 

network topology is sufficient to construct  a 

universal function approximator [5].  Since we 

rely on the NeuralDotNet library that only 

supports nonlinear sigmoidal activation 

function, then the problem of the particular 

choice of network topology is, thereby, trivial. 

 So we would rely on the two-layer artificial 

neural network with backpropagation training 

routine. At the same time the amount of neurons 

to be used should be identified using heuristic 

methods [5]. We would start with 18 (the value 

is selected randomly) neurons per each hidden 

layer of the network. To estimate the validity of 

the this approximation we would calculate the 

variance of the outputs of the network for the 

given training set, i.e. the training error:  

  



out

2* )(Z-)Z(
2

1

v

Н , (1) 

where )(Z  – is the expected output value of the 

network,   – input signal [5]. To avoid the 

overtraining effect that leads to suppression of 

the generalization properties of the network the 

vanishing values of the training error should be 

avoided. This could be achieved by adjusting the 

amount of neurons per layer and (or) by 

restricting the amount of training cycles. At first 

let us limit this value to 5000 and then 

investigate the relation between the training 

error and the amount of neurons per layer.  

The training set consists of 50 objects that 

are randomly scaled and placed along the local 

normal of the ground surface. By doing so we 

would make that all inputs and outputs of the 

network are active. The dependence of the 

training error on the amount of neurons per layer 

is shown in Fig. 5. 

 

Fig. 5 – Training error vs the amount  

Їof neurons per hidden layer 

The data clearly shows that the optimal 

(minimal) value of the training error corresponds 

to 15 neurons per layer. Beyond this value the 

training time increases significantly, while the 

error remains virtually constant. So by fixing the 

amount of neurons to the optimal value, we 

investigate the relation between the error and the 

amount of training cycles. We should also take 

into account the dependence of the time required 

to complete the training on the amount of cycles. 

For instance, 100 and 20000 training cycles 

require 5 s and 180 s, respectively. The result of 

this investigation is shown in Fig. 6. 

 

Fig. 6 – The training errors vs the amount of 

training cycles 
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 in case of network of 15 neurons per hidden 

layer 

As it could be seen on the graph, the 

dependence is linear. So we can easily find the 

required amount of training cycles for the 

desired value of the error. The final part of the 

present study focuses on identifying the 

subjective criteria of the distribution vibrance 

produced by the artificial neural network 

approach as compared to the procedural 

generation.  

For this purpose we create a population of 

objects that are placed in space using the 

following equations: 

 )(* oRSXXS  , (2) 

 )360,360(),(  ooRrX ,  

where о – the tilt angle. Then we train the 

artificial neural network accordingly (Fig. 7 – 

9). In this example, we wanted to create rocks 

that fall or are on the slope of a mountain. As the 

stones were used primitive Box, which is 

embedded in Unity 3D.  

 

Fig. 7 – Procedurally generated population 

  

Fig. 8 – Neural network with generation error 

0,02486 

Fig. 9 – Neural network with generation error 

0,336326 

Fig. 7 shows procedurally generated 

population, it is clear that not all primitives 

scattered, the last row are almost not expanded, 

and has not changed its position. This result 

does not seem realist for this task [6]. On the 

Fig. 8 neural network generates better spread 

"stones" on the slope, but the some objects 

again, almost did not change theirs angles. 

Neural network generation with value 

generation error 0.336326 (Fig. 9) is the best 

results. 

Then we perform a blind experiment 

(table 1). 

 

 

Table 1 – The subjective preferences of the experts with respect to the given distribution of the 

objects 

Expert 
Generate types of creating game levels 

Procedural  Neural Neural networks 
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networks 0,02 0,33 

Iliya (Doctrina)   + 

Denis (Program Ace)    

Helen (Program Ace)   + 

Denis (Doctrina)  + + 

Pavel (CFT)   + 

Olexandr (Doctrina) +   

Mykola (GU, SE)   + 

Andriy (BSK Games)   + 

Viktor (ideus)   + 

Evgeniy (Plaiko)   + 

Artur (Plaiko)   + 

Roman (Doctrina)   + 

Katerina (Doctrina)   + 

 

To assess the obtained results we formed a 

group of experts consisting of prospective 

computer gamers and game designers. Experts 

chose the most visually attractive distribution of 

the objects (table 1). 

Denis Director of Cross platform 

Development Department at Program-Ace, 

explained his choice, the generation with error 

0.336326 looks like spread and falling rocks. 

Andrew level designer and CEO of BSK Games, 

about generation said that from the point of level 

design view the best is neural networks 

generation 0,336326, but if the objects would be 

randomly scattered with bigger value of 

parameter, would be even better. According to 

the table we can say that almost all respondents 

declared by the neural network generation with 

the value of 0.336326 errors. The procedural and 

neural network generating have similar results, 

but the most interesting landscapes created 

through neural networks generation with the 

biggest mistake. 

Conclusions. We report on the development 

of an artificial-neural-network-based ecosystem 

to distribute objects on the virtual, in-game 

landscapes created in Unity3d editor. In contrast 

to rather limited procedural generation, our 

approach allows one to program any custom 

distribution rules in natural and intuitive ways 

with fine control over the entropy, e.g. ranging 

from rather strict to practically random 

placement of the objects. 
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