AN ADAPTIVE METHOD FOR BUILDING A MULTIVARIATE REGRESSION

Authors

DOI:

https://doi.org/10.20998/2079-0023.2024.01.01

Keywords:

multivariate regression, integral measure, adaptive algorithm, regression analysis, expert coefficients, linear programming

Abstract

We propose an adaptive method for building a multivariate regression given by a weighted linear convolution of known scalar functions of deterministic input variables with unknown coefficients. As, for example, when multivariate regression is given by a multivariate polynomial. In contrast to the general procedure of the least squares method that minimizes only a single scalar quantitative measure, the adaptive method uses six different quantitative measures and represents a systemically connected set of different algorithms which allow each applied problem to be solved on their basis by an individual adaptive algorithm that, in the case of an active experiment, even for a relatively small volume of experimental data, implements a strategy of a statistically justified solving. The small amount of data of the active experiment we use in the sense that, for such an amount, the variances of estimates of unknown coefficients obtained by the general procedure of the least squares method do not allow to guarantee the accuracy acceptable for practice. We also proposed to significantly increase the efficiency of the proposed by O. A. Pavlov. and M. M. Holovchenko modified group method of data handling for building a multivariate regression which is linear with respect to unknown coefficients and given by a redundant representation. We improve it by including some criteria and algorithms of the adaptive method for building a multivariate regression. For the multivariate polynomial regression problem, the inclusion of a partial case of the new version of the modified group method of data handling in the synthetic method proposed by O. A. Pavlov, M. M. Golovchenko, and V. V. Drozd, for building a multivariate polynomial regression given by a redundant representation, also significantly increases its efficiency.

Author Biographies

Alexander Pavlov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Doctor of Technical Sciences, Full Professor, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, Professor of Informatics and Software Engineering Department

Maxim Holovchenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, Senior Lecturer of Informatics and Software Engineering Department

Valeriia Drozd, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Bachelor of Informatics and Software Engineering Department

References

Pavlov A. A., Holovchenko M. N., Drozd V. V. Efficiency substantiation for a synthetical method of constructing a multivariate polynomial regression given by a redundant representation. Visnyk Nats. tekhn. un-tu "KhPI": zb. nauk. pr. Temat. vyp.: Systemnyy analiz, upravlinnya ta informatsiyni tekhnologiyi [Bulletin of the National Technical University "KhPI": a collection of scientific papers. Thematic issue: System analysis, management and information technology]. Kharkov, NTU "KhPI" Publ., 2023, no. 1 (9), P. 3–9. DOI: 10.20998/2079-0023.2023.01.01.

Pavlov A. A., Holovchenko M. N. Modified method of constructing a multivariate linear regression given by a redundant description. Visnyk Nats. tekhn. un-tu "KhPI": zb. nauk. pr. Temat. vyp.: Systemnyy analiz, upravlinnya ta informatsiyni tekhnologiyi [Bulletin of the National Technical University "KhPI": a collection of scientific papers. Thematic issue: System analysis, management and information technology]. Kharkov, NTU "KhPI" Publ., 2022, no. 2 (8), P. 3–8. DOI: 10.20998/2079-0023.2022.02.01.

Pavlov A., Holovchenko M., Mukha I. et al. A modified method and an architecture of a software for a multivariate polynomial regression building based on the results of a conditional active experiment. Lecture Notes on Data Engineering and Communications Technologies. 2023. Vol. 181. P. 207–222. DOI: 10.1007/978-3-031-36118-0_19.

Abdulrahman A. T., Alshammari N. S. Factor analysis and regression analysis to find out the influencing factors that led to the countries’ debt crisis. Advances and Applications in Statistics. 2022, vol. 78, pp. 1–16. DOI: 10.17654/0972361722047.

Flitman A. M. Towards analysing student failures: neural networks compared with regression analysis and multiple discriminant analysis. Computers and Operations Research. 1997, vol. 24, no. 4, pp. 367–377. DOI: 10.1016/s0305-0548(96)00060-3.

Johnson R. A., Wichern D. W. Applied multivariate statistical analysis, 5th edn. Upper Saddle River, Prentice-Hall, 2002. 767 p.

Knowles D., Parts L., Glass D., Winn J. M. Modeling skin and ageing phenotypes using latent variable models in Infer.NET. Predictive models in personalized medicine workshop, NIPS 2010. Available at: https://www.researchgate.net/publication/241194775 (accessed 18.05.2024).

Lio W., Liu B. Uncertain maximum likelihood estimation with application to uncertain regression analysis. Soft Computing. 2020, vol. 24, no. 13, pp. 9351–9360. DOI: 10.1007/s00500-020-04951-3.

Liu S.S., Zhu Y. Simultaneous maximum likelihood estimation for piecewise linear instrumental variable models. Entropy. 2022, vol. 24, no. 9, pp. 1235. DOI: 10.3390/e24091235.

Ruff L., Vandermeulen R., Goernitz N., Deecke D., Siddiqui S. A., Binder A., Müller E., Kloft M. Deep one-class classification. Proceedings of the 35th international conference on machine learning, PMLR 80. 2018, pp. 4393–4402. Available at: http://proceedings.mlr.press/v80/ruff18a/ruff18a.pdf (accessed 18.05.2024).

Scott J. T. Factor analysis and regression. Econometrica. 1966, vol. 34, no. 3, pp. 552–562. DOI: 10.2307/1909769.

Buckley J. J., Feuring T. Linear and non-linear fuzzy regression: Evolutionary algorithm solutions. Fuzzy Sets and Systems. 2000, vol. 112, no. 3, pp. 381–394. DOI: 10.1016/s0165-0114(98)00154-7.

Draper N. R., Smith H. Applied regression analysis, 3rd edn. New York, Wiley & Sons, 1998. 736 p. DOI: 10.1002/9781118625590.

Ivakhnenko, A.G. Modelirovanie slozhnykh sistem [Complex systems modelling]. Kyiv, Vyshcha shkola Publ., 1987. 63 p.

Kapanoglu M., Koc I. O., Erdogmus S. Genetic algorithms in parameter estimation for nonlinear regression models: an experimental approach. Journal of Statistical Computation and Simulation. 2007, vol. 77, no. 10, pp. 851–867. DOI: 10.1080/ 10629360600688244.

Mohan S. Parameter estimation of nonlinear Muskingum models using genetic algorithm. Journal of hydraulic engineering. 1997, vol. 123, no. 2, pp. 137–142. DOI: 10.1061/(asce)0733-9429(1997)123:2(137).

Nastenko E., Pavlov V., Boyko G., Nosovets O. Mnogokriterial'nyy algoritm shagovoy regressii [Multicriteria stepwise regression algorithm]. Biomedychna inzheneriya i tekhnolohiya. 2020, no. 3, pp. 48–53. DOI: 10.20535/2617-8974.2020.3.195661

Öztürk O. B., Başar E. Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping. Ocean Engineering. 2022, vol. 243, p. 110209. DOI: 10.1016/j.oceaneng.2021.110209.

Rajković D., Jeromela A. M., Pezo L., Lončar B., Grahovac N., Špika A. K. Artificial neural network and random forest regression models for modelling fatty acid and tocopherol content in oil of winter rapeseed. Journal of Food Composition and Analysis. 2023, vol. 115, p. 105020. DOI: 10.1016/j.jfca.2022.105020.

Tam V. W. Y., Butera A., Le K. N., Da Silva L. C. F., Evangelista A. C. J. A prediction model for compressive strength of CO2 concrete using regression analysis and artificial neural networks. Construction and Building Materials. 2022, vol. 324, p. 126689. DOI: 10.1016/j.conbuildmat.2022.126689

Hudson D. J. Statistics lectures, volume 2: Maximum likelihood and least squares theory. CERN Reports 64(18). Geneva, CERN, 1964. (Russ. ed.: Hudson D. Statistika dlja fizikov: Lekcii po teorii verojatnostej i jelementarnoj statistike. Moscow, Mir Publ., 1970. 296 p.). DOI: 10.5170/CERN-1964-018.

Downloads

Published

2024-07-30

How to Cite

Pavlov, A., Holovchenko, M., & Drozd, V. (2024). AN ADAPTIVE METHOD FOR BUILDING A MULTIVARIATE REGRESSION. Bulletin of National Technical University "KhPI". Series: System Analysis, Control and Information Technologies, (1 (11), 3–8. https://doi.org/10.20998/2079-0023.2024.01.01

Issue

Section

SYSTEM ANALYSIS AND DECISION-MAKING THEORY