PRACTICAL AND THEORETICAL ASPECTS OF MATHEMATICAL MODELING OF THE OPTIMIZATION PROCESS OF MANAGING MULTIGROUP BEHAVIOR OF AGENTS IN DISTRIBUTED SYSTEMS BASED ON THE GWO ALGORITHM
DOI:
https://doi.org/10.20998/2079-0023.2025.02.06Keywords:
computational intelligence, optimization methods, operations research, distributed systems, grey wolf optimizer (GWO), swarm intelligence, mathematical modeling, multi-agent systems, optimal packingAbstract
This work focused on the applied aspects and features of the gray wolf pack optimizer or the GWO algorithm in the context of application in multi-agent distributed systems. In this paper presented scientific materials regarding the proposed own ideas, assumptions, and hypotheses for analyzing and further verification in the fields of computer sciences, optimization methods and solving of applied mathematical and engineering problems. The object of the research is the process of organizing distributed systems based on computational intelligence. The subject of the research is the organization of algorithmic interaction in multi-agent intelligent systems in the context of mathematical modeling of the optimization process of multi-group behavior management. The goal of the research is to investigate the key practical and theoretical applied aspects and specifics of the application of the gray wolf pack optimizer or the GWO algorithm and its modifications; to study the features of modeling the behavior of intelligent agents of a gray wolf pack under the guidance of computational intelligence. The methods used: the method of analysis and synthesis, abstraction and concretization, comparison and analogies, the method of mathematical modeling and the method of scientific and search experiment. The results obtained: 1) analyzed the solid theoretical materials in the field of applied application of the GWO algorithm; 2) analyzed the key tactical and strategical techniques of mathematical modeling of the behavior of intelligent agents; 3) formed general approaches to mathematical modeling of multi-group interaction of self-organized multi-agent formations; 4) considered and analyzed the problems of coordination and agents interaction in a multi-agent distributed system; 5) considered the applied application of multi-agent systems in problems of science, engineering, computer and robotic systems; 6) identified the main limitations of the application of the gray wolf pack algorithm (GWO). Further developed the concept of mathematical modeling of the gray wolf pack algorithm (GWO) using the example of separately selected tactical and strategic techniques for organizing a wolf pack in the form of a multi-group multi-agent distributed system. Scientific novelty: proposed a new way to solve already solved selected optimization problems (separate optimal spherical objects packing into limited container problems) that we have listed in the paper. The main idea of the paperwork is to increase the iterational speed and accuracy of the search algorithm process by using a heuristic swarm intelligence algorithm, known as the Gray Wolf pack Optimizer or the GWO index. We proposed the use of a special qualitative and numerical indicator to determine the efficiency of individual wolf pack agents by using evaluation parameters during the optimization process or in real time. Were defined new tactical and strategic methods of wolf packs organization in the process of self-organizing in a pack. Practical Significance: 1) we put forward an idea-hypothesis, for verification in subsequent works, which is based on multi-group multi-agent self-organization of a distributed system on the basis of qualitative and numerical indicators, which are planned to be calculated based on complex coordination-characteristic methods and heuristic dynamically changing data. It is proposed to verify the hypothesis about new calculated evaluation parameters of the effectiveness of wolf pack agents; 2) future research works are planned to expand the scope of application of the gray wolf pack algorithm (GWO) in combination with our other promising ideas in the field of computational intelligence for solving already known, but inefficiently solved optimization problems; 3) in the context of the process of mathematical modeling using the GWO algorithm, it is planned to pay attention to the problem of the artificiality of the principle of generation and distribution of a random variable in stochastic variables of the algorithm, the issues of which were not sufficiently covered in the works found in the references or can be modified to increase the efficiency of the algorithm in solving selected problems; 4) proposed as a new solution to use the GWO algorithm in the selected optimal spherical objects packing problems for solving them in more efficient way. Conclusions: this work considered the main practical and theoretical aspects and many-sided application of the optimization algorithm of the gray wolf pack optimizer (GWO). The applied application of this algorithm in various scientific and practical problems in the context of mathematical modeling of multigroups multiple-agents behavior was considered. The basic principles of the organization of a wolf pack were analyzed and separate strategies of coordination and hunting by a wolf pack were determined. The key characteristics and problems of the gray wolf pack optimizer algorithm (GWO) were defined and considered the ways to solve them in the most efficient way.
References
Nguyen L. V. Swarm Intelligence-Based Multi-Robotics: A Comprehensive Review. AppliedMath. 2024, vol. 4, no. 4, pp. 1192–1210. DOI: 10.3390/appliedmath4040064 (accessed 05.06.2025).
Xu M., Cao L., Lu D., Hu Z., Yue Y.Application of swarm intelligence optimization algorithms in image processing: a comprehensive review of analysis, synthesis, and. Biomimetics. 2023, vol. 8, no. 2, article 235. DOI: 10.3390/biomimetics8020235 (accessed 05.06.2025).
Lui H.-P., Phoa F. K. H., Chen-Burger Y.-H., Lin S.-P. An efficient swarm intelligence approach to the optimization on high-dimensional solutions with cross-dimensional constraints, with applications in supply chain managemenl. Frontiers in computational neuroscience. 2024, vol. 18. DOI: 10.3389/fncom.2024.1283974 (accessed 05.06.2025).
Nasir M., Sadollah A., Mirjalili S., Mansouri S. A., Safaraliev M., Jordehi A. R. A comprehensive review on applications of grey wolf optimizer in energy systems. Archives of computational methods in engineering. 2024, vol. 32, pp. 2279–2319 DOI: 10.1007/s11831-024-10214-3 (accessed 05.06.2025).
Negi G., Kumar A., Pant S., Ram M. GWO: a review and applicationsl. International journal of system assurance engineering and management. 2020, vol. 4, issue 2, pp. 241–256. DOI: 10.1007/s13198-020-00995-8 (accessed 05.06.2025).
Makhadmeh S. N., Al-Betar M. A., Doush I. A., Awadallah M., Kassaymeh S., Mirjalili S., Zitar R. A. Recent advances in grey wolf optimizer, its versions and applications: review IEEE access. 2023, vol. 12, pp. 22991–23028. DOI: 10.1109/access.2023.3304889 (accessed 05.06.2025).
Deep K., Gupta S., Mirjalili S. Accelerated grey wolf optimiser for continuous optimisation problems. International journal of swarm intelligence. 2020, vol. 5, no. 1, pp. 22–59. DOI: 10.1504/ijsi.2020.10027788 (accessed 05.06.2025).
Hashem M. H., Abdullah H. S., Ghathwan K. I. Grey wolf optimization algorithm: a survey. Iraqi journal of science. 2023, vol. 64, no. 1, pp. 5964–5984. DOI: 10.24996/ijs.2023.64.11.40 (accessed 05.06.2025).
Zvornicanin E. Grey wolf optimization algorithm. DOI: https://www.baeldung.com/cs/grey-wolf-optimization (accessed 05.06.2025).
Shafronenko, A., Bodyanskiy Y. Adaptyvnyi pidkhid do nechitkoi klasteryzatsii na osnovi evoliutsiinoi optymizatsii alhorytmu sirykh vovkiv [Adaptive fuzzy clustering approach based on evolutionary optimization of the gray wolf algorithm. Zbirnyk naukovykh prats Kharkivskoho natsionalnoho universytetu Povitrianykh Syl [Scientific Works of Kharkiv National Air Force University]. 2023, no 1 (75), pp. 77–81. DOI: 10.30748/zhups.2023.75.11. (In Ukr.).
Jürgens U. M., Grinko M., Szameitat A., Hieber L., Fischbach R., Hunziker M. Managing wolves is managing narratives: views of wolves and nature shape people’s proposals for navigating human-wolf relations. Human ecology. 2023, vol. 51, pp. 35–57. DOI: 10.1007/s10745-022-00366-w (accessed 05.06.2025).
Rezaei F., Safavi H. R., Abd Elaziz M., El-Sappagh S. H. A., Al Betar M. A., Abuhmed T. An enhanced grey wolf optimizer with a velocity-aided global search mechanism. Mathematics. 2022, vol. 10, issue 3, article 351. DOI: 10.3390/math10030351 (accessed 05.06.2025).
Li K., Li S., Huang Z., Zhang M., Xu Z. Grey Wolf Optimization algorithm based on Cauchy-Gaussian mutation and improved search strategy. Scientific reports. 2022, vol. 12, no. 1, article 18961. DOI: 10.1038/s41598-022-23713-9 (accessed 05.06.2025).
Silaa M. Y., Barambones O., Bencherif A., Rahmani A. A new mppt-based extended grey wolf optimizer for stand-alone PV system: A performance evaluation versus four smart MPPT techniques in diverse scenarios. Inventions. 2023, vol. 8, issue 6, article 142. DOI: 10.3390/inventions8060142 (accessed 05.06.2025).
Ou Y., Qin F., Zhou K.-Q., Yin P.-F., Mo L.-P., Zain A. M. An improved grey wolf optimizer with multi-strategies coverage in wireless sensor networks. Symmetry. 2024, vol. 16, issue 3, article 286. DOI: 10.3390/sym16030286 (accessed 05.06.2025).
Bhatt B., Sharma H., Arora K., Joshi G. P., Shrestha B. Levy flight-based improved grey wolf optimization: a solution for various engineering problems.Mathematics. 2023, vol. 11, issue 7, articl. 1745. DOI: 10.3390/math11071745 (accessed 05.06.2025).
Sharma I., Kumar V., Sharma S. A comprehensive survey on grey wolf optimization. Recent advances in computer science and communications. 2020, vol. 13. DOI: 10.2174/2666255813999201007165454 (accessed 05.06.2025).
Shial G., Sahoo S., Panigrahi S. An improved GWO algorithm for data clustering. Communications in computer and information science. Cham, 2022, pp. 79–90. DOI: 10.1007/978-3-031-21750-0_7 (accessed 05.06.2025).
Vargas M., Cortes D., Ramirez-Salinas M. A., Villa-Vargas L. A., Lopez A. Random exploration and attraction of the best in swarm intelligence algorithms. Applied sciences. 2024, vol. 14, issue 23, article 11116. DOI: 10.3390/app142311116 (accessed 05.06.2025).
Qiu Y., Yang X., Chen S. An improved gray wolf optimization algorithm solving to functional optimization and engineering design problems. Scientific reports. 2024, vol. 14, no. 1, article 14190. DOI: 10.1038/s41598-024-64526-2 (accessed 05.06.2025).
Rudowsky I. Intelligent agents. Communications of the association for information systems. 2004, vol. 14, pp. 275–290. DOI: 10.17705/1cais.01414 (accessed 05.06.2025).
Jeapes B. Neural intelligent agents. Online and CD-Rom Review. 1996, vol. 20, no. 5, pp. 260–262. DOI: 10.1108/eb024592 (accessed 10.06.2025).
Sycara K., Pannu A., Zeng D. D. Distributed intelligent agents. IEEE expert. 1996, vol. 11, no. 6, pp. 36–46. DOI: 10.1109/64.546581 (accessed 10.06.2025).
Wong A. Intelligent software agents. Computer communications. 2000, vol. 23, no. 7, pp. 695–696. DOI: 10.1016/s0140-3664(99)00186-3 (accessed 10.06.2025).
Vasilakos A. V. Intelligent information agents. Computer communications. 2000, vol. 23, no. 18, article 1790. DOI: 10.1016/s0140-3664(00)00211-5 (accessed 10.06.2025).
Hagras H., Callaghan V., Colley M. Intelligent embedded agents. Information sciences. 2005, vol. 171, no. 4, pp. 289–292. DOI: 10.1016/j.ins.2004.09.006 (accessed 10.06.2025).
Edmonds B. Modeling socially intelligent agents. Applied artificial intelligence. 1998, vol. 12, no. 7–8, pp. 677–699. DOI: 10.1080/088395198117587 (accessed 10.06.2025).
Mattern S. Mapping's intelligent agents. Places journal. 2017, article 2017. DOI: 10.22269/170926 (accessed 10.06.2025).
Nowostawski M., Bush G., Purvis M., Cranefield S. A multi-level approach and infrastructure for agent-oriented software development. The first international joint conference, Bologna, Italy, 15–19 July 2002. New York, New York, USA, 2002, DOI: 10.1145/544741.544763 (accessed 05.06.2025).
Lopes Y. S., Cortés M. I., Gonçalves E. J. T., Oliveira R. JAMDER: JADE to multi-agent systems development resource. ADCAIJ: advances in distributed computing and artificial intelligence journal. 2018, vol. 7, no. 3, article 63. DOI: 10.14201/adcaij2018736398 (accessed 05.06.2025).
AlShabi M., Ghenai C., Bettayeb M., Ahmad F. F., El Haj Assad M.Multi-group grey wolf optimizer (MG-GWO) for estimating photovoltaic solar cell model. Journal of thermal analysis and calorimetry. 2020, vol. 144, issue 5, pp 1655–1670. DOI: 10.1007/s10973-020-09895-2 (accessed 05.06.2025).
Li J., Huang J., Liu J., Zheng T. Human-AI cooperation: modes and their effects on attitudes. Telematics and informatics. 2022, Vol. 72, article 101862. DOI: 10.1016/j.tele.2022.101862 (accessed 05.06.2025).
Zhou X., Shi G., Zhang J. Improved grey wolf algorithm: A method for UAV path planning. Drones. 2024, vol. 8, no. 11, p. 675. DOI: 10.3390/drones8110675 (accessed 05.06.2025).
Liu Q., Wang H. UAV 3D path planning based on improved grey wolf optimization algorithm. Frontiers in computing and intelligent systems. 2023, vol. 3, no. 1, pp. 113–116. DOI: 10.54097/fcis.v3i1.6344 (accessed 05.06.2025).
Hou Y., Gao H., Wang Z., Du C. Improved grey wolf optimization algorithm and application. Sensors. 2022, vol. 22, no. 10, article 3810. DOI: 10.3390/s22103810 (accessed 05.06.2025).
Zhang X., Lin Q., Mao W., Liu S., Dou Z., Liu G. Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization. Applied soft computing. 2020, article 107061. DOI: 10.1016/j.asoc.2020.107061 (accessed 05.06.2025).
Hamdan A., Tahboush M., Adawy M., Alwada’n T., Ghwanmeh S., Moath H. Phishing detection using grey wolf and particle swarm optimizer. International journal of electrical and computer engineering (IJECE). 2024, vol. 14, no. 5, pp. 5961–5969. DOI: 10.11591/ijece.v14i5.pp5961-5969 (accessed 05.06.2025).
Soban S., Sireesha R., Pavithra G., Badonia S.Grey wolf optimizer algorithm for multi-objective optimal power flow. Journal of intelligent systems and internet of things. 2024, vol. 12, no. 1, pp. 20–32. DOI: 10.54216/jisiot.120102 (accessed 05.06.2025).
Zhang L., Sun Y., Barth A., Ma O. Decentralized control of multi-robot system in cooperative object transportation using deep reinforcement learning. IEEE access. 2020, vol. 8, pp. 184109–184119. DOI: 10.1109/access.2020.3025287 (accessed 05.06.2025).
Dai W., Lu H., Xiao J., Zeng Zhiwen, Zheng Zhiqiang. Multi-Robot dynamic task allocation for exploration and destruction. Journal of intelligent & robotic systems. 2019, vol. 98, no. 2, pp. 455–479. DOI: 10.1007/s10846-019-01081-3 (accessed 05.06.2025).
Verma J. K., Ranga V. Multi-Robot coordination analysis, taxonomy, challenges and future scope. Journal of intelligent & robotic systems. 2021, vol. 102, no. 1. DOI: 10.1007/s10846-021-01378-2 (accessed 05.06.2025).
Sung Y., Budhiraja A. K., Williams R. K., Tokekar P. Distributed assignment with limited communication for multi-robot multi-target tracking. Autonomous robots. 2019, vol. 44, no. 1, pp. 57–73. DOI: 10.1007/s10514-019-09856-1 (accessed 05.06.2025).
Otte M., Kuhlman M. J., Sofge D. Auctions for multi-robot task allocation in communication limited environments. Autonomous robots. 2019, vol. 44, no. 3–4, pp. 547–584. DOI: 10.1007/s10514-019-09828-5 (accessed 05.06.2025).
Queralta J. P. et al. Collaborative multi-robot search and rescue: planning, coordination, perception, and active vision. IEEE access. 2020, vol. 8, pp. 191617–191643. DOI: 10.1109/access.2020.3030190 (accessed 05.06.2025).
Motes J., Sandström R., Lee H., Thomas S., Amato N. M. Multi-Robot task and motion planning with subtask dependencies. IEEE robotics and automation letters. 2020, vol. 5, no. 2, pp. 3338–3345. DOI: 10.1109/lra.2020.2976329 (accessed 05.06.2025).
Li J., Yang F. Task assignment strategy for multi-robot based on improved Grey Wolf Optimizer. Journal of ambient intelligence and humanized computing. 2020, vol. 11, no. 12, pp. 6319–6335. DOI: 10.1007/s12652-020-02224-3 (accessed 05.06.2025).
Su Y., Wang Q., Sun C. Self-triggered consensus control for linear multi-agent systems with input saturation. IEEE/CAA journal of automatica sinica. 2020, vol. 7, no. 1, pp. 150–157. DOI: 10.1109/jas.2019.1911837 (accessed 05.06.2025).
Feng Z., Hu G., Sun Y., Soon J. An overview of collaborative robotic manipulation in multi-robot systems. Annual reviews in control. 2020, vol. 49, pp. 113–127. DOI: 10.1016/j.arcontrol.2020.02.002 (accessed 05.06.2025).
Wooldridge M. Agent-based software engineering. IEE proceedings software engineering. 1997, vol. 144, no. 1. DOI: 10.1049/ip-sen:19971026 (accessed 05.06.2025).
Refonaa J., Porselvi A., Jany Shabu S. L., Santhosh Krishna B. V., Siddiquee Kazy Noor-E-Alam. Characterisation of intelligent autonomous agents inspired by biological theory in cognitive environment. Mobile information systems. 2022, vol. 2022, pp. 1–7. DOI: 10.1155/2022/4931194 (accessed 05.06.2025).
Hofmann P., Urbach N., Lanzl J., Desouza K. AI-enabled information systems: teaming up with intelligent agents in networked business. Electronic markets. 2024, vol. 34, no. 1, article 52. DOI: 10.1007/s12525-024-00734-y (accessed 06.06.2025).
Bose R. Intelligent agents framework for developing knowledge-based decision support systems for collaborative organizational processes. Expert systems with applications. 1996, vol. 11, no. 3, pp. 247–261. DOI: 10.1016/s0957-4174(96)00042-5 (accessed 06.06.2025).
Bond A. H. A computational model for organizations of cooperating intelligent agents. ACM SIGOIS Bulletin. 1990, vol. 11, issue 2–3, pp. 21–30. DOI: 10.1145/91478.91483 (accessed 06.06.2025).
Jiang F., Dong L., Peng Y., Wang K., Yang K., Pan C., Niyato D., Dobre O. A. Large language model enhanced multi-agent systems for 6G communications. IEEE wireless communications. 2024, vol. 32, issue 6, pp. 48–55. DOI: 10.1109/mwc.016.2300600 (accessed 06.06.2025).
Jimenez-Romero C., Yegenoglu A., Blum C. Multi-agent systems powered by large language models: applications in swarm intelligence. Frontiers in artificial intelligence. 2025, vol. 8. DOI: 10.3389/frai.2025.1593017 (accessed 06.06.2025).
Dada E. G., Joseph S. B., Oyewola D., Fadele A. A. Application of grey wolf optimization algorithm: recent trends, issues, and possible horizons. Gazi university journal of science. 2021, vol. 35, issue 2, pp. 485–504. DOI: 10.35378/gujs.820885 (accessed 05.06.2025).
Wang Y., Chen H., Xie L., Liu J., Zhang L., Yu J. Swarm autonomy: from agent functionalization to machine intelligence. Advanced materials. 2024, vol. 37, issue 2. DOI: 10.1002/adma.202312956 (accessed 10.06.2025).
Qiu Y., Yang X., Chen S. An improved gray wolf optimization algorithm solving to functional optimization and engineering design problems. Scientific reports. 2024, vol. 14, issue 1. DOI: 10.1038/s41598-024-64526-2 (accessed 05.06.2025).
Águila-León J., Chiñas-Palacios C., Vargas-Salgado, C., Hurtado-Perez, E., García. E. X. M. Particle swarm optimization, genetic algorithm and grey wolf optimizer algorithms performance comparative for a DC-DC boost converter PID controller. Advances in science, technology and engineering systems journal. 2021, vol. 6, issue 1, pp. 619–625. DOI: 10.25046/aj060167 (accessed 05.06.2025).
Abbas I. A., Mustafa M. K. A review of adaptive tuning of PID-controller: optimization techniques and applications. International journal of nonlinear analysis and applications. 2024, vol. 15, issue 2, pp. 29–37. DOI: 10.22075/ijnaa.2023.21415.4024 (accessed 05.06.2025).
Pace F., Raftogianni A., Godio A. A comparative analysis of three computational-intelligence metaheuristic methods for the optimization of TDEM data. Pure and applied geophysics. 2022, vol. 179, issue 2. DOI: 10.1007/s00024-022-03166-x (accessed 05.06.2025).
Dhruva S. Review of grey wolf optimizer. Neural Computing and Applications. 2024, vol. 36, pp. 2713–2735. DOI: https://www.researchgate.net/publication/380364735_Review_of_Grey_Wolf_Optimizer (accessed 05.06.2025).
Dong L., Xianfeng Y., Bingshuo Y., Yong S., Qingyang X., Xiongyan Y.An improved grey wolf optimization with multi-strategy ensemble for robot path planning. Sensors. 2022, vol. 22, issue 18, article 6843. DOI: 10.3390/s22186843 (accessed 05.06.2025).
Ou Y., Yin P., Mo L. An improved grey wolf optimizer and its application in robot path planning. Biomimetics. 2023, vol. 8, no. 1, p. 84. DOI: 10.3390/biomimetics8010084 (accessed 05.06.2025).
Widians J. A., Wardoyo R., Hartati S. A hybrid ant colony and grey wolf optimization algorithm for exploitation-exploration balance. Emerging science journal. 2024, vol. 8, no. 4, pp. 1642–1654. DOI: 10.28991/esj-2024-08-04-023 (accessed 05.06.2025).
Rafi T. H., Shubair R. M., Farhan F., Hoque Md. Z., Quayyum F. M. Recent advances in computer-aided medical diagnosis using machine learning algorithms with optimization techniques. IEEE access. 2021, vol. 9, pp. 137847–137868. DOI: 10.1109/access.2021.3108892 (accessed 05.06.2025).
Nassef A. M., Abdelkareem M. A., Maghrabie H. M., Baroutaji A. Hybrid metaheuristic algorithms: a recent comprehensive review with bibliometric analysis. International journal of electrical and computer engineering (IJECE). 2024, vol. 14, issue 6, article 7022. DOI: 10.11591/ijece.v14i6.pp7022-7035 (accessed 05.06.2025).
Ghalambaz M., Jalilzadeh Yengejeh R., Davami A. H. Building energy optimization using Grey Wolf Optimizer (GWO). Case studies in thermal engineering. 2021, vol. 27, article 101250. DOI: 10.1016/j.csite.2021.101250 (accessed 05.06.2025).
Nayak G. K., Panigrahi T. K., Sahoo A. K. A novel modified random walk grey wolf optimisation approach for non-smooth and non-convex economic load dispatch. International journal of innovative computing and applications. 2022, vol. 13, no. 2, p. 59–78. DOI: 10.1504/ijica.2022.10047889 (accessed 05.06.2025).
Uz M. E. Optimal design of multi-storey buildings with tuned mass dampers using genetic algorithms and grey wolf optimization. Journal of intelligent & fuzzy systems. 2022, vol. 43, issue 1, pp. 1553–1567. DOI: 10.3233/jifs-212553 (accessed 05.06.2025).
Liu J., Liu Y., Ding Y. Research and optimization of task scheduling algorithm based on heterogeneous multi-core processor. Cluster computing. 2024, vol. 27, pp. 13435–13453 DOI: 10.1007/s10586-024-04606-0 (accessed 05.06.2025).
Abdullahi Y. U., Rajan J., Swaminathan J., Adedeji W. O. Coupled taguchi-pareto-box behnken design-grey wolf optimization methods for optimization decisions when boring IS 2062 E250 steel plates on CNC machine. Engineering access. 2022, vol. 10, no. 1, pp. 28–41. DOI: https://www.researchgate.net/publication/378469471_Coupled_Taguchi-Pareto-Box_Behnken_Design-Grey_Wolf_Optimization_Methods_for_Optimization_Decisions_when_Boring_IS_2062_E250_Steel_Plates_on_CNC_Machine (accessed 05.06.2025).
Peng Q., Wu H., Li N., Wang F. A dynamic task allocation method for unmanned aerial vehicle swarm based on wolf pack labor division model. IEEE transactions on emerging topics in computational intelligence. 2024, vol. 8, issue 6, pp. 4075–4089. DOI: 10.1109/tetci.2024.3386614 (accessed 05.06.2025).
Dagal I., AL-Wesabi I., Harrison A., Mbasso W. F., Hourani A. O., Zaitsev I. Hierarchical multi step Gray Wolf optimization algorithm for energy systems optimization. Scientific reports. 2025, vol. 15, article 8973. DOI: 10.1038/s41598-025-92983-w (accessed 05.06.2025).
Rybitskyi O. M., Golian V. V., Golian N. V., Dudar Z. V., Kalynychenko O. V., Nikitin D. M Using obd-2 technology for vehicle diagnostic and using it in the information system. Bulletin of National Technical University "KhPI". Series: System analysis, control and information technologies. Kharkiv, NTU "KhPI" Publ., 2023, no. 1 (9), pp. 97–103. DOI: 10.20998/2079-0023.2023.01.15 (accessed 05.06.2025).
Nikitin D. Specification formalization of state charts for complex system management. Bulletin of National Technical University "KhPI". Series: System analysis, control and information technologies. Kharkiv, NTU "KhPI" Publ., 2023, no. 1 (9), pp. 104–109. DOI: 10.20998/2079-0023.2023.01.16 (accessed 05.06.2025).
Nikulina O. M., Severyn V. P., Kondratov O. M., Rekova N. Y. Analiz informatsiinykh tekhnolohii dliadystantsiinoi identyfikatsii dynamichnykh obiektiv [Analysis of information technologies for remote identification of dynamic objects]. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriia: Systemnyi analiz, upravlinnia ta informatsiini tekhnolohii [Bulletin of National Technical University "KhPI". Series: System analysis, control and information technologies]. Kharkiv, NTU "KhPI" Publ., 2023, no. 1 (9), pp. 110–115. DOI: 10.20998/2079-0023.2023.01.17 (accessed 05.06.2025). (In Ukr.).
Dada E., Joseph S. B., Oyewola D., Fadele A. A. Application of grey wolf optimization algorithm: recent trends, issues, and possible horizons. Gazi university journal of science. 2021, vol. 35, issue 2. pp. 485–504. DOI: 10.35378/gujs.820885 (accessed 05.06.2025).
Hashem M. H., Abdullah H. S., Ghathwan K. I. Grey wolf optimization algorithm: a survey. Iraqi journal of science. 2023, Vol. 64, no. 11, pp. 5964–5984. DOI: 10.24996/ijs.2023.64.11.40 (accessed 05.06.2025).
Sharma I., Kumar V., Sharma S. A comprehensive survey on grey wolf optimization. Recent advances in computer science and communications. 2022, vol. 15, no. 3, pp. 323–333. DOI: 10.2174/2666255813999201007165454 (accessed 05.06.2025).
Jiang J., Sun Z., Jiang X., Jin S., Jiang Y., Fan B. VGWO: variant grey wolf optimizer with high accuracy and low time complexity. Computers, materials & continua. 2023, vol. 77, issue 2, pp. 1617–1644. DOI: 10.32604/cmc.2023.041973 (accessed 05.06.2025).
Yu X., Xu WangYing, Wu X., Wang X. Reinforced exploitation and exploration grey wolf optimizer for numerical and real-world optimization problems. Applied intelligence. 2021, vol. 52, issue 8, pp. 8412–8427. DOI: 10.1007/s10489-021-02795-4 (accessed 05.06.2025).
Qin H., Meng T., Cao Y. Fuzzy strategy grey wolf optimizer for complex multimodal optimization problems. Sensors. 2022, vol. 22, no. 17, article 6420. DOI: 10.3390/s22176420 (accessed 05.06.2025).
Widians J. A., Wardoyo R., Hartati S. A hybrid ant colony and grey wolf optimization algorithm for exploitation-exploration balance. Emerging science journal. 2024, vol. 8, no. 4, pp. 1642–1654. DOI: 10.28991/esj-2024-08-04-023 (accessed 05.06.2025).
Singh N. A modified variant of grey wolf optimizer. Scientia iranica. 2018, vol. 27, pp. 1450–1466. DOI: 10.24200/sci.2018.50122.1523 (accessed 05.06.2025).
Tu B., Wang F., Huo Y., Wang X. A hybrid algorithm of grey wolf optimizer and harris hawks optimization for solving global optimization problems with improved convergence performance. Scientific reports. 2023, vol. 13, no. 1, article 22909. DOI: 10.1038/s41598-023-49754-2 (accessed 05.06.2025).
Akbari E., Rahimnejad A., Gadsden S. A. A greedy non‐hierarchical grey wolf optimizer for real‐world optimization. Electronics letters. 2021, vol. 57, no. 13, pp. 499–501. DOI: 10.1049/ell2.12176 (accessed 05.06.2025).
Lei W., Jiawei W., Zezhou M. Enhancing grey wolf optimizer with levy flight for engineering applications. IEEE access. 2023, vol. 11, pp. 74865–74897. DOI: 10.1109/access.2023.3295242 (accessed 05.08.2025)
Ye Z., Huang R., Zhou W., Wang M., Cai T., He Q., Zhang P., Zhang Y. Hybrid rice optimization algorithm inspired grey wolf optimizer for high-dimensional feature selection. Scientific reports. 2024, vol. 14, no. 1, article 30741. DOI: 10.1038/s41598-024-80648-z (accessed 05.06.2025).
Keshari S. K., Kansal V., Kumar S. A cluster based intelligent method to manage load of controllers in sdn-iot networks for smart cities. Scalable computing: practice and experience. 2021, vol. 22, no. 2, pp. 247–257. DOI: 10.12694/scpe.v22i2.1912 (accessed 30.07.2025).
Liu X., Wang Y., Zhou M. Dimensional learning strategy-based grey wolf optimizer for solving the global optimization problem. Computational Intelligence and Neuroscience. 2022, pp. 1–31. DOI: 10.1155/2022/3603607 (accessed 30.07.2025).
Hu C., Zhou H., Lv S. Clustering based on gray wolf optimization algorithm for internet of things over wireless nodes. International journal of advanced computer science and applications. 2023, vol. 14, no. 6, pp. 334–341. DOI: 10.14569/ijacsa.2023.0140637 (accessed 30.07.2025).
Shaikh M. S., Wang C., Xie S., Zheng G., Dong X., Qiu S., Ahmad M. A., Raj S. Coverage and connectivity maximization for wireless sensor networks using improved chaotic grey wolf optimization. Scientific reports. 2025, vol. 15, no. 1, article 15706. DOI: 10.1038/s41598-025-00184-2 (accessed 30.07.2025)
Nadimi-Shahraki M. H., Zamani H., Varzaneh Z. A., Sadiq A. S., Mirjalili S. A systematic review of applying grey wolf optimizer, its variants, and its developments in different internet of things applications. Internet of Things. 2024, vol. 26, article 101135. DOI: 10.1016/j.iot.2024.101135 (accessed 30.07.2025)
Singh S., Nikolovski S., Chakrabarti P. GWLBC: gray wolf optimization based load balanced clustering for sustainable wsns in smart city environment. Sensors. 2022, vol. 22, no. 19, article 7113. DOI: 10.3390/s22197113 (accessed 30.07.2025)
Alsadie D., Alsulami M. Modified grey wolf optimization for energy-efficient internet of things task scheduling in fog computing. Scientific Reports. 2025, vol. 15, no. 1, pp. 1–16. DOI: 10.1038/s41598-025-99837-5 (accessed 30.07.2025).
Yakovlev S. V. The method of artificial space dilation in problems of optimal packing of geometric objects. Cybernetics and systems analysis. 2017, vol. 53, no. 5, pp. 725–731. DOI: 10.1007/s10559-017-9974-y (accessed 28.08.2025).
Stoyan Y. G., Yaskov G. N. Packing identical spheres into a cylinder. International Transactions in Operational Research. 2010, vol. 17, no. 1, pp. 51–70. DOI: 10.1111/j.1475-3995.2009.00733.x (accessed 28.08.2025).
Stoyan Y., Yaskov G. Packing equal circles into a circle with circular prohibited areas. International journal of computer mathematics. 2012, vol. 89, no.10, pp. 1355–1369. DOI: 10.1080/00207160.2012.685468 (accessed 28.08.2025).
Yaskov G., Romanova T., Litvinchev I., Yakovlev S., Cantú J. M. V. Optimized packing multidimensional hyperspheres: a unified approach. Mathematical biosciences and engineering. 2020, vol. 17, no. 6, pp. 6601–6630. DOI: 10.3934/mbe.2020344 (accessed 28.08.2025).
Yakovlev S., Kartashov O., Pichugina O. та Korobchynskyi K. Genetic algorithms for solving combinatorial mass balancing problem. 2019 IEEE 2nd Ukraine conference on electrical and computer engineering (UKRCON). Lviv, Ukraine, 2019, pp. 1061–1064. DOI: 10.1109/ukrcon.2019.8879938 (accessed 28.08.2025).
Yakovlev S., Kartashov O., Korobchynskyi K., Skripka B. Numerical results of variable radii method in the unequal circles packing problem. 2019 IEEE 15th international conference on the experience of designing and application of CAD systems (CADSM). Polyana, Ukraine, 2019, pp. 1–4. DOI: 10.1109/cadsm.2019.8779288 (accessed 28.08.2025).
Stoyan Y., Chugay A. Packing cylinders and rectangular parallelepipeds with distances between them into a given region. European journal of operational research. 2009, vol. 197, no. 2, pp. 446–455. DOI: 10.1016/j.ejor.2008.07.003 (accessed 28.08.2025).
Stoyan Y., Pankratov A., Romanova T., Fasano G., Pintér J. D., Stoian Y. E., Chugay A. Optimized packings in space engineering applications: part I. Springer optimization and its applications. Cham: Springer International Publishing. 2019, pp. 395–437. DOI: 10.1007/978-3-030-10501-3_15 (accessed 28.08.2025)
Stoyan Y., Grebennik I., Romanova T., Kovalenko A. Opti.mized packings in space engineering applications: part II. Springer optimization and its applications. Cham: Springer International Publishing. 2019, pp. 439–457. DOI: 10.1007/978-3-030-10501-3_16 (accessed 28.08.2025)
Yakovlev S. Configuration spaces of geometric objects with their applications in packing, layout and covering problems. Advances in intelligent systems and computing. Cham: Springer International Publishing. 2019, pp. 122–132. DOI: 10.1007/978-3-030-26474-1_9
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
