
ISSN 2079-0023 (print)

ISSN 2410-2857 (online) Системний аналіз, управління та інформаційні технології

УДК 004.921+004.8

M. I. BEZMENOV, Y. O. POTAPENKO, K. O. DVORNIK

A UNITY 3D ENGINE PLUGIN FOR CREATING STATIC ECOSYSTEM IN GAME

APPLICATIONS

Here we report on the researches and development of the static ecosystem plugin to Unity 3D game

development platform, also the creation of neural network has been described. It allows for the

designer-driven automatic generation of computer game assets based on the two vastly different

approaches: procedural and artificial-neural-network-based; with user-defined object to be cloned,

area to be populated and placement rules. Both methods have been applied to the problem of

photorealistic distribution of stones on the hillside (including demonstration of the common

placements mistakes). All the approaches were then evaluated by the panel of the computer gamers.

Opinion of some participants of the experiment with the corresponding results were summarized.

Keywords: Unity 3D, game environment, artificial neural networks, procedural generation,

computer graphics, 3D modeling, landscape.

Introduction. Game industry exists a lot of

years, but its popularity is only growing. One of

the most important aspects of the modern game

development is creating an in-game

environment. Game environment it is something

like field, forest or town and all the objects

around you in this location (if compare it to the

real world). For location looks like real, it is

necessary to put environment objects in similar

positions, and mount as on the existing location.

So, in-game environment consists of a set of a

3D objects placed in certain points of space

according to some objective or subjective rules.

There are two major approaches to the in-game

environment development: procedural and

manual [1]. The former is a fully automated

process that distributes objects in space

according to the well defined rules. The main

advantage of this method is practically

instantaneous environment generation, e.g.

millions of objects could be scattered for less

than a second using modern computer hardware.

However procedural approach is typically

considered to be “unattractive” to the

prospective audience of the game due to the

relative low variance of the object distributions

this methods offers. It is essentially limited by

the amount of rules programmers could

implement in software on feasible timescales.

Consequently, level designers spend

considerable amount of time to generate

reasonably vibrant in-game environment using

trial and error approach on the number of

parameters the procedural generator has. The

manual approach is obviously even more time

consuming since every object (most likely out of

thousands) should be placed, rotated and scaled

by hand. However as this method fully relies on

the artistic impression and skills of the level

designer, it might lead to creation of truly

unique in-game environments. So the most

optimal approach is to use procedural and

manual methods together: automatically

generate an in-game environment and then

refine it manually until it fits the quality

criterion of the given computer game project.

Here we demonstrate how the artificial neural

networks [2] could be used to allow level

designers to create their own, unique, set of rules

for procedural generators. Such rules then could

be trained even further by other designers

allowing for vibrant and unique in-game

environments to be generated automatically.

The aim of this work is to develop a plugin

for Unity 3D engine that uses artificial neural

networks to combine the procedural and manual

methods of in-game environment creation.

Problem definition. The plugin should

allow one to access the landscape system of the

Unity 3D engine. So any particular

environmental object could be selected to be

instanced and distributed in space according to

the custom-defined rules with a set of

parameters exposed to the level designer. To

© M. I. Bezmenov, Y. O. Potapenko, K.O. Dvornik 2015

ISSN 2079-0023 (print)

ISSN 2410-2857 (online) Системний аналіз, управління та інформаційні технології

account for domain-like structure of the real

world the plugin should also allow for the

distribution area to be user-defined.

The distribution rules set for the given

object and (or) its existing placement we would

call an ecosystem. For the reference we would

rely on the ecosystem created using VUE eON

software, which is a state-of-the-art tool widely

used in film and CG industries to create and

visualize large-scale artificial worlds. We would

restrict its procedural generator parameters to

the certain ranges of elevation, tilting, rotation

and scaling of the objects.

Finally, we empirically chose a particular

type of artificial neural network and then

estimate the required amount of neurons and

synapses. The amount of inputs of the network

is kept the same to what we used in Vue eON

software, with the input parameters normalized

to the respective ranges [2]. The tilt and

elevation of the object is estimated from the

topology of the landscape using the 8-neighbors

method [3]. We employ an open-source

NeuralDotNet library that allows one to create,

train and apply deep artificial neural networks

with backpropagation and dynamically

adjustable amount of neurons.

Literature review. Any procedural

generation of in-game assets includes natural

and artificial objects as emphasized in

bestselling Bill Fleming's “3D Photorealism

Toolkit”. He intentionally splits his book into

two parts: creation of city and natural

environments; each with vastly different

approaches and specific rules that significantly

contribute to the realism of the result [4]. Let us

consider procedural generation of city

landscape. The design of artificial objects

typically obeys high degree of symmetry. For

instance cities typically expose straight,

rectangular and systematically placed objects

with minimum of entropy. However, it is not

necessarily mean that it is vanishing, e.g.

buildings have different heights and there are

certain amounts of waste and traffic on the

streets. Therefore, procedural generation of city

landscapes should combine both chaos-driven

and systematic rules. An example of

automatically created city environment is shown

in Fig. 1.

Fig. 1 – A city landscape generated by the

 procedural approach

To create a photorealistic virtual city with

VUE 3D one needs to use a set of different types

of buildings. In the VUE ecosystem this could

be finely adjusted by pressing the Add Layers,

adding objects to populate. In contrast, the

rotations should be restricted to multiples of π/2.

Such restrictions on the parameters are not

supported by the ecosystem, but should be set

manually prior to instancing. The random shift

of the object should be confined to some small

in-plane values as buildings are relatively

aligned with respect to each other and,

obviously, cannot be elevated above the ground

surface. The local surface normal should not be

used in procedural generation of virtual cities as

buildings are typically made strictly vertical.

This set of rules could be extrapolated to any

artificial objects, e.g. western gravestones, belts,

power grids, etc. A vastly different set of rules

should be applied to natural environments. In

case the chaos dominates over uniformity.

Moreover, the natural object are typically placed

along the local normal of the ground surface and

there is no need to constrain the rotation.

Anyway some empirical placement rules could

still be identified. For instance, there is always

more vegetation around the large stones, since

they are able to keep more moisture; small

stones are typically seen in steppes where they

are largely affected by the weathering. It is

virtually impossible to account for all such rules,

but over the years game designers identified the

most important of them that lead to the

satisfactory level of photorealism. The

population of chaotically (without any particular

rules applied) placed stones is shown in Fig. 2.

ISSN 2079-0023 (print)

ISSN 2410-2857 (online) Системний аналіз, управління та інформаційні технології

Fig. 2 – A population of stones generated

 by the procedural approach

Visually the given environment is rather

unrealistic. However if a simple rule of

proportional to the object size distribution is

applied the photorealism of the environment

subjectively increases multifold as shown in

Fig.3. This particular method relies on golden

ratio principle, i.e. the so-called „rule of five”. In

particular it postulates that the ratio between the

nearest neighbor objects in parameter space

should be ⅕, e.g. the amount of middle-size

stones should be 5 times larger than the large

ones. In the reported ecosystem this method is

provided by the „Make Nice‟ function that

provides photorealistic distribution of the given

objects by the 3-pass instancing, each with

corresponding downscaling of the objects and

increasing its amount by a factor of 5. The same

technique works equally well for vegetation.

Fig. 3 – Photorealistic distribution of the stones

The proposed solution. In the given work

the artificial neural network is used as black box

that maps object distribution rules developed by

the level designer to the input parameters space.

 Hereafter we rely on the backpropagation

method to train the artificial neural network [5].

A supervisor is then creates a training set with

the aim to place the objects in the certain way.

Let us assume that one wants to distribute cubes,

so that their size increase with the altitude. If the

linear dependence is sufficient, then the training

set is simply a set of two cubes: one small and

one large cube at low and high altitudes,

respectively. The input parameters should

include altitude of the ground surface at the

object site and the corresponding 8 nearest-

neighbour heights to account for the rules

related to the direction of the local normal to the

surface. There should be at least 6 outputs of the

artificial neural networks to account for 3D

scaling and rotation of the given object. The

schematic representation of the described

artificial neural network is shown in Fig. 4.

The ih is the altitude of the neighbor vertex

of the ground surface and i = 1, 2..8. (sX, sY, sZ)

and (rX, rY, rZ) are the scaling and rotation

vectors, respectively. The inputs of the network

are normalized independently using the

corresponding minimax values across the whole

training set.

Fig. 4 – Schematic representation of the artificial

neural network used to distribute the objects

with linear scaling of their size vs altitude

The routine. At first, one needs to put our

plugin to the „Editor‟ directory of the given

game project. Then the plugin should be

activated from within the Unity 3D Editor by

ISSN 2079-0023 (print)

ISSN 2410-2857 (online) Системний аналіз, управління та інформаційні технології

invoking the „Terrain->Ecosystem‟ menu. In the

corresponding window the user should specify

the object (by sending it to the „prefab control‟)

and then the area it should be distributed to.

 Multiple objects could be cloned at once. In

addition, the is a possibility to adjust the

parameters of the ecosystem: rotation, scale and

shift ranges, tilt rules with respect to the global

and local normals of the ground surface. Once

changes are made the instancing could be

performed immediately. To train the artificial

neural network, one can chose an arbitrary

number of (manually distributed) objects in the

scene and proceed. Finally the existing

population of the objects could be selected and

then re-distributed using different artificial

neural network.

Implementation of the artificial neural

network. If the given multi-layer artificial

neural network relies on linear activation

functions, then due to the associativity of the

matrix product it could always be reduced to the

single layer topology. At the same time if the

nonlinear activation function is used then it

could be demonstrated that the two-layer

network topology is sufficient to construct a

universal function approximator [5]. Since we

rely on the NeuralDotNet library that only

supports nonlinear sigmoidal activation

function, then the problem of the particular

choice of network topology is, thereby, trivial.

 So we would rely on the two-layer artificial

neural network with backpropagation training

routine. At the same time the amount of neurons

to be used should be identified using heuristic

methods [5]. We would start with 18 (the value

is selected randomly) neurons per each hidden

layer of the network. To estimate the validity of

the this approximation we would calculate the

variance of the outputs of the network for the

given training set, i.e. the training error:

  



out

2*)(Z-)Z(
2

1

v

Н , (1)

where)(Z – is the expected output value of the

network,  – input signal [5]. To avoid the

overtraining effect that leads to suppression of

the generalization properties of the network the

vanishing values of the training error should be

avoided. This could be achieved by adjusting the

amount of neurons per layer and (or) by

restricting the amount of training cycles. At first

let us limit this value to 5000 and then

investigate the relation between the training

error and the amount of neurons per layer.

The training set consists of 50 objects that

are randomly scaled and placed along the local

normal of the ground surface. By doing so we

would make that all inputs and outputs of the

network are active. The dependence of the

training error on the amount of neurons per layer

is shown in Fig. 5.

Fig. 5 – Training error vs the amount

Їof neurons per hidden layer

The data clearly shows that the optimal

(minimal) value of the training error corresponds

to 15 neurons per layer. Beyond this value the

training time increases significantly, while the

error remains virtually constant. So by fixing the

amount of neurons to the optimal value, we

investigate the relation between the error and the

amount of training cycles. We should also take

into account the dependence of the time required

to complete the training on the amount of cycles.

For instance, 100 and 20000 training cycles

require 5 s and 180 s, respectively. The result of

this investigation is shown in Fig. 6.

Fig. 6 – The training errors vs the amount of

training cycles

ISSN 2079-0023 (print)

ISSN 2410-2857 (online) Системний аналіз, управління та інформаційні технології

 in case of network of 15 neurons per hidden

layer

As it could be seen on the graph, the

dependence is linear. So we can easily find the

required amount of training cycles for the

desired value of the error. The final part of the

present study focuses on identifying the

subjective criteria of the distribution vibrance

produced by the artificial neural network

approach as compared to the procedural

generation.

For this purpose we create a population of

objects that are placed in space using the

following equations:

)(* oRSXXS  , (2)

)360,360(),( ooRrX ,

where о – the tilt angle. Then we train the

artificial neural network accordingly (Fig. 7 –

9). In this example, we wanted to create rocks

that fall or are on the slope of a mountain. As the

stones were used primitive Box, which is

embedded in Unity 3D.

Fig. 7 – Procedurally generated population

Fig. 8 – Neural network with generation error

0,02486

Fig. 9 – Neural network with generation error

0,336326

Fig. 7 shows procedurally generated

population, it is clear that not all primitives

scattered, the last row are almost not expanded,

and has not changed its position. This result

does not seem realist for this task [6]. On the

Fig. 8 neural network generates better spread

"stones" on the slope, but the some objects

again, almost did not change theirs angles.

Neural network generation with value

generation error 0.336326 (Fig. 9) is the best

results.

Then we perform a blind experiment

(table 1).

Table 1 – The subjective preferences of the experts with respect to the given distribution of the

objects

Expert
Generate types of creating game levels

Procedural Neural Neural networks

ISSN 2079-0023 (print)

ISSN 2410-2857 (online) Системний аналіз, управління та інформаційні технології

networks 0,02 0,33

Iliya (Doctrina) +

Denis (Program Ace)

Helen (Program Ace) +

Denis (Doctrina) + +

Pavel (CFT) +

Olexandr (Doctrina) +

Mykola (GU, SE) +

Andriy (BSK Games) +

Viktor (ideus) +

Evgeniy (Plaiko) +

Artur (Plaiko) +

Roman (Doctrina) +

Katerina (Doctrina) +

To assess the obtained results we formed a

group of experts consisting of prospective

computer gamers and game designers. Experts

chose the most visually attractive distribution of

the objects (table 1).

Denis Director of Cross platform

Development Department at Program-Ace,

explained his choice, the generation with error

0.336326 looks like spread and falling rocks.

Andrew level designer and CEO of BSK Games,

about generation said that from the point of level

design view the best is neural networks

generation 0,336326, but if the objects would be

randomly scattered with bigger value of

parameter, would be even better. According to

the table we can say that almost all respondents

declared by the neural network generation with

the value of 0.336326 errors. The procedural and

neural network generating have similar results,

but the most interesting landscapes created

through neural networks generation with the

biggest mistake.

Conclusions. We report on the development

of an artificial-neural-network-based ecosystem

to distribute objects on the virtual, in-game

landscapes created in Unity3d editor. In contrast

to rather limited procedural generation, our

approach allows one to program any custom

distribution rules in natural and intuitive ways

with fine control over the entropy, e.g. ranging

from rather strict to practically random

placement of the objects.

Bibliography: 1. Уоссермен Ф.

Нейрокомпьютерная техника. Теория и

практика / Ф. Уоссермен. – М. : Мир, 1992. –

184 с. 2. Вороновский В. К. Генетические

алгоритмы, искусственные нейронные сети и

проблемы виртуальной реальности /

В. К. Вороновский, К. В. Махотило,

С. Н. Петрашев, С. А. Сергеев. – Харьков :

Основа, 1997. – 112 с. 3. Заенцев И. В.

Нейронные сети: основные модели. Учебное

пособие по курсу «Нейронные сети» для

студентов 5 курса магистратуры кафедры

электроники физического факультета

Воронежского Государственного

университета / И. В. Заенцев. – Воронеж,

1999. – 76 с. – Режим доступа :

http://neuroschool.narod.ru/books/zaencev.html.

– Дата обращения : 20 января 2015. 4.

Флеминг Б. Фотореализм. Профессиональные

приемы работы / Билл Флеминг. / М. : ДМК,

2000. – 384 с. 5. Хайкин С. Нейронные сети:

Полный курс / Саймон Хайкин. – М. :

Вильямс, 2006. – 1103 с. 6. Rouse R. Game

Design: theory & practice / Richard Rouse. –

Plano : Wordware Publishing, 2005. – 698 p.

Bibliography (transliterated): 1. Wasserman,

Ph. Nejrokomp'juternaja tehnika. Teorija i

praktika. Moskow: Mir, 1992. Print.

2. Voronovskij, V. K., et al. Geneticheskie

algoritmy, iskusstvennye nejronnye seti i

problemy virtual'noj real'nosti. Kharkov:

Osnjva, 1997. Print. 3. Zaencev, I. V. Nejronnye

seti: osnovnye modeli. Uchebnoe posobie po

kursu «Nejronnye seti» dlja studentov 5 kursa

magistratury kafedry jelektroniki fizicheskogo

fakul'teta Voronezhskogo gosudarstvennogo

http://neuroschool.narod.ru/books/zaencev.html

ISSN 2079-0023 (print)

ISSN 2410-2857 (online) Системний аналіз, управління та інформаційні технології

universiteta. Voronezh, 1999. 76 p. Web. 20

January 2015

<http://neuroschool.narod.ru/books/zaencev.htm

l>. 4. Fleming, B. Fotorealizm. Professional'nye

prijomy raboty. Moskow: DMK, 2000. Print.

5. Haykin, S. Nejronnye seti: Polnyj kurs.

Moskow: Vil'jams, 2006. Print. 6. Rouse,

Richard. Game Design: theory & practice.

Plano: Wordware Publishing, 2005. Print.

Received 05.02.2015

