MODELING THE DEVELOPMENT OF EPIDEMIS BASED ON INFORMATION TECHNOLOGIES OF OPTIMIZATION

Authors

DOI:

https://doi.org/10.20998/2079-0023.2021.02.08

Keywords:

epidemic, mathematical model, differential equations, identification, information technology, simulation

Abstract

Mathematical models of the epidemic have been developed and researched to predict the development of the COVID-19 coronavirus epidemic on the
basis of information technology for optimizing complex dynamic systems. Mathematical models of epidemics SIR, SIRS, SEIR, SIS, MSEIR in the
form of nonlinear systems of differential equations are considered and the analysis of use of mathematical models for research of development of
epidemic of coronavirus epidemic COVID-19 is carried out. Based on the statistics of the COVID-19 coronavirus epidemic in the Kharkiv region, the
initial values of the parameters of the models of the last wave of the epidemic were calculated. Using these models, the program of the first-degree
system method from the module of information technology integration methods for solving nonlinear systems of differential equations simulated the
development of the last wave of the epidemic. Simulation shows that the number of healthy people will decrease and the number of infected people
will increase. In 12 months, the number of infected people will reach its maximum and then begin to decline. The information technology of
optimization of dynamic systems is used to identify the parameters of the COVID-19 epidemic models on the basis of statistical data on diseases in the
Kharkiv region. Using the obtained models, the development of the last wave of the COVID-19 epidemic in Kharkiv region was predicted. The
processes of epidemic development according to the SIR-model with weakening immunity are given, with the values of the model parameters obtained
as a result of identification. Approximately 13 months after the outbreak of the epidemic, the number of infected people will reach its maximum and
then begin to decline. In 10 months, the entire population of Kharkiv region will be infected. These results will allow us to predict possible options for
the development of the epidemic of coronavirus COVID-19 in the Kharkiv region for the timely implementation of adequate anti-epidemic measures.

Author Biographies

Olena Nikulina, National Technical University "Kharkiv Polytechnic Institute"

Doctor of Technical Sciences, Associate Professor, Professor of Department Software Engineering and Management Information Technologies National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

Valerii Severyn, National Technical University "Kharkiv Polytechnic Institute"

Doctor of Technical Sciences, Professor, Professor of Department System Analysis and Information-Analytical Technologies National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

Mariia Naduieva, National Technical University "Kharkiv Polytechnic Institute"

Student of Department Software Engineering and Management Information Technologies National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

Anton Bubnov, National Technical University "Kharkiv Polytechnic Institute"

student of Department Computer mathematics and data analysis National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

References

Kermack W. O., McKendrick A. G. A Contribution to the mathematical theory of epidemics. URL: https://www.jstor.org/stable/94815 (accessed 07.10.2021).

Begon M., Bennett M., Bowers R. G., French N. P. A clarication of transmission terms in host-microparisite models: numbers, densities and areas. https://pubmed.ncbi.nlm.nih.gov/12211582/ (accessed 10.10.2021).

Anderson R., May R. Infectious diseases of humans: dynamics and control. https://www.amazon.com/Infectious-Diseases-HumansDynamics-Control/dp/019854040X (accessed 11.11.2021).

Gray A., Greenhalgh D., Mao X., Pan J. The SIS epidemic model with markovian switching. URL: http://strathprints.strath.ac.uk/41322 (accessed 10.10.2021)

Ivanov M. V. Matematicheskoe modelirovanie processa pandemii: teoriya i praktika [Mathematical modeling of the pandemic process]. Available at: https://indsi.ru/2020/04/30/ mathematicalmodelingprocess / (accessed 20.11.21).

Avilov K. Matematychne modeliuvannia v epidemiolohii yak zavdannia analizu skladnykh danykh. [Mathematical modeling in epidemiology as a problem in the analysis of complex data]. Aviable at: https://indsi.ru/2020/04/30/ математическоемоделированиепроцесса/ (accessed 20.11.2021).

Allen L. J. S. An Introduction to stochastic epidemic models. URL: http://eaton.math.rpi.edu/csums/papers/epidemic/allenstochasticepid emic.pdf (accessed 13.10.2021).

Ivashchenko D. S., Kutsenko O. S. Oglyad i analiz metodov modeluvannya protsesu rozvetku epidemiyi [Overview and analysis of methods for modeling the epidemic development process]. Vestnik Nats. tekhn. un-ta "KhPI": sb. nauch. tr. Temat. vyp.: Sistemnyy analiz, upravlenie i informatsionnye tekhnologii [Bulletin of the National Technical University "KhPI": a collection of scientific papers. Thematic issue: System analysis, management and information technology]. Kharkov, NTU "KhPI" Publ., 2021, no. 1 (5), pp. 16–19.

Nikulina E. N., Severyn V. P., Kotsiuba N. V. Rozrobka informatsiynoi tekhnologii optymizatsii upravlinnya skladnymy dynamichnymy systemamy [Development of information technology for optimizing the control of complex dynamic systems]. Vestnik Nats. tekhn. un-ta "KhPI": sb. nauch. tr. Temat. vyp.: Sistemnyy analiz, upravlenie i informatsionnye tekhnologii [Bulletin of the National Technical University "KhPI": a collection of scientific papers. Thematic issue: System analysis, management and information technology]. Kharkov, NTU "KhPI" Publ., 2020, no. 2 (4), pp. 63–69.

Nikulina O. M., Severyn V. P., Kotsiuba N. V. Modul predstavlennya informatsiyi dlya technologiyi optymizatsiyi system avtomatychnogo upravlinnya [Information presentation module for automatic control systems optimization technology]. Tezy dopovidey ХXVIІ mighnorodnoyi naurovo-praktychnoyi konferentsiyi MicroCAD–2019. Ch. I. [Abstracts of the XXVII International Scientific and Practical Conference "MicroCAD–2019". Vol. 2]. Kharkiv, NTU "KhPI" Publ., 2019, p. 36.

Nikulina E. N., Severyn V. P., Kotsiuba N. V. Identifikatsiya s analiz ustoychivosti konturov avtomaticheskogo regulirovaniya energoblokov AES s reaktorami VVER-1000 [Identification and Analysis of stability of automatic control loops for NPP power units with VVER-1000 reactors.]. Tezy dopovidey ХXV mighnorodnoyi naurovo-praktychnoyi konferentsiyi Avtomatika–2018. [Abstracts of the XXV International Scientific and Practical Conference "Automatics–2018"]. Lviv, Lviv Polytechnic Publ., 2018, pp. 54–55.

Statistics // https://index.minfin.com.ua/reference/ coronavirus/ukraine/harkovskaya/ (accessed 10.11.2021).

Published

2021-12-28

How to Cite

Nikulina, O., Severyn, V., Naduieva, M., & Bubnov, A. (2021). MODELING THE DEVELOPMENT OF EPIDEMIS BASED ON INFORMATION TECHNOLOGIES OF OPTIMIZATION. Bulletin of National Technical University "KhPI". Series: System Analysis, Control and Information Technologies, (2 (6), 47–52. https://doi.org/10.20998/2079-0023.2021.02.08

Issue

Section

MATHEMATICAL AND COMPUTER MODELING