FORECASTING CHANGE IN THE LEVEL OF FOREST COVERAGE USING THE GLOBAL FOREST WATCH SERVICE AND THE PROGRAMMING AND DATA ANALYSIS LANGUAGE R

Authors

DOI:

https://doi.org/10.20998/2079-0023.2024.01.10

Keywords:

level of forest cover, deforestation, Global Forest Watch, color saturation, forecasting, regression analysis, artificial neural networks, R language

Abstract

The problem of calculating the level of forest cover is considered, including forecasting changes in forest cover in individual forestry. It is stated that the authors previously developed software for calculating forest cover and processing information about forest plantations using the example of the village of Spivakivka in the Izyum district of the Kharkiv region. A comparison of forest cover over a number of years was also made using the Global Forest Watch resource. From this resource, images of Prydonetsk Forestry were taken with conventional designations: areas where new forest plantations are being planted are shown in blue, and areas where cutting is taking place are shown in pink. It is proposed to divide each of the uploaded images of the selected forestry into squares, and then analyze the data for each square. The pink color saturation was calculated and stored in the table. It is noted that forecasting the change in forest stands on the selected site, that is, the change in the percentage of felling, can be done in different ways. First, use regression analysis - apply the regression equation separately to the values of each square, as well as to the entire forestry. Secondly, to form a list of input factors containing indicators on the selected plot in the two previous years and the same indicators on neighboring plots. Thus, the number of factors will be equal to 27: 26 input and 1 output (values on the studied square). Such a forecasting problem can be solved either by the method of multivariate linear regression or by the method of artificial neural networks. The R programming and data analysis language was used to perform calculations using both methods. A script was created that performs calculations by constructing regression lines and an artificial neural network, and also allows determining the best architecture of a neural network and a more effective method of its training for a certain data set. The calculation of the felling dynamics in the entire forestry (the forecast for the last year provides an error of 1 %) and the calculation of the felling dynamics in the selected square (the forecast for the last year provides an error of 3.5 %) are given. After many runs of the script, it was found that the best result is provided by a perceptron with two hidden layers and two neurons in each layer. The results of the calculations indicate a high correlation of the data for determining the percentage of forest that will be cut down in a certain square. Application of this perceptron for forecasting for the last year showed an error of 3 %.

Author Biographies

Oleksandr Melnykov, Donbas State Engineering Academy

Candidate of Technical Sciences (PhD), Docent, Donbas State Engineering Academy, Associate Professor at the Department of Intelligent Decision Making Systems; Kramatorsk, Ukraine

Viktoriia Denysenko, Donbas State Engineering Academy

Donbas State Engineering Academy, Student, Kramatorsk, Ukraine

References

Znyshhennya lisiv: prychyny i naslidky [Deforestation: causes and consequences]. Available at: https://tvir.biographiya.com/znishhennya-lisiv-prichini-i-naslidki/ (accessed 21.03.2024).

Golik Yu. S., Chepurko Yu. V., Smolyar N. O. Pokaznyky lisystosti ta zapovidnosti terytorij, yak odni z bazovyx indykatoriv ocinky ekologichnoyi bezpeky [Indicators of forest cover and protected areas, as one of the basic indicators of environmental safety assessment]. Podolannya ekologichnyx ryzykiv ta zagroz dlya dovkillya v umovax nadzvychajnyx sytuacij – 2022: kol. monogr. [Overcoming ecological risks and threats to the environment in emergency situations – 2022]. Dnipro: Serednyak T. K. Publ., 2022, pp. 21–30.

Chaskovskyj O. G., Karabchuk D. Yu., Ivanyuk A. P. Zminy lisovogo vkryttya Ukrayinskyx Karpat za period 1984–2016 rokiv [Changes in the forest cover of the Ukrainian Carpathians for the period 1984–2016]. Naukovyj visnyk NLTU Ukrayiny [Scientific bulletin of NLTU of Ukraine]. 2019, vol. 29, no. 2, pp. 9–14.

Negrej M. V., Gnot T. V. Modelyuvannya dynamiky lisovyx resursiv Ukrayiny [Modeling the dynamics of forest resources of Ukraine]. Zbirnyk naukovo-texnichnyx pracz «Naukovyj visnyk NLTU Ukrayiny» [Collection of scientific and technical works "Scientific Bulletin of NLTU of Ukraine"]. 2014, issue 24.9, pp. 347–355.

Melnykov O. Yu., Denysenko V. O. Programne zabezpechennya dlya rozraxunku lisystosti ta obroblennya informaciyi pro lisovi nasadzhennya [Software for calculating forest cover and processing information about forest stands]. Zbirnyk materialiv III Mizhnarodnoyi naukovo-praktychnoyi konferenciyi «Vykorystannya informacijnyx texnologij dlya optymizaciyi procesiv vyrobnycztva silskogospodarskoyi produkciyi ta upravlinnya pidpryyemstvamy» (Agro-IT), (m. Kyyiv, 23-24 bereznya 2023 r.) / Sxidnoukrayinskyj nacionalnyj universytet imeni Volodymyra Dalya [Proceedings of the 3rd International Scientific and Practical Conference "Using Information Technologies for Optimizing the Processes of Agricultural Production and Enterprise Management" (Agro-IT), (Kyiv, March 23-24, 2023) / Eastern Ukrainian National University named after Volodymyr Dal]. Kyiv, 2023, pp. 39–42.

Spivakivka (Izyumskyj rajon). Vikipediya [Spivakivka (Izyum district). Wikipedia]. Available at: https://uk.wikipedia.org/wiki/Співаківка_(Ізюмський_район) (accessed 21.03.2024).

Denysenko V. O., Melnykov O. Yu. Doslidzhennya zbilshennya vyrubky lisu na terytoriyi Prydoneczkogo lisnycztva [Research on the increase in deforestation in the territory of the Prydonetsk Forestry]. Suchasni komp'yuterni systemy ta merezhi v upravlinni: materialy VI Vseukrayinskoyi nauk.-prakt. Internet-konf. zdobuvachiv vyshhoyi osvity ta molodyx vchenyx (30 lystopada 2023 r., m. Xmelnyczkyj, m. Xerson) / za red. A. A. Grygorovoyi [Modern computer systems and networks in management: materials of the VI All-Ukrainian Science-Practice. Internet Conf. of higher education graduates and young scientists (November 30, 2023, Khmelnytskyi, Kherson) / edited by A. A. Grigorova]. Kherson: Book publishing house FOP Vyshemyrskyi V.S. Publ., 2023, pp. 161–163.

Global Forest Watch. Available at: https://www.globalforestwatch.org/ (accessed 21.03.2024).

Melnykov O. Yu., Denysenko V. O. Doslidzhennya zminy vyrubuvannya lisu za dopomogoyu dodatka vlasnoyi rozrobky ta servisu Global Forest Watch [Investigating changes in deforestation using a self-developed app and Global Forest Watch service.]. Zbirnyk materialiv IV Mizhnarodnoyi naukovo-praktychnoyi konferenciyi «Vykorystannya informacijnyx texnologij dlya optymizaciyi procesiv vyrobnycztva silskogospodarskoyi produkciyi ta upravlinnya pidpryyemstvamy» (Agro-IT), (m. Kyyiv, 28-29 bereznya 2024 r.) / Sxidnoukrayinskyj nacionalnyj universytet imeni Volodymyra Dalya [Proceedings of the IV International Scientific and Practical Conference "Using Information Technologies for Optimizing the Processes of Agricultural Production and Management of Enterprises" (Agro-IT), (Kyiv, March 28-29, 2024) / Eastern Ukrainian National University named after Volodymyr Dal]. Kyiv, 2024. In print.

Obrobka foto onlajn [Online photo processing]. Available at: https://www.imgonline.com.ua/cut-photo-into-pieces-result.php (accessed 21.03.2024).

Melnykov O. Yu., Denysenko V. O. Zadacha prognozuvannya zminy shhilnosti lisovyx nasadzhen [The problem of forecasting changes in the density of forest stands]. Avtomatyzaciya ta komp'yuterno-integrovani texnologiyi u vyrobnycztvi ta osviti: stan, dosyagnennya, perspektyvy rozvytku: materialy Vseukrayinskoyi naukovo-praktychnoyi Internet-konferenciyi [Automation and computer-integrated technologies in production and education: state, achievements, development prospects: materials of the All-Ukrainian scientific and practical Internet conference]. Cherkasy, 2024, pp. 347–349.

Gitis V. B. Nejromerezhni texnologiyi: navchalnyj posibnyk [Neural network technologies: a tutorial]. Kramatorsk: DDMA Publ., 2021. 248 p.

Melnykov O. Yu. R – mova programuvannya ta analizu danyx: navchalnyj posibnyk dlya zdobuvachiv vyshhoyi osvity za specialnostyamy «Systemnyj analiz» ta «Informacijni systemy ta texnologiyi» [R – the language of programming and data analysis: a study guide for students of higher education majoring in "System Analysis" and "Information Systems and Technologies"]. Kramatorsk: DDMA Publ., 2023. 272 p.

Published

2024-07-30

How to Cite

Melnykov, O., & Denysenko, V. (2024). FORECASTING CHANGE IN THE LEVEL OF FOREST COVERAGE USING THE GLOBAL FOREST WATCH SERVICE AND THE PROGRAMMING AND DATA ANALYSIS LANGUAGE R. Bulletin of National Technical University "KhPI". Series: System Analysis, Control and Information Technologies, (1 (11), 65–69. https://doi.org/10.20998/2079-0023.2024.01.10

Issue

Section

INFORMATION TECHNOLOGY