SYNTHESIS OF DESIGN PARAMETERS OF MULTI-PURPOSE DYNAMIC SYSTEMS

Authors

DOI:

https://doi.org/10.20998/2079-0023.2024.02.04

Keywords:

stability, integral quadratic functional, Lyapunov matrix equation, inverse stability problem, multi-purpose dynamic systems, linear stationary systems, parametric optimization

Abstract

Two problems related to the optimization of linear stationary dynamic systems are considered. A general formulation of the multi-purpose problem of optimal control with the choice of design parameters is given. As a special case, the problem of multi-objective optimization of a linear system according to an integral quadratic criterion with a given random distribution of initial deviations is considered. The solution is based on the method of simultaneously reducing two positive-definite quadratic forms to diagonal form. Analytical results have been obtained that make it possible to calculate the mathematical expectation of the criterion under the normal multidimensional distribution law of the vector of random initial perturbations. The inverse problem of stability theory is formulated: to find a vector of structural parameters that ensure the stability of the system and a given average value of the quadratic integral quality criterion on a set of initial perturbations. The solution of the problem is proposed to be carried out in two stages. The first stage involves deriving a general solution to the Lyapunov matrix equation in terms of the elements of the system matrix. To achieve this, the state space is mapped onto the eigen-subspace of the positive-definite matrix corresponding to the integral quadratic performance criterion. It has been established that this solution is determined by an arbitrary skew-symmetric matrix or by the corresponding set of arbitrary constants. In contrast, when the system matrix depends linearly on the vector of design parameters, a linear system of equations can be formulated with respect to the unknown parameters and arbitrary constants present in the general solution of the inverse stability problem. In general, such a system is consistent and admits an infinite number of solutions that satisfy the initial requirements for the elements of the symmetric matrices in the Lyapunov.

Author Biographies

Oleksandr Kutsenko, National Technical University "Kharkiv Polytechnic Institute"

Doctor of Technical Sciences, Professor, National Technical University "Kharkiv Polytechnic Institute", professor of the Department of System Analysis and Information-Analytical Technologies, Kharkiv, Ukraine

Mykhailo Alforov, National Technical University "Kharkiv Polytechnic Institute"

PhD Student of National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

Andrii Alforov, National Technical University "Kharkiv Polytechnic Institute"

PhD Student of National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

References

Feldbaum A. A. Integral'nye kriterii kachestva regulirovaniya [Integral criteria for quality of regulation]. Avtomatika i telemekhanika [Automation and telemechanics]. 1948, vol. IX, no. 1. pp. 3–19. (In Russ.).

Krasovskiy A. A. Integral'nye kriterii otsenki kachestva protsessov regulirovaniya [Integral criteria for assessing the quality of regulatory processes]. Moskow, Mashgiz Publ., 1949. 24 p. (In Russ.).

Krasovskiy A. A. Statisticheskaya teoriya perekhodnykh protsessov v sistemakh upravleniya [Statistical theory of transient processes in control systems]. Moskow, Nauka Publ., 1965. 228 p. (In Russ.).

Pontryagin L. S., Boltyansky V. G., Gamkrelidze R.V. et al. Matematicheskaya teoriya optimal'nykh protsessov [Mathematical theory of optimal processes]. Moskow, Fizmatgiz Publ., 1961. 391 p. (In Russ.).

Boltyanskiy V. G. Matematicheskie metody optimal'nogo upravleniya. [Mathematical methods of optimal control]. Moskow, Fizmatgiz Publ., 1966. 307 p. (In Russ.).

Andreev Yu. N. Upravlenie konechnomernymi lineynymi ob'ektami. [Management of finite-dimensional linear objects]. Moskow, Fizmatgiz Publ., 1976. 424 p. (In Russ.).

Kuzovkov N. T. Modal'noye upravleniye i nablyudayushchiye ustroystva [Modal Control and Observer Devices]. Moskow, Mashinostroyeniye Publ., 1976. 184 p. (In Russ.).

Lyapunov A. M. General Problems of the Stability of Motion [General problem of motion stability]. Leningrad–Moskow, GITTL Publ., 1950. 471 p. (In Russ.).

Lur'e A. I. Nekotorye nelineinye zadachi teorii avtomaticheskogo upravleniya [Some nonlinear problems of automatic control theory]. Moskow, Gosenergoizdat Publ., 1951. (In Russ.).

Yakubovich V. A. Resheniye nekotorykh matrichnykh neravenstv, vstrechayushchikhsya v teorii avtomaticheskogo regulirovaniya [Solution of some matrix inequalities encountered in the theory of automatic control]. DAN SSSR [RAS USSR]. 1962, vol. 143, no. 6, pp. 1304–1307. (In Russ.).

Kutsenko A. S., Kovalenko S.V. Some Approaches to a Quantitative Measure of the Stability of Dynamical Systems. Eurasian Journal of Mathematical and Computer Applications. 2019, vol. 7, pp. 276–281.

Kutsenko A. S., Sviridova I.A. Vybor parametrov lineynoy dinamicheskoy sistemy po kvadratichnomu kriteriyu kachestva [Selection of parameters of a linear dynamic system using a quadratic quality criterion]. Vestnik Kharkovskogo gosudarstvennogo politekhnicheskogo universiteta [Bulletin of the Kharkov State Polytechnic University]. Kharkov, KhGPU Publ., 1999, issue. 57, pp. 17-22. (In Russ.).

Gantmakher F. R. Teoriya matrits [Matrix theory]. Moskow, Nauka Publ., 1967. 575 p. (In Russ.).

Published

2025-01-04

How to Cite

Kutsenko, O., Alforov, M., & Alforov, A. (2025). SYNTHESIS OF DESIGN PARAMETERS OF MULTI-PURPOSE DYNAMIC SYSTEMS. Bulletin of National Technical University "KhPI". Series: System Analysis, Control and Information Technologies, (2 (12), 25–29. https://doi.org/10.20998/2079-0023.2024.02.04

Issue

Section

CONTROL IN TECHNICAL SYSTEMS